The Ford-Fulkerson Method

- It is a “method” rather than an “algorithm”
- Two important ideas:
 - Residual networks
 - Augmenting paths
- We use three graphs, the original graph G, a flow graph G_f, and a residual graph $G_r = G - G_f$.

The Ford-Fulkerson Method (cont.)

- Give an initial flow: $f(u,v)=0$ for all $u,v \in V$
- We proceed in stages. Each stage we choose a augmenting path in the residual graph G_r from s to t. The minimum edge on this path is the amount of flow that can be added to every edge on that path.
- We do this by adjusting G_f and recomputing G_r.
- We continue until there are no paths from s to t.
- We can’t follow any edges that have capacity 0.

Discussion

- We can obtained the maximum flow. However, how did I choose the paths?
- If we choose a greedy algorithm, we’d be tempted to choose paths that allows the maximum amount of flow to be added at each step. This might not work.
- For example, let’s choose (s, a, d, t) first, because this allows 3 units of flow to be added.

Example

There are no paths from s to t in the residual graph, so we are done, but we have not obtained the maximum possible flow.
A Better Algorithm

We can make the algorithm work by allowing the algorithm to change its mind.
In effect we allow the algorithm to undo its decisions by sending flow back in the opposite direction. This is best seen by example. We have to modify the residual graph.

Example

We again choose the path (s, a, d, t). But note we now allow the flow to backup in the residual graph.

Example

We can now follow the path (s, b, d, a, c, t). The minimum flow along this path is 2. Note the flow from d to a is now 1 = 3 – 2. We are done. This is the maximum flow solution.

Networks with multiple sources and sinks

A maximum-flow problem has several sources and sinks
Example: A company has a set of m factories and n warehouse.
How to determine a maximum flow in such a network?

Networks with multiple sources and sinks (cont.)

Reduce the problem to an ordinary maximum-flow problem
A flow network has m sources S = \{s_1, s_2, ..., s_m\}, and n sinks T = \{t_1, t_2, ..., t_n\}
Add a supersource s and a directed edge (s, s_i) with capacity \text{cap}(s, s_i) = \infty
Add a supersink t and a directed edge (t_i, t) with capacity \text{cap}(t_i, t) = \infty

Matching

What is a matching an undirected graph?
Matched and unmatched vertices
Finding a maximum matching in a graph.
The maximum bipartite matching problem
Finding a Maximum Bipartite Matching

- Use the Ford-Fulkerson method
- Construct a flow network in which flows correspond to matchings

Construct a Flow Network

- Given an undirected bipartite graph $G = (V, E)$, define the corresponding flow network $G' = (V', E')$
- $V' = V \cup \{s, t\}$
- $E' = \{(u,v): u \in L, v \in R, (u,v) \in E\} \cup\{(s,u): u \in L\} \cup\{(v,t): v \in R\}$
- Assign unit capacity to each edge in E'

Finding a Maximum Bipartite Matching

- A maximum matching in G corresponds to a maximum flow in its corresponding flow network G'
- Run the Ford-Fulkerson algorithm on G'