Graph Terminology

- vertex, node, point
- edge, line, arc
- \(G = (V, E) \)
 - \(V \) is set of vertices
 - \(E \) is set of edges
- Each edge joins two different vertices

Undirected Graph

- edges do not have a direction
- The edge from 1 to 2 is also an edge from 2 to 1
- Edge (1, 2) implies that there is also an edge (2, 1) [The same edge]

Directed Graph

- edges have a direction
- Edge (2, 1) means only that there is an edge from 2 to 1
- In this example, there is no edge from 1 to 2

Weighted Graph

- weights (values) are associated with the edges in the graph
- may be directed for undirected
- Weighted graphs are also referred to as networks

Complete Graph

- For each pair of vertices, there is one edge
- If \(G = (V, E) \) is a complete graph, and \(|V| = n \), then can you calculate \(|E| \)?
Subgraph
- A subgraph G' of graph $G = (V, E)$ is a graph (V', E') that $V' \subseteq V$ and $E' \subseteq E$.

Path
- the sequence of edges $(i_1, i_2), (i_2, i_3), \ldots, (i_{k-1}, i_k)$.
- Denoted as path i_1, i_2, \ldots, i_k.
- **Simple path** – all vertices (except possibly first and last) are different.
- Length of path is sum of the lengths of the edges.

Representation of Graphs
- Adjacency matrix
- Incidence matrix
- Adjacency lists: Table, Linked List
- Space/time trade-offs depending on which operation are most frequent as well as properties of the graph.

Can we use tree traversal algorithms to traverse graphs?

Why?

Depth first search
- Starting from vertex v
- Mark v as marked
- Select u as an unmarked node adjacent to v
- If no u, quit
- If u, begin depth first search from u
- When search from u quits, select another node from v
- Similar to preorder tree traversal

Breadth first search
- Starting from node v
- Identify all nodes adjacent to v
- Add these to the set
- Determine set of unvisited nodes which are adjacent to this set
- Add these to the set
- Continue until no new nodes are encountered
An Example

What would the visit orders for DFS(1), DFS(5), BFS(1), BFS(5) look like?