SIP - Spice Intranet Package

Bogdan Wilamowski, John Regnier, Aleksander Malinowski

wilam@ieee.org, regnier@uwyo.edu, olekmali@uwyo.edu

Dept. of Electrical Engineering
University of Wyoming
Laramie, WY 82071, USA
Phone: (307) 766 2162 Fax: (307) 766 4444

Abstract - Computer network communications have become a popular and efficient means of computing. Most companies and research institutions use networks to some extent on a regular basis. This paper demonstrates the capability of computer-aided design (CAD) through computer networks. There are several benefits that make networked CAD tools desirable. A networked application can be used remotely through any network connection. Any operating system can be used to access a networked application, making the application operating system independent. Also the application can be made to run on a pay-per-use basis if licensing is desired, and much less installation time and configuration time is required because the application is located on one central machine. The Spice Intranet Package (SIP) is demonstrated as an example of such a networked CAD application. This particular application allows users to run SPICE simulations and view graphical analysis of electronic circuits through a network connection using a Web browser. The SIP application has many options that include simulation and analysis of Spice files, graphical analysis of data, online editing of Spice files, passwords with separate file areas for each user, and a user friendly graphical user interface.

I. INTRODUCTION

Computer networks have become a popular and efficient means of computing. The following paper describes an actual implementation, and the programming technology used to develop a CAD tool, which can be used remotely through computer network connections [1]. The Spice implementation used in this presentation is just one example of a networked application. Several methods of computer network programming are available including Java and CGI (Common Gateway Interface). The focus here will be the advantages of network programming when used for Spice simulation and analysis. An application called the Spice Intranet Package (SIP) has been developed for use through Internet and Intranet networks. Internet web pages are available from all around the world, while Intranet networks provide connectivity for a smaller, more isolated domain like a company. The SIP provides an operating system independent interface which allows Spice simulation and analysis to be performed from any computer that has a web browser on the Internet or an Intranet. The SIP has a user-friendly GUI (Graphical User Interface) and features include password protection and user accounts, local or remote files for simulation, editing of circuit files while viewing simulation results, and analysis of simulated data in the form of images or formatted text.

Several network-programming tools, which are available today, include Java, CGI, ActiveX, JavaScript, VBScript, HTML, and PERL. During software development it is important to justify which part of the software should run on the client machine and which part should run on the server. The CGI is quite different from writing Java applets in this aspect. Applets are transferred through a network when requested and execution is performed entirely on the client machine that made the request. In CGI much less information has to be passed to the server and the server executes instructions based on the given information and sends the results back to the local machine that made the request. Fig. 1 shows the program component division and data flow in a network based application.

![Diagram](attachment:image)

Fig. 1. Data flow in a network-based application.

In the case of the Spice Intranet Package it only makes sense to use CGI for the Spice simulation because it would be impossible to send the Spice engine through the network every time it was requested and this would be extremely slow. Java technology could also be used for functions like generating and manipulating graphs and implementing the graphical user interface on the client side. The SIP program currently incorporates CGI, PERL, HTML, and JavaScript. These technologies are briefly described below.

The CGI programming allows for dynamic web page generation in a web browser based on user selections in the initial page displayed in the web browser. Communication between a CGI program and the web browser is accomplished through a network connection between the web browser and a computer running an HTTP (Hypertext
A CGI program executes on a server when it receives a request to process information from a web browser. The server then decides if the request should be granted and if the CGI program actually exists. If the authorization is secured, the server executes the CGI program and returns the results to the web browsers that requested the processing.

PERL is a programming language especially suited for CGI network programming and commonly used for text processing and system shell programming. Sometimes a PERL program is called a PERL script because it is an interpreted language and is not compiled like a C program. A PERL script is similar to a Unix shell program. PERL has many features that make it well suited to processing CGI requests and generating HTML pages. HTML and JavaScript provide the front-end graphical user interface that allows a user to click a button or enter a circuit filename and start circuit simulations. Events in JavaScript are monitored and processing of information is initiated through features of these two technologies.

II. SIP DESCRIPTION

The SIP software package is a Spice simulation and analysis program implemented in the network environment. A unique feature of the SIP program is that it is operating system independent. Anyone that has access to the Internet and a web browser, such as Netscape Navigator or MS Internet Explorer, can run a Spice simulation and view the results graphically from anywhere in the world using any operating system. A network model of the SIP software package is shown in Fig. 2.

A server is configured to accept requests from web browsers through network connections. The server processes the request for Spice simulation or analysis and returns the results to the requesting web browser as an HTML document. The graphical analysis is embedded in the HTML as an image or returned as formatted text. Fig. 2 shows the flow of information and the distinction from the client and the server. Some of the SIP features include:

- Customizing the graphical analysis including zoom and scale.
- One copy of the Spice engine runs on a server and many users can access the SIP program simultaneously.
- Password protection and separate file areas for each user password.
- Editing of personal input and output files stored on the server.
- Multiple windows open at a time to allow viewing or editing of circuit files while viewing simulation results.
- Analysis output can be specified as a GIF image, or raw text containing the data points.

The current versions of SIP are written both for the Unix and the Windows NT operating systems. (Respectively: http://atlantis.uwyo.edu/~regnier/sip and http://nn.uwyo.edu/sip-html/) The two versions differ only slightly because of the operating system independence of the programming languages being used. PERL for example is available for Windows NT as well as the Unix system and JavaScript and HTML are totally platform independent. The image generation is currently done with the gnuplot program and netpbm utilities.

III. SIP EXAMPLES

The graphical user interface is shown in Fig. 3. It is necessary to select the radio button for REMOTE or LOCAL files depending on which you are using. This decision specifies whether the simulation and graphing programs will use the remote or local file names that you entered. If you use local files you have to save the output from simulation in a file on your local machine, and then enter that name in the Local OUT Filename edit box in order to plot the data. As an example of the use of the SIP program, consider the MOS Inverter in Fig. 4.

Fig. 2. Spice intranet package network model.

Fig. 3. Graphical user interface for SIP package.
Fig. 4. Simple CMOS inverter: circuit diagram (upper) and editing window with Spice input file (lower).

The Spice3 input file in Fig. 4 describes the MOS circuit in terms of the Spice3 language. The Spice2 and Spice3 input code significantly differs from other popular Spice versions as PSPICE for example. All differences between various Spice programs are well described in [2]. Notice in the Spice code there are commands for the Spice simulator to analyze the dc sweep, the ac analysis, and the transient response of the circuit and to print the output of V(1) and V(2).

To enter a Spice input file select the filename from the CIR drop down box or type the name into the CIR Filename edit box and then press the VIEW/EDIT button. After entering or modifying the input file press SAVE CHANGES in the edit window to save the changes to the file. After entering the input file and saving it, the simulation is then run by selecting the RUN SIMULATION button. The output from the simulation is displayed in the output window. If remote files were used the output is also saved to the file in the Remote OUT Filename edit box automatically. Next generate a graph of the output data by pressing the PLOT DATA button. A window will open allowing you to select what variables you want to plot and other customization variables as shown in Fig. 5. Select PLOT DATA again and the analysis is returned to the output window as shown in Fig. 6. To close all the windows and return to the original web browser window press the EXIT SIP button. There is also a HELP button describing how to use the SIP program. It is also possible to save the output data in a space delimited ASCII file so a high quality graph can be generated by MS Excel or other plotting packages.
Another example is with non-ideal model of 741 OPAMP shown in Fig. 7, which uses the macrodome of OPAMP as described in [2]. Also in this case all three types of analysis are performed. Fig. 8 shows both the transient response of the amplifier and the AC analysis. Note two types of distortions one due to rail voltage limitation and another due to the slew rate limitation. One unique feature is ability to copy the resulted graphics into reports or documents as it is demonstrated in Fig. 8. The SIP package uses the compressed GIF graphics formats, which are small and handy in comparison to the large bitmap files used in other Spice packages.

Fig. 7. Application of a non-ideal operational amplifier.

V. CONCLUSION

The purpose of this presentation is to show how CAD tools can be used through the Intranet, and the SIP is just an example of using Spice. Several features make the Spice Intranet Package a desirable program for computer-aided engineering and design. Only one copy of the Spice engine needs to be installed and configured. One machine acts as the server and other machines can simultaneously access the Spice engine through network connections. Remote access to SIP allows users to run Spice simulations from any computer on the network, and that might be from home or another office in another building or town. Also the current Spice engine being used is Spice3f5 from Berkeley [4] which allows an unlimited number of transistors, unlike various “student versions” of Spice programs that are available.

User passwords are required because the SIP program is accessible from around the world and a heavy number of users would slow the server down noticeably. For undetermined time you can access the Spice Intranet Package and try some examples with the password “sip” at the following URL:

- http://atlantis.uwyo.edu/~regnier/sip
- http://nn.uwyo.edu/sip/

The Spice Intranet Package is successfully used in several classes at the University of Wyoming. Students appreciate a convenience of using it on any computer platform at the University or at home. It was designed originally for the Intranet, however it works also very well on Internet.

VI. REFERENCES

VLSI analog multiplier/divider circuit

Bogdan M. Wilamowski
Dept. of Electrical Engineering, University of Wyoming
Laramie, WY 82071, USA
wilam@uwyo.edu

Abstract - Intelligent systems require signal processing which can be done quickly and accurately. The commonly used digital approach has many advantages, but some disadvantages as well. Analog signal processing is in many cases much simpler, faster, and easier for performing parallel processing. In this paper a new accurate CMOS multiplier/divider circuit is presented. In contrary to previous solutions, which use the square law formula for MOS transistors operating in the strong inversion mode, the multiplier/divider circuits employ MOS transistor characteristics in the subthreshold conduction mode. It is shown that the circuit generates very accurate results. With some modification, the basic circuit can also be used as a four-quadrant multiplier, which may operate for both positive and negative input signals. The circuit itself may have many applications as multiplier, divider, signal squaring, square root calculations, frequency modulation, frequency doubling, etc. Most importantly it can be used for analog signal processing in many intelligent systems of industrial electronics.

I. INTRODUCTION

Numerous applications of industrial electronics use intelligent computation. For example, many motor control systems require sophisticated computation. The intelligence is also involved in smart sensors, which are able to measure flux, and other electrical parameters just by analyzing currents and voltages on the supply terminals. Recent publications about intelligent system applications into industrial electronics are devoted mainly to the concept and sometimes simulation issues. Those publications, which describe hardware implementation, use computers or microcomputers for intelligent computation. The digital approach has many advantages, primarily it is flexible and easy to reprogram. At the same time these digital systems are rather complex and they require an analog to digital conversion at the front of the system and a digital to analog conversion at its end. Our surrounding world has an analog nature and it would be wise to perform all computation in analog fashion. The recent development of several new analog signal-processing circuits makes it so the analog signal processing becomes more visible for practical applications. Analog signal processing is usually much faster. Several computation processes can be done simultaneously and AD and DA conversion is not required. Many analog processing units have been developed already. The operations which are the most difficult to implement are signal multiplication and division. Several solutions have been implemented already primarily using bipolar technology. The best known of these is the Gilbert four-quadrant multiplier.[1][2]. Many attempts have been made to construct an analog multiplier using the CMOS technology [3][4][5][6][7]. All those approaches assume the ideal characteristics of a simple Shichman-Hodges MOS transistor model where the drain current is given by:

\[I_D = K \left[(V_{GS} - V_{th}) V_{DS} - 0.5 V_{DS}^2 \right] (1 + \lambda V_{DS}) \]

\[I_D = 0.5K \left(V_{GS} - V_{th} \right)^2 (1 + \lambda V_{DS}) \] \hspace{1cm} (1)

where

\[K = \mu C_w \frac{W}{L} \] \hspace{1cm} (2)

Figure 1 shows the measured characteristics of NMOS transistors fabricated using 2μm MOSIS technology. Fig. 1(a) presents the drain current versus gate-source voltage in a linear scale and Fig. 1(b) shows the same characteristics drawn in a logarithmic scale. On Fig. 1(a) a parabolic function 0.2 (VGS-0.8)^2 is also plotted with a dotted line. Note that the actual transistor characteristics for VDS < VGS - Vth have a different than parabolic shape. Therefore, the transistor model described by equation (1) is not accurate and all CMOS multipliers developed using this model are questionable.

II. PROPOSED APPROACH

In this approach, instead of using the "square law" characteristics of MOS transistors in the strong inversion mode, the subthreshold conduction mode is used instead. Note on Fig 1(b) that the transistor characteristics for currents smaller than 10μA follows the exponential relationship for more than 6 decades. This is especially true for transistors with short channels. In this region transistor characteristics can be approximated by:
\[I_D = I_{ON} \exp \left(\frac{V_{GS} - V_{th} + \eta V_T}{\eta V_T} \right) \] (3)

where for the measured device with \(L=2\mu m\) \(\eta=1.43\) and \(I_{ON}=13\mu A\). This part of the characteristics is used for constructing the multiplier-divide circuit.

![Graph](image1)

\(V_{DS}=5V\) and \(L=60\mu m\)

\(W=2,3,4,6,8,12\mu m\)

\(0.2(V_{GS}-0.8)^3\)

![Graph](image2)

\(V_{DS}=5V\) and \(L=60\mu m\)

\(W=2,3,4,6,8,12\mu m\)

![Diagram](image3)

![Diagram](image4)

Fig. 1. NMOS transistor characteristics measured with HP4155 Semiconductor Parameter Analyzer for N-well 2\mu m CMOS technology for transistor with channel width of \(W=60\mu m\) and channel length \(L=2,3,4,6,8,12\mu m\). (a) linear scale and (b) logarithmic scale.

The concept of the multiplier-divider circuit is shown in Fig. 2(a). The actual implementation is shown in Fig. 2(b). The main difference between these circuits is that in the circuit on Fig. 2(b) gate-drain voltages for all transistors (with exception of M6, M7, and M9) are close to zero. This way, the effect of channel length modulation is practically eliminated. Assuming the same sizes for transistors M1 to M4, ignoring the body effect, and using equation (3), one can find that

\[I_{D1} = I_{p4} = \frac{I_{I_2}}{I_3} \] (4)

The threshold change for transistors M1 and M3 due to the body effect should be the similar since the gate-bulk voltages for those transistors are identical. The same is true for transistors M2 and M4.

![Diagram](image5)

Fig. 2. Circuit diagram of multiplier/divider (a) concept diagram and (b) actual implementation.
Fig. 3. The circuit of Fig. 2(b) as (a) signal multiplier and (b) signal divider.

Fig. 3 shows SPICE simulation results for the circuit from Fig. 2(b). In the case of Fig. 3(a) the circuit is used as a signal multiplier where current I_1 is multiplied by I_2, and I_3 is kept constant. In the case of Fig. 3(b) the circuit is used as a divider where I_1 is divided by I_3 and I_2 is kept constant. For example, in Fig. 3(a) 50nA*50nA/20nA=120nA, while in Fig. 3(b) 50nA*50nA/50nA=50nA. Note that equation (4) is valid for all points in both graphs of Fig. 3. If I_1 is equal to I_2 the circuit can be used for squaring the signal. Fig. 4 illustrates the squaring action for the triangular waveform, where the output signal is INP2/BIAS. Results of both Figures 3 and 4 follow equation (4) with high accuracy.

III. FOUR-QUADRANT MULTIPLIER

The circuit presented in the previous section can only operate with a positive input current. However the same circuit, with but some modification, can be used as a four-quadrant multiplier. Let us set the same biasing currents I_0 for all three inputs and let us add/subtract small current components to the first and second input. Equation (4) can be rewritten in the form:

$$I_{D7} = I_{D4} = \frac{(I_0 + i_1)(I_0 + i_2)}{I_0} = I_0 + I_0(i_1 + i_2) + i_1 i_2$$

$$I_{D7} = I_{D4} = I_0 + i_1 + i_2 + \frac{i_1 i_2}{I_0}$$

Note that in order to obtain the product of $i_1 i_2$ from the drain current of M4, three current components I_0, i_1, and i_2 must be subtracted from the drain current of M7 as it is shown in the circuit diagram on Fig. 5. After the subtraction of I_0, i_1, and i_2, equation (5) reduces to
and it is valid for both positive and negative values of currents i_1 and i_2. The four-quadrant multiplier can also be used to multiply voltages. In this case the transconductance amplifier may be used to convert voltages into currents before multiplication.

\[I_{OUT} = \frac{i_1 i_2}{I_0} \]

V. REFERENCES

Fig. 6 shows the results of static and transient analyses of the four-quadrant multiplier circuit. In Fig. 6(a) the current i_1 is swept from -50nA to 50nA, while current i_2 is changed from -50nA to 50nA with a 10nA step. Note the almost ideal characteristics of the multiplier. Fig. 6(b) shows the same circuit used for signal squaring and that the output signal has double frequency of the input signal.

IV. CONCLUSION

The multiplier/divider circuit is presented. The circuit is characterized with very high accuracy over a large signal range. The proposed circuit operates in the current mode, but voltage multiplication is also possible if transconductance amplifiers are used for voltage to current conversions. The original circuit operates correctly only with positive currents, but with minor modifications the circuit may operate also as a four-quadrant amplifier. The circuit itself may have many applications as multiplier, divider, signal squaring, square root calculations, frequency modulation, frequency doubling, etc. Most importantly it can be used for analog signal processing in many intelligent systems of industrial electronics.
Identifying Cutting Sound Characteristics in Machine Tool Industry with a Neural Network

Yasuhiro Ota1 and Bogdan M. Wilamowski2

1\textsc{MAZAK} Corporation, Development & Design Division, Aichi 480-01, JAPAN
\textit{y-ota@eng.mazak.co.jp}

2University of Wyoming, Electrical Engineering Department, Laramie, WY 82071, USA
\textit{wilam@uwyo.edu}

\textbf{Abstract}
This paper presents a method for identifying cutting sound characteristics for machine tool industry based on a robust time-variant sound recognition system. The sound signal is compressed using linear prediction analysis method and then recognized by an artificial neural network. The procedure taken here is based on the following: (1) extraction of time-variant spectral features (i.e., raw data of sound), (2) characterization of each sample by observing the autocorrelation coefficients and reflection coefficients of the sampled data, and (3) training of an artificial neural network to identify extracted sound samples. The proposed technique is shown to be very effective, accurate, and powerful in performing sound data identification.

1. Introduction
Several approaches using artificial neural networks have been recently proposed for speech recognition technologies [1]-[5],[7],[8]. A lot of research in neural network computing techniques has been devoted towards improvement of classification performance [5]. Some examples include the minimum distance classifier (MDC), radial basis function network (RDFN), dynamic time warping (DTW), and hidden Markov models (HMM). Among them, the RDFN has been criticized for not resembling natural biological neurons. Furthermore, the DTW technique is not satisfied with speech recognition due to the lack of the ability to generalize and extensive computation requirements [3].

A major goal in modern manufacturing systems, particularly in machine tool industry, is to integrate machine tools which have the intelligence to look after themselves and their peripheral devices. In machine tool industry, users need to be always careful selecting optimal cutting environment and conditions to obtain accurate and smooth workpiece, or to meet high standards of product quality. Therefore, it has been troublesome and timely operation to choose certain cutting conditions. Some of the contributing factors include spindle motor speed, chucking (workpiece holding) pressure, workpiece material, and tool sharpness. The machine operators typically adjust spindle motor speed and other contributing factors by carefully listening to cutting sound. Thus, this work has been a difficult task for novice operators, and even for experienced users, because it is generally hard for the machine operators to distinguish the cutting sound. The idea here is then to apply the technologies found in speech recognition systems to identification of cutting sound in machine tool industry.

In this paper, the following approach is used as an initial experimental work for an intelligent controller by identifying cutting sound data in machine tools: First, a number of sound samples with different cutting conditions are taken. Then, those sound samples are analyzed by observing their autocorrelation coefficients and reflection coefficients. With these data, a neural network is trained using a fast and reliable technique, modified error backpropagation (EBP) algorithm [6], for identification of cutting sound characteristics.

One major concern in sampling cutting sound data is that there exists relatively large background noise since machine tools are normally operated in a factory with some other heavy equipment. Speech recognition systems that perform well under no-noise environment usually experience serious performance degradation when noise is present. Therefore, several research works have been devoted to make a robust speech recognition system which performs well in noisy environments [7][8]. Although their performances were relatively satisfactory, their real-time applications are inferior to neural network approaches which possess parallel processing architecture. A robust speaker identification system based on a modified Kohonen algorithm [3] has several advantages for classification tasks, such as better performance and reduced network training time. However, this approach is only good for a single word, which is not sufficient for
continuous-speech or time-variant cutting sound samples. In order to overcome these problems, a robust time-variant sound identification system is introduced in this paper.

2. Analysis of Cutting Sound Samples

The data samples presented to the neural network were made by recording several cutting sound samples in a noisy environment, and a small microphone was mounted at close to a tool head of an NC lathe, MAZAK- Slant Turn 20. The data input was sampled at 11,025 Hz with a 16-bit digitizer. In this test, two cutting factors are considered, and these factors are the spindle motor speed and the chuck pressure. All other factors are kept identical for each recording sample. Figs. 1, 2, and 3 illustrate the raw recording data of cutting sound with different spindle motor speed. It has been found from the experiment that the autocorrelation coefficients and reflection coefficients are sensitive to the sound samples with different cutting conditions. Both the autocorrelation coefficients and the reflection coefficients or either of these two can be used for identification of each sound sample. Figs. 4, 5, and 6 show the autocorrelation coefficients of the raw data from Figs. 1, 2, and 3, respectively, while Figs. 7, 8, and 9 show the reflection coefficients of the raw data from Figs. 1, 2, and 3, respectively.

Fig. 1. Raw data of cutting sound with spindle speed of 800 rpm and chuck pressure of 20 kg/cm².

Fig. 2. Raw data of cutting sound with spindle speed of 2200 rpm and chuck pressure of 20 kg/cm².

Fig. 3. Raw data of cutting sound with spindle speed of 2700 rpm and chuck pressure of 20 kg/cm².

As can be seen from the above figures, there is significant difference in autocorrelation coefficients as the spindle motor speed is varied. Thus, autocorrelation coefficients will be further used to analyze sound data with different chuck pressure. Figs. 10 and 11 show the raw recording data of cutting sound with different chuck pressure, and the corresponding plots of autocorrelation coefficients are shown in Figs. 12 and 13, respectively.
Fig. 4. Autocorrelation coefficients of the cutting sound in Fig. 1.

Fig. 5. Autocorrelation coefficients of the cutting sound in Fig. 2.

Fig. 6. Autocorrelation coefficients of the cutting sound in Fig. 3.

Fig. 7. Reflection coefficients of the cutting sound in Fig. 1.

Fig. 8. Reflection coefficients of the cutting sound in Fig. 2.

Fig. 9. Reflection coefficients of the cutting sound in Fig. 3.
3. Sound Identification with Autocorrelation Method

In the linear prediction (LP) analysis of a sound segment consisting of N samples, the following p-th order all-pole transfer function is first assumed.

\[H(z) = \frac{C(z)}{D(z)} = \frac{G}{1 + \sum_{i=1}^{p} a_i z^{-i}} \] \hspace{1cm} (1)

where the gain G is normally ignored to allow the parameterization to be independent of the signal intensity. With the filter transfer function described in Eq. (1), its corresponding difference equation to synthesize the sound samples \(c(n) \) is obtained as

\[c(n) = -\sum_{i=1}^{p} a_i c(n-i) + G u(n) \] \hspace{1cm} (2)

It can be noted from Eq. (2) that \(c(n) \) is predicted as a linear combination of the previous p samples. The LP technique gives a procedure for separating the linear-system components (the first term in Eq. (1)) and the excitation-source (the second term) and of the sound production model. However, in order to achieve this, an all-pole model for the linear system is assumed. The all-pole coefficients, \(a_i \), are calculated from the sound signal on the basis of a least-squares fit between the observed-signal values and the values linearly predicted from the preceding samples.

The autocorrelation method and the covariance method are two standard methods of solving for the predictor coefficients [9][10]. When the sound signals are applied to this filter as their input, it outputs the LP error signal, \(e(n) \). whose n-th order sample is then given by

\[e(n) = c(n) + \sum_{i=1}^{p} a_i c(n-i) \] \hspace{1cm} (3)
In the LP analysis, the LP coefficients are computed by minimizing the total-squared value of the estimation error, where the summation range depends upon which of the two methods, the autocorrelation method or the covariance method, is used. With the autocorrelation method, the summation ranges from negative infinity to positive infinity, which indicates that the sound signal is available for all time. This method is computationally simpler than the covariance approach. Furthermore, unlike the covariance method, it assures that all the poles of Hz lie within the unit circle, guaranteeing the stability of the estimated all-pole filter.

Since the cutting sound data is time-variant, an accurate set of predictor coefficients is adaptively determined over short intervals (10-30 msec) during which time-invariance is assumed. Deeply related to the autocorrelation coefficients, $a_p(i)$, are the reflection coefficients, $r_p(i)$. Both sets of coefficients can be computed from the sound data using the Levinson-recursion algorithm [11]. The relation between the autocorrelation coefficients and the reflection coefficients is described as

$$r_p(p) = a_p(p)$$

(4)

and

$$a_p(i) = a_{p-1}(i) + k_p(i)a_{p-1}(p-i)$$

(5)

4. Neural Network Training with a Modified EBP Algorithm

A modified error backpropagation algorithm [6] is used for the network training to identify the sound data. This algorithm is advantageous to other commonly used network training techniques. The traditional error backpropagation (EBP) algorithm has been criticized for its unacceptable slow convergence rate. On the other hand, the modified EBP algorithm sustains a rapid convergence rate also for the cases when the Lavenberg-Marquardt (LM) method [9] fails. In addition, the convergence rate with the modified EBP is nearly independent on the choice of initial synaptic weights. This success is brought from the two major improvements. First, in the output layer a modified gradient is used, instead of an actual gradient, as described in [10][11]. The second improvement is that the synaptic weights in the hidden layer are updated using the modified regression algorithm [12].

The cutting sound samples are first normalized so that the average magnitude becomes zero and that the standard deviation is one. Then, the samples are also normalized with time-scale. For the autocorrelation coefficients and the reflection coefficients, 22 autocorrelation coefficients and 20 reflection coefficients are computed using the Levinson algorithm [13]. For each sound pattern, 10 recordings are made for the network training. Once the network is trained, it is used to identify a cutting condition, in this case, the spindle motor speed and chuck pressure. For the network training, the number of hidden-layer neurons is matched with the number of sound patterns. The output neuron at the output layer performs a simple logical-OR operation, and each layer is augmented with one additional input for biasing. Hence, the network architecture for a two-input pattern, for instance, can be visualized as shown in Fig. 14.

![Fig. 14. The neural network architecture for a case with two input patterns.](image)

5. Conclusions

A robust time-variant sound identification system using a new neural network method has been described. In the network training process with the modified EBP algorithm, distant samples are treated as outliers of the signals and rejected so that the radius of the training clusters can be kept smaller. By applying and extending the speaker recognition work [3] which has 98-99.9% accuracy of identification for a single word, sound data that includes time-variant information can be provided effectively.

The tested results indicate that the proposed technique is promising to give an accurate identification of sound samples, even with noisy background, and the proposed algorithm is able to maintain near 100% accuracy. This described work is currently further extended and under the investigation to obtain optimized cutting conditions using neural networks. In addition, it is of interest to investigate sound characteristics including other contributing factors, such as tool sharpness and coolant condition, as the system inputs to achieve better performance. From this initial study to identify the cutting sound, it is expected that the machine operators may be able to monitor tool life by distinguishing the cutting sound using this sound recognition system. Perhaps, the machine users can train the network by supplying a set of sound samples with
different tool sharpness (tool life) so that the system can
warn the operators for tool maintenance or tool exchange,
when the tool becomes dull and need a new one for creating
smooth and accurate cutting.

References
Networks and Speech Processing,” Proceedings: World
Congress on Neural Networks (WCNN’94), vol. 4, pp. 562-
Identification Based on a Modified Kohonen Network,”
Proceedings: International Conference on Neural Networks
Recognition,” Proceedings: In temational Conference on
Neural Networks (ICNN’97), vol. 4, pp. 2093-2097, June,
1997.
Automatic Speaker Recognition,” Proceedings: ESCA
Workshop on Automatic Speaker Recognition, pp. 95-102,
1994.
Training of the Hidden Layer,” accepted for the Industrial
Electronic Conference (IECON’97), New Orleans, November
9-14, 1997.
Coherence Representation in Noisy Speech Recognition,”
Markov Model Decomposition and a General Background
Flanagan, “Speech Recognition Using the Modulation
1986.
Networks with the Marquardt Algorithm,” IEEE Trans. on
Backpropagation Algorithm for Faster Convergence,”
Proceedings: Workshop on Neural Networks (WNN’93), San
Gradient Computation in the Back-Propagation Algorithm,”
Proceedings: Intelligent Engineering Systems Through
Artificial Neural Networks, ANNIE 93 Conf., St. Louis, USA,
Regression Algorithm for Fast One Layer Neural Network
Training,” Proceedings: World Congress on Neural
Networks (WCNN’95), Washington DC, USA, vol. 1, pp.
DESIGN AND CALIBRATION OF OPTIMIZED (111) SILICON STRESS SENSING TEST CHIPS

Departments of Mechanical and Electrical Engineering, and
Alabama Microelectronics Science and Technology Center
Auburn University
Auburn, AL 36849

B. M. Wilamowski
Department of Electrical Engineering
University of Wyoming
Laramie, WY 82071

ABSTRACT

The (111) surface of silicon offers unique advantages for fabrication of piezoresistive stress sensors. Resistive sensor elements fabricated on this particular surface respond to all six components comprising the state of stress. Hence, a multi-element rosette has the capability of measuring the complete stress state at a point in the material. Four of the stress component measurements are temperature compensated. This is in contrast to standard sensors fabricated on traditional (100) silicon, where only four stress components can be measured (two in a temperature compensated manner). Several generations of (111) silicon test chips have been designed, fabricated, and calibrated to demonstrate the capabilities of these advanced sensors.

INTRODUCTION

Piezoresistive stress sensors are powerful tools for experimental analysis of stress in electronic packages. As depicted in Figure 1, resistive rosette elements in IC die are characterized before and after electronic packaging, and the results are then used to extract various components of the six-component stress state on the surface of the die. Sensors on the (100) silicon surface have been used by many researchers, but these sensor elements respond only to four components of the complete stress state (Bittle, et al., 1991) (Jaeger, et al., 1994a, 1994b) (Suhling, et al., 1994a) (Cordes, et al., 1995a). In particular, the (100) devices do not respond to the out-of-plane shear stresses associated with delamination, passivation cracking, and metal shearing that can occur at the die surface with an electronic package. In addition, only two of these four stress components can be measured in a highly accurate temperature compensated manner (Jaeger et al., 1993, 1994a, 1994b) (Suhling, et al., 1994a) (Cordes, et al., 1995a).

It has been shown theoretically that piezoresistive sensor elements on the (111) surface respond to all six components of the stress state, and a six-element complete stress state sensor rosette was proposed for fabrication using (111) silicon (Bittle, et al., 1991), (Suhling, et al., 1994c). Since then we have used sophisticated symbolic computer analysis to prove that the (111) surface is in fact the best of any possible silicon orientation for sensor fabrication, as it provides temperature compensated evaluation of four of six stress-state quantities (Cordes, et al., 1995a). No other silicon surface can do as well. It is fortuitous that (111) silicon material is one of the commonly used orientations, and hence is readily available. With careful attention to temperature measurement during sensor application, (111) piezoresistive sensor test chips can be used to extract the complete state of stress at points in the surface of the die. No other type of known sensor or technique is capable of measuring the complete stress state with in an electronic package or other structure.

Figure 1 - Stress Sensors in Electronic Packaging

(111) SILICON PIEZORESISTIVITY THEORY

A general (111) silicon wafer is shown in Figure 2. The surface of the wafer is a (111) plane, and the [111] direction is normal to the wafer plane. The principal crystallographic axes x1 = [100], x2 =
errors which can be introduced into non-temperature compensated stress sensor data when the temperature change T is not precisely known (Jaeger, et al., 1993). The four stress components which can be measured in a temperature compensated manner using (111) silicon sensors are the three shear stress components and the difference of the in-plane normal stress components.

OPTIMIZED ROSETTES

Complete stress state extraction using a (111) silicon rosette requires six independent sensor measurements. Fortunately, the three piezoresistive coefficients of silicon are different for n- and p-type material. The basic six element (111) sensor rosette initially proposed by Bittle, et al. (1991) uses three n- and three p-type resistors oriented at 0, 45°, and 90° relative to the wafer flat, and can be used to extract all six stress components. However, we have discovered that the eight-element rosette in Figure 3 offers inherent advantages in stress-state extraction. This rosette contains p- and n-type sensor sets, each with resistor elements making angles of $\phi = 0, \pm 45, 90^\circ$ with respect to the x'_1-axis. Repeated application of eq. (1) to each of the piezoresistive sensing elements leads to the following expressions for the stress-induced resistance changes:

\[
\frac{\Delta R_1}{R_1} = B_1 \sigma_{11} + B_1 \sigma_{12} + B_1 \sigma_{13} + 2\sqrt{2} (B_1^p - B_1) \sigma_{15} + [\alpha T + \alpha T^2 + ...]
\]

\[
\frac{\Delta R_2}{R_2} = \left(B_1^p + B_1 \right) (\sigma_{11} + \sigma_{12}) + B_1 \sigma_{12} + 2\sqrt{2} (B_1^p - B_1) \sigma_{15} + (B_1^p - B_1) \sigma_{13} + [\alpha T + \alpha T^2 + ...]
\]

\[
\frac{\Delta R_3}{R_3} = B_1 \sigma_{11} + B_1 \sigma_{12} + B_1 \sigma_{13} - 2\sqrt{2} (B_1^p - B_1) \sigma_{15} + [\alpha T + \alpha T^2 + ...]
\]

\[
\frac{\Delta R_4}{R_4} = \left(B_1^p + B_1 \right) (\sigma_{11} + \sigma_{12}) + B_1 \sigma_{12} - 2\sqrt{2} (B_1^p - B_1) \sigma_{15} - (B_1^p - B_1) \sigma_{13} + [\alpha T + \alpha T^2 + ...]
\]

\[
\frac{\Delta R_5}{R_5} = B_1 \sigma_{11} + B_1 \sigma_{12} + B_1 \sigma_{13} + 2\sqrt{2} (B_1^p - B_1) \sigma_{15} + [\alpha T + \alpha T^2 + ...]
\]

\[
\frac{\Delta R_6}{R_6} = \left(B_1^p + B_1 \right) (\sigma_{11} + \sigma_{12}) + B_1 \sigma_{12} + 2\sqrt{2} (B_1^p - B_1) \sigma_{15} + [\alpha T + \alpha T^2 + ...]
\]

\[
\frac{\Delta R_7}{R_7} = B_1 \sigma_{11} + B_1 \sigma_{12} + B_1 \sigma_{13} - 2\sqrt{2} (B_1^p - B_1) \sigma_{15} + [\alpha T + \alpha T^2 + ...]
\]

\[
\frac{\Delta R_8}{R_8} = \left(B_1^p + B_1 \right) (\sigma_{11} + \sigma_{12}) + B_1 \sigma_{12} - 2\sqrt{2} (B_1^p - B_1) \sigma_{15} - (B_1^p - B_1) \sigma_{13} + [\alpha T + \alpha T^2 + ...]
\]

Superscripts n and p are used on the combined piezoresistive coefficients to denote n-type and p-type resistors, respectively.
Figure 3 - Optimized Eight Element Rosette on (111) Silicon

For an arbitrary state of stress, these expressions can be inverted to solve for the six stress components in terms of the measured resistance changes:

\[
\sigma_{11} = \frac{2(B' - B) \left[\Delta R_1 - \Delta R_2 \right] - (B' - B) \left[\Delta R_3 - \Delta R_4 \right]}{2[(B' - B)B' + (B' - B)B' + (B' - B)B']}
\]

\[
\sigma_{12} = \frac{2(B' - B) \left[\frac{\Delta R_1}{R_1} \frac{\Delta R_2}{R_2} - 2\alpha T \right] - B \left[\frac{\Delta R_3}{R_3} + \frac{\Delta R_4}{R_4} - 2\alpha T \right]}{2[(B' + B')B' + (B' - B)'B' + (B' - B)'B']}
\]

\[
\sigma_{22} = \frac{2(B' - B) \left[\frac{\Delta R_1}{R_1} \frac{\Delta R_2}{R_2} - 2\alpha T \right] + B \left[\frac{\Delta R_3}{R_3} + \frac{\Delta R_4}{R_4} - 2\alpha T \right]}{2[(B' + B')B' + (B' - B)'B' + (B' - B)'B']}
\]

\[
\sigma_{33} = \frac{\sqrt{8}}{2} \left[\frac{(B' - B) \left[\Delta R_1 - \Delta R_4 \right] - (B' - B) \left[\Delta R_3 - \Delta R_4 \right]}{(B' - B)'B' + (B' - B)'B' + (B' - B)'B'} \right]
\]

\[
\sigma_{12}' = \frac{\sqrt{8}}{2} \left[\frac{(B' - B) \left[\Delta R_1 - \Delta R_2 \right] + (B' - B) \left[\Delta R_3 - \Delta R_2 \right]}{(B' - B)'B' + (B' - B)'B' + (B' - B)'B'} \right]
\]

It can be seen that the three shear stresses are temperature compensated (they can be calculated directly from the resistance changes without knowing T). A fourth temperature compensated quantity can be obtained by subtracting the expressions for the in-plane normal stresses \(\sigma_{11}' \) and \(\sigma_{22}' \) in eq. (4):

\[
\sigma_{11}' - \sigma_{22}' = \frac{(B' - B) \left[\Delta R_1 - \Delta R_2 \right] - (B' - B) \left[\Delta R_3 - \Delta R_4 \right]}{[(B' - B)'B' + (B' - B)'B' + (B' - B)'B']}
\]

From the resistor change equations in eq. (3) and the resulting the stress-component equations in eqs. (4,5), it can be seen that the 0-90° and ±45° resistor changes appear grouped in pairs and quads. Thus, the eight-element rosette facilitates bridge-type measurements for the temperature compensated terms.

TEST CHIP DESIGNS

Several generations of (111) stress sensor chips have been designed, fabricated and characterized for use in packaging studies. These test die contain an array of the optimized eight element dual polarity measurement rosettes shown in Figure 3, and either perimeter pads suitable for wire bonding or area array pads for flip chip applications. The fabrication processes used only ion-implantation to achieve the best possible resistor matching and uniformity. Careful layout techniques were used to maximize matching and to minimize sensitivity to mask misalignment during fabrication.

Figure 4 - BMW1 Test Chip.
The basic die image of the first generation BMW1 test chip is shown in Figure 4. This 200 x 200 mil die contains 12 of the eight-element rosettes discussed above. A typical rosette layout and its connection to the perimeter bond pads is shown in Figure 5. The wafer can be cut into larger chips on any 200 mil increment in either direction. The repeated basic die images are interconnected through the scribe areas on the wafer using the shorting bars extending from the pads (see Figure 4). These inter-chip connections provide access to interior sensors (from the outer perimeter pads) on larger composite die up to 1200 x 1200 mils in size. For example, Figure 6 shows the rosette locations (shaded) which are accessible from the perimeter pads of a 6 x 6 array of the basic die image (1200 mil x 1200 mil die).

Figure 5 - BMW1 Rosette Schematic

![Figure 5 - BMW1 Rosette Schematic](image)

The rosette locations of the BMW1 chip were carefully chosen to map the surface stress using symmetry (when it exists). Figure 7 presents an example of using this symmetry to map the surface of a 2 x 2 array of the BMW1 die.

![Figure 7 - Surface Mapping in a 2 x 2 Chip Array (400 mil x 400 mil Die)](image)

Our second generation design, the BMW2 die, is shown in Figure 8. It incorporates 12 eight-element rosettes, diodes at each rosette site for temperature measurement, and additional calibration sites and process test structures. The eight-element rosettes are interconnected as half-bridge circuits (see Figure 9), which optimizes the number of pads needed to completely access all sensors in a given rosette. The implantation profiles were chosen based upon the results of a parametric process study that was done as part of the fabrication of the BMW1 wafers. Doping levels for both resistor types were in the low 10^{18} 1/cm3 range, and the nominal resistor values were designed to be approximately 12-15 kΩ.

Figure 8 - BMW2 Test Chip.

Two additional (111) silicon test chip designs have been developed for direct chip attach (flip-chip) applications (BMW3 and BMW4 test
chips). Each has an area array of 4 x 4 mil pads; one on 20 mil centers, the other on 9 mil centers. In the flip-chip designs, the optimized eight element rosettes are placed between the pads as well as directly under pads. This facilitates studies of the out-of-plane shear stresses transmitted to the die by the solder bumps or the underfill encapsulant. The basic repeated image on the wafer are small sensing cells, which allows flip-chip test die of almost any preferred size to be cut from the wafers. A schematic of the BMW3 sensing cell is shown in Figure 10.

![Figure 9 - BMW2 Rosette Schematic Using Half Bridges](image)

![Figure 10 - BMW3 Flip Chip Sensing Cell](image)

Calibration

The expressions in eq. (3) indicate that a calibration procedure must be performed to determine all six of the combined piezoresistive parameters B_i, B_j, B_k, B_l, B_m, B_n prior to using the eight element rosettes on any of the test chips for stress measurement. A combination of uniaxial and hydrostatic pressure testing can be utilized to complete this task. For example, if a known uniaxial stress $\sigma_{11} = \sigma$ is applied in the x_1-direction, the expressions in eq. (3) for the 0-90° oriented sensors yield the following resistance changes:

$$
\frac{\Delta R_1}{R_1} = B_1^{0} \sigma + \alpha_1^{0} T
\quad \frac{\Delta R_2}{R_2} = B_1^{90} \sigma + \alpha_1^{90} T
$$

$$
\frac{\Delta R_3}{R_3} = B_1^{0} \sigma + \alpha_1^{0} T
\quad \frac{\Delta R_4}{R_4} = B_1^{90} \sigma + \alpha_1^{90} T
$$

From these expressions, it is clear that the constants B_1^{0}, B_1^{90}, B_1^{0} can be easily determined through a controlled isothermal application of uniaxial stress to a sensor rosette while monitoring the resulting resistance changes. If a sensor rosette is subjected to hydrostatic pressure $(\sigma_{11} = \sigma_{22} = \sigma_{33} = \sigma)$, the relations in eq. (3) give:

$$
\frac{\Delta R_1}{R_1} = \frac{\Delta R_2}{R_2} = \frac{\Delta R_3}{R_3} = \frac{\Delta R_4}{R_4} = -[B_1^{0} + B_1^{90} + B_1]p + \alpha_1^{0} T
$$

Therefore, the combinations $(B_1^{0} + B_1^{90} + B_1)$ and $(B_1^{0} + B_1^{90} + B_1)$ can be evaluated through a controlled isothermal application of a hydrostatic pressure to a sensor rosette while monitoring the resulting resistance changes. The individual values of B_1^{0} and B_1^{90} can then be obtained by combining the hydrostatic pressure calibration results with the uniaxial stress calibration results.

Four-point bending (Jaeger, et al., 1992), wafer-level (Suhling, et al., 1994b) (Cordes, et al., 1995b), and hydrostatic calibration (Kang, 1997) techniques were used to determine the six piezoresistive coefficients needed to calculate stress states from the normalized resistor changes of the eight rosette elements. The four point bending and wafer-level techniques subject the die to in-plane stress states, so that only constants B_1 and B_2 can be evaluated. In the four point bending method, a rectangular strip containing a row of chips is cut from a wafer and is loaded in a four point bending beam fixture to generate uniaxial stress states (see Figure 11). As observed above in eq. (6), this technique allowed coefficients B_1 and B_2 to be measured. In the wafer-level calibration method, the wafer itself was supported on a vacuum chuck, and air inside the chamber was removed causing a uniformly distributed load to be applied to the wafer (see Figure 12). This technique also allowed coefficients B_3 and B_4 to be measured, providing a check on the four point bending data. Sample calibration measurements for the BMW1 test chip appear in Figures 13-14 for the four point bending method, and in Figure 15 for the wafer-level technique.

![Figure 11 - Four Point Bending Calibration](image)
It can be easily seen using eq. (3) that characterization of material constant \(B_p \) requires the die to be subjected to a controlled stress state which has non-zero out-of-plane normal or shear stresses. Hydrostatic calibration has proven to be the most expedient method to satisfy this condition. In the case of hydrostatic calibration, a high capacity pressure vessel was used to subject a single die to triaxial compression. The theoretical considerations presented in eq. (7) has demonstrated that the slope of the resistance change versus pressure response is \((B_1 + B_2 + B_3)\) for a sensor at any orientation. Figure 16 shows typical hydrostatic calibration data obtained using the BMW1 test chip.

A summary of the calibration results for the BMW1 die are given in Figure 17. The first row gives the values of the piezoresistive coefficients obtained from an average of at least 10 rosette sites. These values are approximately \(2/3 \) of those for lightly doped material that are given in the last row of the table. The lightly doped values place an upper bound on the magnitudes of the piezoresistive coefficients. Relatively high sensitivity has been obtained by carefully tailoring the impurity doses used in the ion-implanted resistors. Note also that the pressure coefficients are quite low as expected.
Figure 16 - Typical Hydrostatic Calibration Data (P-Type Resistor)

<table>
<thead>
<tr>
<th>Measured Piezoresistive Coefficients for the BMW1</th>
<th>(x 10^{-12} Pa^{-1})</th>
<th>(Average Values Considering 10 Rosette Sites)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_0^*</td>
<td>B_1^*</td>
<td>$B_0^* + B_1^*$</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>-----------------</td>
</tr>
<tr>
<td>464</td>
<td>-130</td>
<td>27</td>
</tr>
</tbody>
</table>

Values for Lightly Doped Silicon

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>718</td>
<td>-228</td>
<td>44</td>
<td>-311</td>
<td>298</td>
</tr>
</tbody>
</table>

Figure 17 - Tabulation of Calibration Data

CONCLUSIONS

New optimized complete stress state test chips have been fabricated using (111) silicon. Eight-element rosettes are used in half-bridge configurations to simplify stress measurements. The process design and layout have been optimized to provide high sensitivity to stress and to improve resistor matching. Calibration results have shown that high sensitivity and good matching are both achieved. These die have been successfully used for packaging stress measurements, and have produced the first measurement of the complete stress state in any material (see Suhling, et al., 1997).

Information concerning the availability of these stress test chips can be obtained from the Test Chip Division of the Alabama Microelectronics Science and Technology Center (+1-334-844-1871).

ACKNOWLEDGMENTS

This work has been supported by the Semiconductor Research Corporation.

REFERENCES

ADVANCES IN

Electronic Packaging

1997

Proceedings of the Pacific Rim/ASME International Intersociety Electronic & Photonic Packaging Conference
INTERpack '97

Volume 2

presented at
The Pacific Rim/ASME International Intersociety Electronic
and Photonic Packaging Conference
June 15–19, 1997
Kohala Coast, Hawaii

sponsored by
The Electrical and Electronic Packaging Division, ASME

edited by
E. Suhir
Lucent Technologies

M. Shiratori
Yokohama National University

Y. C. Lee
G. Subbarayan
University of Colorado

THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS
UNITED ENGINEERING CENTER • 345 EAST 47TH STREET • NEW YORK N.Y. 10017