MATLAB Examples on the use of ode23 and ode45:

Example 1: Use ode23 and ode45 to solve the initial value problem for a first order differential equation:

\[y' = \frac{-ty}{\sqrt{2-y^2}}, \quad y(0)=1, \quad t \in [0, 5] \]

First create a *MatLab* function and name it `fun1.m`.

```matlab
function f=fun1(t,y)
    f=-t*y/sqrt(2-y^2);
```

Now use *MatLab* functions ode23 and ode45 to solve the initial value problem numerically and then plot the numerical solutions y, respectively. In the *MatLab* window, type in the following commands line by line.

```matlab
>> [tv1 f1]=ode23('fun1',[0 5],1);
>> [tv2 f2]=ode45('fun1',[0 5],1);
>> plot(tv1,f1,'-.',tv2,f2,'--')
>> title('y''=-ty/sqrt(2-y^2), y(0)=1, t in [0, 5]')
>> grid
>> axis([0 5 0 1])
```

The numerical solutions f1 and f2 respectively generated by ode23 and ode45 are almost the same for this example.
Example 2: Use ode23 to solve the initial value problem for a system of first order differential equations:

\[
\begin{align*}
y_1' &= 2y_1 + y_2 + 5y_3 + e^{-2t} \\
y_2' &= -3y_1 - 2y_2 - 8y_3 + 2e^{-2t} - \cos(3t) \\
y_3' &= 3y_1 + 3y_2 + 2y_3 + \cos(3t)
\end{align*}
\]

\[y_1(0) = 1, \quad y_2(0) = -1, \quad y_3(0) = 0\]

in \([0, \pi/2]\).

First, create an M-file which evaluates the right-hand side of the system \(F(t,Y)\) for any given \(t, y_1, y_2,\) and \(y_3\) and name it `funsys.m`:

```matlab
function Fv=funsys(t,Y);
Fv(1,1)=2*Y(1)+Y(2)+5*Y(3)+exp(-2*t);
Fv(2,1)=-3*Y(1)-2*Y(2)-8*Y(3)+2*exp(-2*t)-cos(3*t);
Fv(3,1)=3*Y(1)+3*Y(2)+2*Y(3)+cos(3*t);
```

Now type in the following commands in MatLab window line by line:

```matlab
>> [tv,Yv]=ode23('funsys',[0 pi/2],[1;-1;0]);
>> plot(tv,Yv(:,1),'+',tv,Yv(:,2),'x',tv,Yv(:,3),' o')
>> hold
>> grid
>> title('Example 2')
>> text(0.3,14,'-+- y_1')
>> text(0.3,10,'-x- y_2')
>> text(0.3,-12,'-o- y_3')
>> xlabel('time')
>> hold off
```

A graph of \(y_1, y_2\) and \(y_3\) is given below:

![Graph of Example 2](image)

Note: try using ode45 and compare your results with those obtained by ode23.
Example 3:

(Here, we will use m-files for both the function and the solution)

Consider the second order differential equation known as the Van der Pol equation:

\[\ddot{x} + \left(x^2 - 1 \right) \dot{x} + x = 0 \]

You can rewrite this as a system of coupled first order differential equations:

\[\begin{align*}
\dot{x_1} &= x_1 \left(1 - x_2^2 \right) - x_2 \\
\dot{x_2} &= x_1
\end{align*} \]

The first step towards simulating this system is to create a function M-file containing these differential equations. Call it `vdpol.m`:

```matlab
function xdot = vdpol(t,x)
xdot = [x(1).*(1-x(2).^2)-x(2); x(1)]
end
```

Note that `ode23` requires this function to accept two inputs, `t` and `x`, although the function does not use the `t` input in this case.

To simulate the differential equation defined in `vdpol` over the interval 0 <= t <= 20, invoke `ode23`:

```matlab
t0 = 0; tf = 20;
x0 = [0 0.25]'; % Initial conditions
[t,x] = ode23('vdpol',t0,tf,x0);
plot(t,x)
```
ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

Solve initial value problems for ordinary differential equations (ODEs)

Syntax

- \([T,Y] = \text{solver}(odefun,tspan,y0)\)
- \([T,Y] = \text{solver}(odefun,tspan,y0,options)\)
- \([T,Y,TE,YE,IE] = \text{solver}(odefun,tspan,y0,options)\)
- \(\text{sol} = \text{solver}(odefun,[t0 tf],y0...)\)

where solver is one of ode45, ode23, ode113, ode15s, ode23s, ode23t, or ode23tb.

<table>
<thead>
<tr>
<th>Solver</th>
<th>Problem Type</th>
<th>Order of Accuracy</th>
<th>When to Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>ode45</td>
<td>Nonstiff</td>
<td>Medium</td>
<td>Most of the time. This should be the first solver you try.</td>
</tr>
<tr>
<td>ode23</td>
<td>Nonstiff</td>
<td>Low</td>
<td>For problems with crude error tolerances or for solving moderately stiff problems.</td>
</tr>
<tr>
<td>ode113</td>
<td>Nonstiff</td>
<td>Low to high</td>
<td>For problems with stringent error tolerances or for solving computationally intensive problems.</td>
</tr>
<tr>
<td>ode15s</td>
<td>Stiff</td>
<td>Low to medium</td>
<td>If ode45 is slow because the problem is stiff.</td>
</tr>
<tr>
<td>ode23s</td>
<td>Stiff</td>
<td>Low</td>
<td>If using crude error tolerances to solve stiff systems and the mass matrix is constant.</td>
</tr>
<tr>
<td>ode23t</td>
<td>Moderately Stiff</td>
<td>Low</td>
<td>For moderately stiff problems if you need a solution without numerical damping.</td>
</tr>
<tr>
<td>ode23tb</td>
<td>Stiff</td>
<td>Low</td>
<td>If using crude error tolerances to solve stiff systems</td>
</tr>
</tbody>
</table>