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a b s t r a c t

Although having high potential for broadband wireless access, wireless mesh networks
are known to suffer from throughput and fairness problems, and are thus hard to scale to
large size. To this end, hierarchical architectures provide a solution to this scalability
problem. In this paper, we address the problem of design and optimization of a tiered
wireless access network that exploits free space optical (FSO) communications. The lower
tier consists of mesh routers that are clustered based on traffic demands and delay
requirements. The cluster heads are equipped with wireless optical transceivers and form
the upper tier FSO network. For topology design and optimization, we first present a plane
sweeping and clustering (PSC) algorithm aiming to minimize the total number of clusters.
PSC sweeps the network area and captures cluster members under delay and traffic load
constraints. For the upper tier FSO network, we present an algebraic connectivity-based
formulation for topology optimization. We then develop a greedy edge-appending (GEA)
algorithm, as well as its distributed version, that iteratively inserts edges to maximize
algebraic connectivity. The proposed algorithms are analyzed and evaluated via simula-
tions, and are shown to be highly effective as compared to the performance bounds
derived in this paper.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

The recent explosive increases in pervasive mobile
devices and wireless data applications have greatly
stressed the capacity of existing wireless access networks.
The significant increase in wireless data volume will also
have far-reaching impact on the design of future wireless
access networks. To this end, wireless mesh networks
(WMN) have emerged as a promising technology for
All rights reserved.
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providing ubiquitous broadband wireless access to mobile
users [2]. Recent years have witnessed significant growth
in WMN research and deployment. However, WMNs are
also known to suffer from poor scalability. In [3], Jun and
Sichitiu showed that the per node throughput decreases as
Oð1=nÞ, where n is the number of nodes. In [4], the authors
demonstrated that starvation occurs even in the simple
scenario where one-hop flows contend with two-hop
flows for gateway access. This is largely due to the
inefficiency and bi-stability of existing MAC protocols, as
well as high penalty for multi-hop flows to re-capture
system resources.

Historically, hierarchical network architectures have
provided an effective solution to the scalability problem,
as demonstrated in the Internet and wireless sensor net-
works [5]. In the case of WMNs, the authors in [6]
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investigated a hybrid network architecture consisting
of an underlying n-node wireless ad hoc network and a
sparse overlay network of m base stations, which are
connected with high-bandwidth wired links. The authors
showed that the asymptotic throughput capacity of the
hybrid network increases linearly with m if m grows faster
than

ffiffiffi
n

p
.

In this paper, we investigate the design and optimiza-
tion of a tiered wireless access network, as illustrated in
Fig. 1. The lower tier consists of a WMN with a large
number of mesh routers providing wireless access to
mobile users. To mitigate the scalability problem, we
group mesh routers into clusters with bounded diameter.
Traffic from/to the cluster members is aggregated and
routed through the cluster head, which is equipped with
free space optical (FSO) transceivers with multi-gigabit
data rates and multi-kilometer ranges. With this architec-
ture, resource contention mainly occurs within the cluster
and end-to-end hop counts are greatly reduced due to the
use of FSO links. Compared to the architecture in [6], FSO
links are easier to deploy than wired links, and can be
easily rearranged when traffic requirements change, or
when links or nodes fail. The challenging task of QoS
provisioning (e.g., delay and throughput) can be greatly
simplified.

FSO communications provide cost-effective, license-
free, and high-bandwidth links for the upper tier [7]. FSO
links require line-of-sight (LOS) and are point-to-point
connections. They are immune to electromagnetic inter-
ference and are secure due to point-to-point connection
with narrow beam divergence. However, FSO links are
subject to impairments in the open-air transmission med-
ium, such as attenuation, atmospheric turbulence, obsta-
cles, and beam misalignment. It is important to design
topologies with rich connectivity to cope with transmis-
sion impairments.

We address the challenging problem of network plan-
ning for the tiered wireless access network. The objective
is to jointly determine the optimal partition for the lower
tier WMN as well as the optimal topology for the upper
tier FSO network. However, such a topology design pro-
blem is highly complex due to its combinatorial nature. To
make the problem tractable, we take a divide-and-conquer
approach to break it down into two sub-problems. The
first sub-problem is cluster formation in the underlying
Mesh Router
Cluster head with optical 
transceiver

Wireless Optical Link
Gateway node

Internet

Fig. 1. Reference architecture for the tiered wireless access network.
WMN. In the two-tier architecture, each cluster head
serves as an FSO node in the upper tier and is equipped
with FSO transceivers. The more the clusters, the more the
FSO transceivers that are required in the upper tier.
Further, it would be desirable to include more mesh nodes
in a cluster (as long as the aggregate traffic condition is
satisfied, see Section 3.1) to fully utilize the high data rates
an FSO link can offer. Therefore, the objective is to
minimize the number of clusters (i.e., cost), while satisfy-
ing the delay and traffic load requirements. The second
sub-problem is topology design and optimization for the
upper tier FSO network to achieve maximum connectivity
for a given number of edges. The two sub-problems are
coupled with the common objectives of minimizing the
cost and maximizing the reliability of the tiered system,
while satisfying the QoS requirements.

The formulated sub-problems belong to the class of NP-
hard problems [8].1 To provide effective solutions, we take
a graph theoretic approach to develop heuristic algo-
rithms. First, we develop a plane sweeping and clustering
(PSC) algorithm that sweeps the network area and cap-
tures cluster members one after another under delay and
traffic load constraints. PSC chooses cluster members by
manipulating the adjacency matrix and hop-count matrix
of the underlying graph. We derive a lower bound on the
number of clusters, which can be used as a benchmark for
performance evaluation, and investigate effective schemes
to reduce the computational complexity of PSC. Second,
we present an algebraic connectivity-based formulation
for FSO network topology optimization. We then develop a
greedy edge-appending (GEA) algorithm, as well as its
distributed version, that iteratively inserts edges to max-
imize algebraic connectivity. The proposed algorithms are
analyzed with regard to complexity and performance
bounds, and evaluated via simulations. They are shown
highly effective for solving the network design and opti-
mization problem as compared to the performance bounds
developed in this paper.

The rest of this paper is organized as follows. We
present the system model in Section 2. The design and
optimization problems are formulated in Section 3. We
present PSC and GEA, and analyze their performance in
Sections 4 and 5, respectively. Simulation results are
presented in Section 6, and related work is discussed in
Section 7. Section 8 concludes the paper.

2. System model

2.1. Tiered access network model

As shown in Fig. 1, the lower tier of the wireless access
network is a WMN consisting of n mesh routers that
provide access to mobile users [2]. The mesh routers use
broadcast radio transceivers and each covers a small
1 Aoun, et al. in [9] showed that their gateway placement problem is
NP-hard in order to minimize the number of gateways, which is
analogous to the number of clusters in the cluster formation subproblem.
The FSO topology optimization problem is also NP-hard, since in [10] it
was proven that maximizing algebraic connectivity with a given number
of edges is NP-hard.



2 In [13], marginal distribution is used to refer to the distribution of
fading at a single point in space at a single instant in time.
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service area. Without loss of generality, we assume that
the mesh routers form a connected network. A small
fraction of the mesh routers are gateway nodes with
connection to the Internet. Traffic to/from the Internet is
routed via the gateways, while traffic between a pair of
mesh routers is relayed through multi-hop routes. The
traffic demand is characterized by a given traffic matrix F,
where element ½F�uv is the required traffic load from mesh
router u to v.

WMNs are known to suffer from throughput and fair-
ness problems [4]. They are hard to scale to large sizes,
resulting in the so-called “a-few-hop” wireless networks.
Although increasing the link data rate helps, it is not
practical to have FSO transceivers at each mesh router,
due to the cost constraint and the mismatch on data rate
and range between radio and FSO links. We form clusters
in the WMN. The mesh router traffic is aggregated at the
cluster heads, which are connected with high speed FSO
links to provide fast lanes for aggregate traffic.

The upper tier network is designated to cover wide
range with high data rate. FSO provides license-free and
high-bandwidth links for this purpose. We assume that
each cluster head can be equipped with multiple FSO
transceivers for rich connectivity, and the links are full
duplex. The link capacity from cluster head i to j is denoted
by Cij. Due to LOS and narrow beam divergence, we
assume that Cij ¼ Cji, for all ia j. The main design con-
siderations for FSO networks are cost and reliability.
Available FSO systems cost from $10,000 USD to $25,000
USD for medium to long link ranges [11], more expensive
than mesh routers. Therefore it is important to minimize
the number of FSO transceivers (or, links) to reduce the
deployment cost. In addition, FSO links are also susceptible
to atmospheric turbulence, unexpected tiny obstacles, and
beam misalignment. It is important to achieve rich con-
nectivity for the FSO topology.

We assume three operation modes for the tiered access
network: (i) Mode I: inter-cluster or Internet traffic is
aggregated at cluster heads and forwarded through FSO
links; (ii) Mode II: when an FSO link is temporarily blocked
(i.e., by a bird flying through the LOS path), a multipath
routing protocol will redirect traffic through alternative
paths in the upper tier FSO network; and (iii) Mode III:
during severe weather conditions such as heavy snow,
many FSO links may be blocked (like satellite links that
could be blocked by a heavy thunder storm). The WMN
will backoff to the normal mesh networking mode with
radio communications and multi-hop relays. Experimental
results in three U.K. cities from January 1975 to December
1983 show that atmospheric attenuation was constantly
low over 99% of the time [12]. So the tiered access network
will work in Modes I and II most of the time, exploiting the
high-speed FSO links for high throughput/low delay
performance.

2.2. FSO channel model

We assume that point-to-point wireless optical transcei-
vers are used for the cluster heads in the outdoor field.
Practical FSO communication systems usually adopt intensity
modulation with direct detection (IM/DD) with On-Off Keying
(OOK) in the PHY. There are several impairing factors
through an LOS path, such as attenuation, atmospheric
turbulence, unexpected tiny obstacles, and beam misalign-
ment. In this paper, we consider attenuation and atmo-
spheric turbulence as characterized by the refractive-index
structure parameter, which affect the FSO channel at the
relatively large timescale relevant to network planning.

Several irradiance distributions have been used for
modeling a light beam propagating through turbulent air
(i.e., the distribution of the received light intensity). The
log-normal distribution is shown to be highly accurate for
weak weather turbulences [13]. The marginal distribution2

of received light intensity can be modeled as

f IðIÞ ¼
1

2sXI
1ffiffiffiffiffiffi
2π

p exp �ðlnðIÞ�lnðI0ÞÞ2
8s2X

( )
;

where I0 is the average received intensity and s2X is the
variance of the log-intensity fluctuation. The variance has
the form

s2X ¼ 0:30545
2π
λ

� �7=6

C2
nðηÞz11=6;

where λ is the wavelength, C2
nðηÞ is the index of refraction

structure parameter with absolute altitude η, and z is the
transmission distance.

The received optical intensity of fixed FSO links mainly
depends on C2

nðηÞ. For atmospheric channels near the
ground, e.g., ηo18:5 m, C2

n ranges from 10�13 m�2=3 to
10�17 m�2=3 for strong to weak atmospheric turbulences,
with typical value 10�15 m�2=3 [13]. Under log-normal
fading, the reliability of an FSO link can be computed as

Γij ¼ Pr IZ Ith
� �¼ 1

2
�1
2
erf

lnðIthÞ�lnðI0Þ
2sX

ffiffiffi
2

p
� �

; ð1Þ

where Ith is the threshold of received signal intensity. With
a suitable threshold Γth, we define the weight of an FSO
link as

ωij ¼
Γij if ΓijZΓth

0 otherwise:

(
ð2Þ

From (1), we can compute the probability that the received
signal strength is larger than a threshold Ith. If this
probability is lower than the threshold Γth, we regard this
link as broken (with a weight 0) and do not consider it in
the topology design.

Due to LOS and narrow beam divergence, we assume
that the links are symmetric, i.e., Γij ¼ Γji for all ia j. The
main factors affecting link weights are the transmission
distance and atmospheric turbulence. If the nominal
capacity for all FSO links is Copt, the effective capacity of
an FSO link is Cij ¼ωijCopt considering the transmission
impairments. The upper tier FSO network, therefore, can
be modeled as an undirected and weighted graph GðV ; EÞ,
where V represents the set of cluster heads and E the set of
FSO links. Each link (i, j) has weight ωij for all ia j.
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3. Problem statement

In this section, we formulate the design and optimiza-
tion problem for the tiered wireless access network. Such
network planning problems are combinatorial in nature
and often have large sizes. To make the problem tractable,
we adopt a divide-and-conquer approach to consider the
following two sub-problems: (i) the optimized clustering
problem, on cluster formation in the underlying WMN; and
(ii) the topology optimization problem, on designing the
upper tier FSO network topology. These two sub-problems
are integrated with the overall objectives of minimizing
the cost and maximizing the reliability of the tiered
wireless network, while satisfying the traffic and delay
requirements.
3.1. Lower tier: optimized clustering problem

The first step is to partition the underlying wireless
routers into clusters, while considering delay and traffic
demand requirements. End-to-end delay consists of
queueing delay, processing delay, and transmission (and
retransmission) delay induced at each hop. For network
planning purpose, we consider time averages of the delay
components. This is because clustering is performed at
relatively large timescales for which time averages matter.
There is no need (or, it would be too costly) to adapt
clusters in response to, say, queueing delay fluctuations at
small timescales. As in prior work [9], we translate the
delay requirement to a bound hmax, i.e., the maximum hop
count of the shortest path from any mesh router to its
cluster head.

Assume that the traffic matrix FARn�n is given for the
mesh network. When the clusters are formed, the aggre-
gate incoming and outgoing traffic of cluster Mi, denoted by
f o;Mi

and f Mi ;o respectively, can be computed as

f o;Mi
¼ ∑

n

u ¼ 1;u =2Mi

∑
vAMi

½F�uv

f Mi ;o ¼ ∑
vAMi

∑
n

u ¼ 1;u=2Mi

½F�vu:

8>>>><
>>>>:

ð3Þ

Operators may enforce a bound on traffic load, fmax, for a
cluster, i.e.,

f Mi
¼maxff o;Mi

; f Mi ;ogr f max: ð4Þ

Assuming that the transmission ranges of mesh radios
are identical disks with radius r. For network design
purpose, we focus on average link quality over relatively
large timescales and ignore fast variations of channel
quality. The mesh network can be represented by a graph
G, with vertices representing mesh routers and edges
representing radio links among neighboring mesh routers.
The adjacency matrix AARn�n of graph G can be derived
for given node locations and r. We have the following fact
from graph theory.

Fact 1. Let A be the adjacency matrix of graph G. The
number of walks from vertex u to v in G with length k is
½Ak�uv [14].
Recall that cluster diameters are bounded by hmax. So
we only concern with the maximum hop count hmax, i.e.,
up to the ðhmaxÞ-th power of A. From Fact 1, the hop count
of the shortest path between two nodes u and v can be
computed as

huv ¼ minfkg if ½Ak�uv40; kA ½1;…;hmax�
0 otherwise:

(
ð5Þ

The first line in (5) is for the case when nodes u and v are
less than hmax hops away from each other; the second line
is for the case when nodes u and v cannot belong to the
same cluster. We can define a hop-count matrix for graph
G, denoted as HARn�n, with element ½H�uv ¼ huv as defined
in (5), i.e., the hop count of the shortest path from node u
to v, for u; vA ½1;…;n�.

Let binary variable yu, u¼ 1;…;n, be the indicator
whether the u-th mesh router is chosen to be a cluster
head and let xuv be the indicator whether mesh router u is
associated with cluster head v. The clustering problem can
be formulated as a 0–1 integer linear programming (ILP)
problem as

minimize : nc ¼ ∑
n

u ¼ 1
yu ð6Þ

subject to : ∑
n

v ¼ 1
xuv ¼ 1 for all u ð7Þ

∑
n

v ¼ 1
ðxuv � huvÞrhmax for all u ð8Þ

f Mu
r f max for all Mu ð9Þ

xuvAf0;1g; yuAf0;1g for all u; v: ð10Þ
The main objective is to minimize the number of clusters
to reduce the cost of the FSO network, under delay and
traffic load constraints. Constraint (7) requires that each
mesh router is assigned to one cluster. Constraint (8)
indicates that the hop counts from all cluster members
to the cluster head is bounded by hmax. Constraint (9)
represents the bound on the aggregated incoming and
outgoing traffic for a cluster, which are functions of xuv and
yu as given in (3).

Once the clusters are formed, the new traffic matrix for
the inter-cluster traffic, denoted by F′, can be derived as

½F′�ij ¼
yiyj ∑

n

u ¼ 1
∑
n

v ¼ 1
xuixvj½F�uv if ia j

0 otherwise:

8><
>:

The number of FSO transceivers at cluster head i, denoted
as Ki, can be determined from F′, as

Ki ¼maxfkmin;minfki; kmaxgg; ð11Þ
where kminA ½1;…; kmax� is a predefined lower bound on node
degrees, ki ¼ ⌈f Mi

=ðΓth � CoptÞ⌉, and kmax ¼ ⌈f max=ðΓth � CoptÞ⌉.
In the following topology optimization problem, Ki will be the
degree for cluster head i. As will be shown in (12), the
connectivity of a graph G is upper bounded by its minimum
degree δðGÞ. Here we enforce a minimum value kmin for δðGÞ
to avoid trivial cases with poor connectivity (e.g., stubs or
trees). Once the degrees for the cluster heads are derived, we
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have the following facts from graph theory, which will be
used in topology optimization.

Fact 2. The sum of node degrees is equal to twice of the total
number of edges, i.e., ∑n

i ¼ 1Ki ¼ 2 � jEj [15].

Fact 3. The number of edges of a simple graph (i.e., loop-free
and without multiple edges) is upper bounded by ðn2Þ [15].

3.2. Upper tier: topology optimization problem

The next step is to optimize the topology of the upper
tier FSO backbone. As discussed, the upper tier FSO net-
work can be modeled as a weighted simple and mesh
graph GðV ; EÞ with jV j ¼ nc vertices and jEj ¼m edges. The
problem is to find a simple graph with vertex set V that
achieves maximum connectivity for robustness to atmo-
sphere turbulence and link failures, while satisfying node
degree constraints (11).

In the following, we first introduce algebraic connec-
tivity and its properties, and then formulate the topology
optimization problem.

3.2.1. Algebraic connectivity preliminaries
There are several graph connectivity measures, includ-

ing graph degree and diameter, k-vertex/edge connectivity
and bisection connectivity [14].3 In this paper, we consider
algebraic connectivity from spectral graph theory, based on
the following considerations [15,17]: (i) algebraic connec-
tivity is well-studied as a key component of spectral graph
theory. It is amenable for mathematical modeling and
effective algorithm design. Algebraic connectivity can also
provide bounds on graph operations such as subgraph,
factorization, Cartesian product, disjoint union, and com-
plement of a graph. (ii) Algebraic connectivity has several
interesting properties. It is closely related to graph invar-
iants including diameter, minimum degree, and connec-
tivity, thus being more helpful to understand network
topology as compared to other measures.

The algebraic connectivity of a graph G is defined to be
the second smallest eigenvalue of the Laplacian matrix L of
graph G, denoted as λ2ðLÞ, where L¼ LðGÞ [15]. The value of
λ2ðLÞ is a nice indication of graph connectivity with the
following facts [18].

Fact 4. A graph is connected if and only if λ2ðLÞ40.

Fact 5. The number of zero eigenvalues of LðGÞ is equal to the
number of disjoint components of G.

Fact 6. For two graphs G1 ¼ ðV ; E1Þ and G2 ¼ ðV ; E2Þ with
E1DE2, we have λ2ðL1ðG1ÞÞrλ2ðL2ðG2ÞÞ.

According to the facts, a graph with λ2 ¼ 0 is parti-
tioned, while a graph with λ240 is connected with one
component. The algebraic connectivity is non-decreasing
as more edges are inserted to the graph. Furthermore,
algebraic connectivity is closely related to other connec-
tivity measures. For a connected graph G that is not
3 Vertex (edge) connectivity is the minimum vertex (edge) cut for
nonadjacent vertices i and j. Bisection connectivity is the likelihood that
the graph would be separated into two components [16].
complete, let Kv(G) be the vertex connectivity and Ke(G)
the edge connectivity. The following inequalities hold true
[18,17]:

4
D � jVðGÞjrλ2ðLÞrKvðGÞrKeðGÞrδðGÞ; ð12Þ

where δðGÞ is the minimum degree of the graph, D is the
graph diameter, and L is the Laplacian matrix of graph G.
The inequalities are illustrated in Fig. 2. It is interesting to
see that graphs with the same number of edges can have
different λ2 values, as the second and third graphs in Fig. 2.
For a given number of links, it is thus desirable to design a
topology that maximizes the algebraic connectivity.

3.2.2. Topology design and optimization problem
As a result of the clustering problem, the nc cluster

heads form an upper tier FSO network, which is modeled
as a weighted graph GðV ; EÞ. Each vertex viAV represents
a cluster head with degree Ki, given in (11) as determined
by the delay and traffic load requirements. The number of
edges is m¼ jEj ¼ ð1=2Þ∑nc

i ¼ 1Ki. Let the set of potential
edges be Epot (i.e., set of edges with positive weights).
Recall that the link weights are calculated as in (1) and (2),
where low quality links are assigned with weight zero. To
ensure a feasible solution, a basic condition on Epot is that
the network is connected when all the links in Epot is used,
which can be achieved by adjusting the thresholds in (1)
and (2). We have EDEpot and jEpot j ¼mpot . The topology
design problem is to choose E from Epot such that (i) the
degree of each vertex is satisfied, and (ii) the algebraic
connectivity is maximized.

We follow the Laplacian matrix definition in [19].
Assume that edge l connects two distinct vertices vi and
vj, lA ½1;…;m�, vi; vjAV . We also denote edge l as (i, j)
when there is need to distinguish the endpoints. We
define alARnc of the unweighted incidence matrix
ΛARnc�m of graph G as

½al�k ¼
þ1 if k¼ i and ωij40
�1 if k¼ j and ωij40
0 otherwise:

8><
>: ð13Þ

The nc � nc weighted Laplacian matrix L of graph G is

LðGÞ ¼ ∑
m

l ¼ 1
ωl � al � aTl ¼Λ � diagðωÞ � ΛT ; ð14Þ

where diag ðωÞARm�m is a diagonal matrix with diagonal
elements ωl, l¼ 1;…;m. It follows from the definition that
LðGÞ is a positive semi-definite matrix, i.e., LðGÞ≽0. Its
Algebraic 
connectivity 2 2 1 1 0.5858

Fig. 2. Algebraic connectivity examples when edges are deleted from an
unweighted graph.
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smallest eigenvalue, λ1ðLÞ, is zero with eigenvector
1¼ ½1; 1;…;1�T . The eigenvalues also satisfy the following
inequality condition: 0¼ λ1rλ2rλ3r⋯rλnc . Since we
consider connected graphs, it follows from Facts 4 and 5
that there is only one zero eigenvalue. Therefore we have

0¼ λ1oλ2rλ3r⋯rλnc : ð15Þ
The topology optimization problem for the upper tier

FSO network can be formulated as follows4:

maximize : λ2ðLÞ ð16Þ

subject to : m¼ 1
2

∑
nc

i ¼ 1
Kir

nc

2

� �
ð17Þ

di ¼ Ki for all i ð18Þ

EDEpot ; ð19Þ
where di is the non-weighted degree of node i. To optimize
the topology, we populate edge set E by selecting edges
from Epot, such that λ2 of the resulting graph G is max-
imized and the delay and traffic load requirements are
satisfied. The first constraint is from Facts 2 and 3. The
second constraint is on the degree of each cluster head,
such that the incoming and outgoing traffic from that
cluster can be served.

When the problem is solved, each potential link lAEpot
will either be chosen to be included in E or not chosen.
Define binary variables xl, for all lAEpot , as

xl ¼
1 if potential edge l is included in E

0 otherwise:

(
ð20Þ

Then we have a boolean vector xAf1;0gmpot for Epot. The
topology optimization problem can be reformulated into a
0–1 ILP problem as

maximize : λ2 ∑
mpot

l ¼ 1
xl �wl � al � aTl

 !
ð21Þ

subject to : 1T � x¼ 1
2

∑
n

i ¼ 1
Kir

nc

2

� �
ð22Þ

di ¼ Ki for all i ð23Þ

xAf0;1gmpot ; ωl ¼ ωij; l� ði; jÞ: ð24Þ
The solution is the boolean vector x that maximizes the
algebraic connectivity of the resulting graph under node
degree and edge constraints.

3.3. Remarks

Clustering is like a graph partitioning problem, while
optimally partitioning a graph according to certain perfor-
mance measure is NP-hard [9,8]. In [10], it is shown that
the problem of adding a specified number of edges to an
4 It is worth noting that Ki is determined using Γth as in (11), rather
than the exact link reliability ΓijZΓth , for ði; jÞAEpot . As a result, some
redundancy is provided for the capacity of cluster Mi, which is useful to
accommodate fluctuations in the instantaneous cluster Mi load. If
such redundancy is unnecessary, we can modify the (18) with
Copt �∑j:ði;jÞAEωijZminff max; f Mi

g, for all i.
input graph to maximize the algebraic connectivity of the
augmented graph is also NP-hard.

In the next two sections, we develop bounds and
heuristic algorithms for the formulated problems. Specifi-
cally, we develop a plane sweeping and clustering (PSC)
algorithm for the WMN clustering problem and a greedy
edge-appending (GEA) algorithm for the FSO topology
optimization problem, along with performance bounds.
Both algorithms are evaluated via simulations in Section 6.

4. Lower tier: cluster formation

In this section, we first describe the PSC algorithm for
cluster formation in the lower-tier WMN. We then develop
a lower bound on the number of clusters, which can be
used as a benchmark for the algorithm performance.
Finally we discuss ways to reduce the computational
complexity of the PSC algorithm.

4.1. Plane sweeping and clustering algorithm
Algorithm 1. Plane sweeping and clustering (PSC)
algorithm

1
 i¼0;

2
 Compute matrices Ai and Hi for graph Gi ¼G;

3
 Choose the lower left corner node as base node;

4
 while some nodes not clustered do�

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
iþþ ;

Add the base node to cluster Mi;

for h¼ 1 : hmax do
while some h�hop neighbors not checked do
Find a node u that is h�hops from the base node;
if ðhuk4hmax for any kAMiÞ or ðf Mi

4 f maxÞ then
jGo to Line 18;
else
Add node u to cluster Mi;

Update traffic load f Mi
;

�����
end

�����������������
end

����������������������
end
Determine cluster head for cluster Mi;

Generate the reduced graph Gi ¼Gi�1�Mi;

Generate matrices Ai and Hi for graph Gi;

Find the next base node;

�����������������������������������������

22
 end

23
 if there is an isolated node then�

24
 Merge to a neighboring cluster with the max diameter;

Repartition to get two new clusters;

����

25
 end

26
 Compute number of FSO devices for each cluster head ;
There have been a few clustering heuristics in the
literature [20,21], and several schemes that consider QoS
constraints [9,22]. However, we find it difficult to apply or
enhance the existing algorithms for our problemwith both
traffic demand and delay constraints. Most existing
schemes select a cluster head first and then select cluster
members. For example, the recursive dominating
set algorithm in [9] first selects a maximum degree node
and then all its neighbors become cluster members. This
approach may not be suitable for the case when the mesh
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routers have different traffic demands. Furthermore, prior
work in [9,22] considers only the Internet traffic of the
mesh routers, but not the inter-cluster traffic.

The PSC algorithm continually sweeps the network area
to capture cluster members while satisfying the delay and
load constraints, until every mesh router is assigned to a
cluster. We then choose cluster head for each cluster
formed. The objective is to minimize the number of
clusters, thus reducing the deployment cost of the upper
tier FSO network.

The pseudo-code of the PSC algorithm is presented in
Algorithm 1. Starting from the lower left corner of the
network region,5 PSC iteratively sweeps the network area
and forms a new cluster after each iteration. Each iteration
consists of three steps as follows.

4.1.1. PSC Step 1: cluster formation
PSC first chooses a base node as starting point for the

next cluster to be formed. It then explores the neighbors of
the base node within hmax hops, and adds the neighboring
nodes into the cluster, until one of the conditions,
DMi rhmax or f Mi

r f max, is violated (lines 5–17 in
Algorithm 1). DMi

is the diameter of the new cluster Mi,
which can be computed as

DMi ¼ max
u;vAMi ;uav

½Hi�uv; ð25Þ

where Hi is the hop-count matrix for cluster Mi as defined
in Section 3.1. Recall that f Mi

¼maxff o;Mi
; f Mi ;og is the larger

one of the aggregate incoming or outgoing traffic load of
cluster Mi, as given in (4).

It is worth noting that in the optimized clustering
problem (6)– (10), the delay constraint is translated to
∑n

u ¼ 1xuv � huvrhmax for all u; vAV . That is, the hop count
of the shortest path from any cluster member to its cluster
head should be upper bounded by hmax. Since the cluster
head could be located anywhere in the cluster (not
necessarily at the center, see the discussion of PSC Step
2), this condition is satisfied by bounding cluster diameter
with hmax in PSC, such that the maximum hop count for
any node pair in the cluster does not exceed hmax. This also
provides redundancy for accommodating fluctuations in
the delay components.

4.1.2. PSC Step 2: cluster head selection
When a new cluster Mi is formed, PSC will select a

cluster head from the nodes in Mi (line 18 in Algorithm 1).
This node will be equipped with FSO transceivers and
becomes a node in the upper tier FSO network.

Since all the incoming and outgoing traffic for a cluster
will go through the cluster head, it should be judiciously
chosen such that the relay traffic load within the cluster is
minimized. If there is a gateway node in the cluster, it
should be the cluster head, since all the traffic will finally
be directed to and from there. If there are more than one
gateway nodes in the cluster, it will be split into multiple
5 Since PSC is to sweep all the mesh routers, starting from a corner is
a better choice than, say, starting from a gateway node. Since a gateway
node could be located anywhere in the network, starting from a gateway
node may complicate the sweep process.
smaller ones, each using a gateway node as cluster head.
Each non-gateway node in the cluster will be associated
with the closest gateway node after the partitioning. Note
that this case rarely happens since the number of gateway
nodes is usually small. If there is no gateway node in the
cluster Mi, we select a node as cluster head by solving the
following optimization problem:

argmin
qAMi

∑
uAMi ;uaq

huq ∑
n

v=2Mi ;v ¼ 1
ð½F�uvþ½F�vuÞ

 !( )
;

where the overall relay load for the cluster's incoming and
outgoing traffic is minimized.

4.1.3. PSC Step 3: graph and matrices update
If there is still node not clustered, PSC will obtain a

reduced graph Gi by deleting the nodes in cluster Mi from
graph Gi�1, and update the adjacency matrix Ai and hop-
count matrix Hi for the reduced graph Gi. PSC then chooses
in Gi the closest node from the current base node point, as
well as close to certain trajectory (horizontal or vertical),
as the next base node, and will repeat Steps (1) and (2) to
generate a new cluster (lines 19–21 in Algorithm 1).

PSC sweeps a network plane until all the nodes are
covered. However, there could be single-node clusters (e.
g., a single node in Mi) in the border zone. In this case, we
refine the cluster formation by first identifying the neigh-
boring cluster with the largest diameter (e.g., cluster Mj),
and then iteratively reassigning members of Mj to Mi, until
the diameter or traffic load constraints of Mi is met, or
when the two clusters Mi and Mj have similar number of
nodes. It is easy to see that the total number of clusters are
still the same, and both refined clusters are feasible.

Line 27 in Algorithm 1 computes the number of FSO
transceivers for each cluster head as given in (11). The
number is determined by the traffic load fmax and the
capacity of FSO links. It is the degree of the cluster head,
and determines the number of edges for the upper-tier
FSO network.

4.2. Lower bound

We next derive a lower bound on the objective value
achieved by PSC. To avoid trivial cases6 and without loss of
generality, we assume that every point in the deployment
area, S, is covered by at least one mesh router. The lower
bound on the number of clusters is given in the following
theorem. It will be useful for evaluating the performance
of heuristic clustering algorithms, especially for large-scale
networks.

Theorem 1. n0 ¼ ⌈4S=ðπr2h2maxÞ⌉rnc is a lower bound on
the total number of clusters.

Proof. In order to minimize the number of clusters, the
size of each cluster should be maximized. For given
constraints hmax and fmax, there are two cases when a
cluster is formed, i.e., the cluster size is confined by either
6 For example, the lower bound will be one if all the mesh routers are
installed at the same location with low traffic load.
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(i) the maximum cluster diameter or (ii) the maximum
aggregate traffic load.
Case i: Since the cluster size is confined by hmax, the

minimum number of clusters can be obtained by forming
each cluster with diameter hmax. With transmission range
r, the maximum Euclidean distance between any two
cluster members is thus rhmax. The maximum coverage of
a cluster is πr2h2max=4, which is a disk with radius rhmax=2.
To cover the deployment area, the minimum number of
clusters can be estimated as ⌈4S=ðπr2h2maxÞ⌉.
Case ii: Since the cluster size is confined by fmax, the

maximum cluster diameter bound is not violated when the
cluster is formed. As a result, the Euclidean distance of the
cluster diameter cannot be larger than rhmax. Therefore, the
minimum number of clusters for this case cannot be lower
than that in Case i.
Therefore, we conclude that the minimum number of

clusters is n0 ¼ ⌈4S=ðπr2h2maxÞ⌉. □
4.3. Complexity reduction

PSC involves manipulation of several matrices. Let n be the
number of mesh routers that have to be clustered. Assume
that the PSC algorithm generates nc clusters with k cluster
members. The computation costs to generate adjacent matrix
A and H are Oðn2Þ and Oðn2:376Þ, respectively. Indeed, the n�
n matrix multiplication has complexity Oðn2:376Þ using the
Coppersmith–Winograd algorithm [23]. The complexities, in
addition, to verify hmax and fmax condition per iteration are
Oðk2Þ and Oðk � nÞ, respectively. The merging cost per isolated
node is Oðnc � kÞ, which is smaller than Oðnc � n2:376Þ. Thus, we
can see that the computation cost to update H is the
dominating part. The computation costs of PSC algorithm is
Oðnc � n2:376Þ. In this section, we discuss techniques on further
reducing the computational complexity.

Theorem 2. Consider reduced graph G′¼ G�k for kAVðGÞ.
Let Hand H′ be the hop count matrices for graphs G and G′,
respectively. For any uAVðGÞ such that hukZhmax, we have
½H�uv ¼ ½H′�uv for all vAVðGÞ and vak.

Proof. For u; kAVðGÞ and uak, assume that there is an
uk-walk, of which the shortest path has n walks, meaning
huk ¼ n. If huk4hmax, we have huk ¼ 0. Then, the uk-walk is
denoted by νu ¼ ν0e0ν1e1⋯νn�1en�1νn ¼ νk for nrhmax. For
the reduced graph G′¼ G�k, assume that there is a vertex
vak; h′vk is the hop count of the shortest path from vertex
v to k. We consider the following three cases.
Case i: Assume that huk4hmax. If huvrhmax, h

′
uv is equal

to huv since the uv-walk does not include νk by the case
condition huk4hmax. If huv4hmax, h

′
uv is also equal to huv (i.

e., both are 0), since deleting a vertex does not reduce the
number of any walk. Thus we have ½H�uv ¼ ½H′�uv.
Case ii: Assume that huk ¼ hmax. If huvohmax, h

′
uv is equal

to huv since the uv-walk does not include νk by the
assumption huk ¼ hmax. If huv ¼ hmax, there should be
another walk which does not go through νk. If not, the
condition, huv ¼ hmax, will be violated. For the condition
huv4hmax, h

′
uv is also equal to huv since both of them are 0

in this case. Thus ½H�uv ¼ ½H′�uv holds true in this case.
Case iii: Assume that hukohmax. If hvkohmax and
huv ¼ hukþhkv, it is possible that the shortest uv-walk is
unique and νk is in the path. It is possible to have h′uvahuv.
We have that ½H�uv ¼ ½H′�uv when hukZhmax. □

Corollary 1. Consider reduced graph G′¼ G�k for kAVðGÞ.
Assuming disjoint vertices u; v; kAVðGÞ, it is possible to have
that h′uvahuv, if huv ¼ hukþhvk for hukohmax and hvkohmax.

Proof. We have huvah′uv if huv ¼ hukþhvk for hukohmax

and hvkohmax. If one of the vertices u or v is more than
hmax hops from k, we have h′uv ¼ huv according to Theorem
2. We consider three cases for hukohmax and hvkohmax as
follows:
Case i: If huvohukþhvk, it means that the uv-walk does

not go through vertex k.
Case ii: If huv ¼ hukþhvk, it is possible that the shortest path

between u and v including vertex k is unique. In that case,
when k is deleted, the unique shortest path will no longer
exist. We then have h′uv4huv or h′uv ¼ 0 according to (5).
Case iii: The case of huv4hukþhvk cannot happen.
Therefore, we have h′uvahuv when huv ¼ hukþhvk for

hukohmax and hvkohmax. □

Corollary 2. Consider reduced graph G′¼ G�k for kAVðGÞ.
Assume that vertices u; v; kAVðGÞ are disjoint. Then ½H′�uv
can be obtained by the power calculation of an adjacency
matrix, denoted as A″, consisting of rows and columns
corresponding to vertices s and tAVðGÞ, satisfying hksr
2ðhmax�1Þ and hktr2ðhmax�1Þ.

Proof. Consider disjoint vertices u; v; kAVðGÞ, huv ¼ hukþ
hvk for hukohmax and hvkohmax. Therefore ½H′�uv could be
different from ½H�uv. From Corollary 1, vertices u and v can
be located at most hmax�1 hops from vertex k. Let pAVðG′Þ,
pau, and pav. In order to check ½H′�uv, p should be
located less than hmax�1 hops from u and v. According to
location conditions of u and v, and p, the adjacency matrix,
A″, with vertices less than 2ðhmax�1Þ hops from k can be
used to compute ½H′�uv. □

As examples, consider the 500-node network shown in
Fig. 3. In Fig. 3(a), a node around the center of the region is
included into an existing cluster. In Fig. 3(b), a node near
the boarder is included into an existing cluster. We show
in the figure the set of nodes that are required for getting
the reduced adjacency matrix A″, obtained for the reduced
graph. Such nodes are marked as red squares and green
diamonds. According to Theorem 2 and the corollaries, we
need to recompute the H′ entries for the red square nodes
in the figures, while the green diamond nodes are also
involved in the computation. Except for the red square
nodes, the H′ entries for all other nodes are not changed by
the node deletion. Compared to recomputing the entire H′
using A, significant computation reduction can be
achieved by using the much smaller adjacency matrix A″.
We also find that an edge node reduction achieves more
computation reduction than central node reductions, as
illustrated in Fig. 3. Due to the sequential sweeping
operation of PSC, it is usually the case of edge node
reduction, resulting in considerable computation savings.



Fig. 3. The subgraph corresponding to A″ (marked as squares and diamonds) after deleting a node from a 500-node network deployed in a 1500�1500 m2

area with r¼150 m and hmax ¼ 3. (a) A central node. (b) A border node.
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5. Upper tier: topology optimization

The objective of topology optimization is to maximize
algebraic connectivity for the upper tier FSO network,
while satisfying the traffic load requirements. We first
derive a theoretic upper bound for the increase in alge-
braic connectivity when an additional edge is added. We
then present the centralized greedy edge-appending (GEA)
algorithm and its distributed version.

5.1. Theoretic upper bound

The algebraic connectivity upper bound is useful for
evaluating the performance of GEA, since the global
optimal lies in between the GEA solution (i.e., a lower
bound) and the upper bound. Let GðV ; EÞ be a connected
and weighted graph and let G′ be a graph by adding an
edge l� ði; jÞ to G, denoted as G′¼ Gþ l. The upper bound
is given in the following.

Theorem 3. An upper bound on the algebraic connectivity of
graph G′ is given as

λ2ðG′Þrminfλ3ðGÞ; λ2ðGÞþωij � ðνi�νjÞ2g; ð26Þ

where νi and νj are respectively the ith and jth elements of
the normalized eigenvector v of LðGÞ corresponding to
eigenvalue λ2ðGÞ.

Proof. Let L and L′ be the Laplacian matrix of G and G′,
respectively. We first show that λ2ðG′Þrλ3ðGÞ. Assuming
that graph G has one component, we have
L′¼ Lþωl � al � aTl . Since the Laplacian matrix L is sym-
metric positive semidefinite, it satisfies the following
conditions: (i) L¼ LT , (ii) L≽0, and (iii) L � 1¼ 0, where
1¼ ½1; 1;…;1�T and 0¼ ½0; 0;…;0�T .
Let λ1rλ2r⋯λnc be the eigenvalues of L and

λ′1rλ′2r⋯λ′nc
be the eigenvalues of L′. According to

Theorem 3.2 in [17], we have λ1rλ′1rλ2rλ′2rλ3r
λ′3⋯rλnc rλ′nc . Therefore, it follows that λ2ðG′Þrλ3ðGÞ.
We next prove the second part. Let v¼ ðν1; ν2;…; νnc Þ be

the normalized eigenvector of L corresponding to λ2ðLÞ.
According to the Courant–Fischer formula, the second
smallest eigenvalue of L′ can be written as

λ2ðL′Þ ¼ min
x?1;xa0

〈L′ � x; x〉
〈x;x〉

;

where 〈�; �〉 is the inner product of two vectors [17]. We have

λ2ðL′Þ ¼ min
x?1;xa0

〈L′ � x; x〉
〈x;x〉

r〈L′ � v; v〉
〈v;v〉

¼∑ða;bÞAEðG′Þωab � ðνa�νbÞ2
∑aAVðGÞν2a

¼∑fða;bÞAEðGÞg[ fði;jÞ=2EðGÞgωab � ðνa�νbÞ2
∑aAVðGÞν2a

¼∑ða;bÞAEðGÞωab � ðνa�νbÞ2þωij � ðνi�νjÞ2

¼ λ2ðLÞþωij � ðνi�νjÞ2:
The fourth equality is due to the fact that v is a normalized
vector. We have λ2ðL′Þrλ2ðLÞþωijðνi�νjÞ2. Since both cases
should be satisfied, we have that λ2ðG′Þrmin
fλ3ðGÞ; λ2ðGÞþωij � ðνi�νjÞ2g. □

5.2. Greedy edge-appending algorithm
Algorithm 2. The greedy edge-appending (GEA) algorithm

1
 Build a degree bounded minimum spanning tree;

2
 while there remains an edge to be inserted do�

3
4
5
6

Append the edge with the largest ωij � ðνi�νjÞ2
among remaining edges in Epot ;

Conditioned on : ðdioKiÞ and ðdjoKjÞ;
Break a tie by considering the node pair with the min degree

first and then that with the max distance;
Update graph and the corresponding Laplacian matrix;

��������������

7
 end
The pseudo-code of the GEA algorithm is given in
Algorithm 2. The procedure starts with nc vertices and a
null edge set. Therefore, the initial value of λ2ðLÞ is zero
and will remain zero until the graph becomes connected
(see Facts 4 and 5). To speed up the initialization phase, we
first apply an enhanced version of Prim's algorithm to
build a degree bounded minimum spanning tree (MST) [24].
Next, GEA iteratively picks an edge from the remaining
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edges in Epot and appends it to the graph such that the
algebraic connectivity is progressively improved.

Recall that v¼ ðν1; ν2;…; νnc Þ is the normalized eigen-
vector corresponding to λ2ðLÞ. During each iteration, GEA
chooses an edge with the largest ωij � ðνi�νjÞ2 value among
all the remaining edges in Epot. As shown in the proof of
Theorem 3, ωij � ðνi�νjÞ2 is an upper bound on the increase
in algebraic connectivity achieved by adding edge (i, j).
This strategy will achieve the largest expected increase in
λ2ðLÞ.

In the case of a tie where multiple edges have the same
maximum ωij � ðνi�νjÞ2 value, GEA chooses the edge whose
endpoint has the minimum degree. If there is a tie again,
GEA chooses the edge with the largest distance. This
strategy is motivated by the inequality condition (12),
i.e., 4=ðD � ncÞrλ2ðGÞrδðGÞ, which implies that algebraic
connectivity may be improved by increasing the minimum
degree and/or by decreasing the diameter of the graph.

Recall that m is the total number of edges to be
inserted. It takes Oðn2

c Þ to build the minimum spanning
tree with nc�1 edges [24]. Since a Laplacian matrix of a
connected graph is symmetric tridiagonal, it takes Oðn2

c Þ to
compute its eigenvector [25]. The complexity of appending
the remaining ðm�ncþ1Þ edges mainly comes from com-
puting eigenvector v, each takes Oðn2

c Þ, for the remaining
edges in Epot. The overall GEA complexity is Oðn2

c þ
ðm�ncþ1Þn2

cmpotÞ.

5.3. Alternative and distributed algorithms

In addition to the bottom-up approach taken in GEA,
alternative methods can be explored. For example, a top-
down approach that deletes an edge from current topology
starting from GðV ; EpotÞ. In each iteration, the edge with
the minimum ωij � ðνi�νjÞ2 value will be selected and
deleted, until mpot�m edges are deleted. Note that this
approach may not be suitable for large networks where
mpotbm.

As another intuitive edge-appending algorithm, we can
select the edge with the largest weight to insert, since a
more reliable edge could make stronger connection than
weak link. That is, the strategy is to select the edge with
maximum ωij among unselected potential edges. This
algorithm can guarantee the highest link weight sum,
but the resulting algebraic connectivity is hard to predict.
We call it simple greedy heuristic, and compare its perfor-
mance with the GEA algorithm in the simulations.

The GEA algorithm described in Algorithm 2 is exe-
cuted at a centralized entity with global information. It
would be interesting to develop a distributed version of
GEA that does not require the centralized entity. Such a
distributed version executed at FSO node i is presented in
Algorithm 3. First, a distributed MST algorithm is executed
at each node to form a tree topology [26], as given in lines
1–3. As in prior work [27], we assume that nodes within a
connected graph component share topology information
with each other. Therefore, once the tree is formed, the
FSO nodes can share and obtain information of the current
topology. Then, node i iteratively identifies a neighbor j,
such that inserting edge (i, j) achieves the largest potential
increase in algebraic connectivity among all other possible
links to node i's neighbors. Then node i will request to
connect to node j, using one of the remaining FSO
transceivers at each node. If it succeeds, it will increase
its node degree by 1 and continue to find the next edge to
insert. Note that since each node autonomously decides
which edge to insert, it is possible that when node i tries to
insert edge (i, j), node j has already used up all of its
transceivers in the meantime. In this case, node i will give
up and try to find the next edge to insert to other
neighbors. This procedure, shown in lines 4–10, is
repeated at each node until all its transceivers are used.

In the distributed GEA, the next edge is chosen from
those edges in Epot that connect itself to its neighbors. In
the centralized GEA, however, the next edge is chosen
from all the remaining edges in Epot. Thus, the distributed
GEA algorithm is expected to provide smaller potential
increase in algebraic connectivity than that achieved by
the centralized GEA algorithm. As will be shown in our
simulation studies, it slightly sacrifices connectivity per-
formance to eliminate the need for a centralized entity.

Algorithm 3. Distributed GEA algorithm at FSO node i

1
 while the network is partitioned do

2
 j Participate in the distributed MST algorithm;

3
 end

4
 while node degree constraint (23) is not met do�

5
6
7
8
9

Read current topology information;
Select a neighbor j¼ arg maxfωij � ðνi�νjÞ2g;
if succeed in inserting edge ði; jÞ then
jIncrease node degree by 1;
end

�����������

10
 end
6. Simulation results

In this section, we evaluate the performance of PSC and
GEA. The algorithms are implemented in Matlab. We use
fixed transmission range r for the lower tier radio network,
and simulate log-normal fading for the upper tier FSO
links. In each simulation, a large number of mesh routers
are uniformly distributed in a square region and a small
number of gateway nodes are randomly chosen from the
set of mesh routers.

The traffic matrix is randomly generated as follows.
Each mesh router generates two types of traffic: (i) Internet
traffic that is forwarded to/from a gateway, and (ii) inter-
cluster traffic that is delivered between two mesh routers.
The inter-cluster traffic is randomly distributed among
mesh routers and the Internet traffic is directed to the
closest gateway. We assume that the incoming Internet
traffic rate is twice that of the outgoing Internet traffic (i.e.,
more downloading traffic than uploading traffic).

6.1. Optimized clustering results

We first evaluate the PSC performance with regard to
number of clusters and computation reduction. Although
there is considerable literature on clustering in wireless
networks, we find that many existing algorithms are
designed for highly specific problems and may not apply
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for the FSO-based wireless access network considered in
this paper. For example, energy efficiency has been the
major consideration for clustering in wireless sensor net-
works [20,5], while power conservation is not an issue in
WMNs since the mesh routers are usually plugged into
power outlets. In addition, traffic demand between clus-
ters, as represented by the traffic matrix, is not considered
in many prior work on clustering in WMNs [9]. Therefore,
we compare the PSC algorithm with the lower bound in
this section to avoid unfair comparisons.

We follow the setting in [9] to consider a small network
with 175 mesh routers uniformly deployed in a
1000�1000 m2 region. There are two gateway nodes.
The radio transmission range is r¼100 m, and the mini-
mum distance between any two mesh routers is 60 m. The
cluster diameter bound is set to hmax ¼ 4. Applying PSC, the
mesh routers are divided into 20 clusters, as illustrated in
the lower tier of Fig. 4. The upper tier in Fig. 4 is
constructed by GEA.

In Fig. 5, we plot the number of clusters formed by PSC
for increasing cluster diameter bound hmax, where the
same setting as in Fig. 4 is used. For each hmax value, we
randomly generate 25 different topologies for the mesh
network using different random seeds. For each random
topology, the PSC algorithm is executed to form the
clusters. Then each point on the PSC curve is the average
of the 25 samples of number clusters. This way, we can
eliminate the impact of the random topology on the
algorithm performance. We also use the 25 samples to
compute the 95% confidence intervals, which are plotted
as error bars on the PSC curve in Fig. 4, indicating that we
Fig. 4. A tiered network designed using PSC and GEA.
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Fig. 5. PSC performance: number of clusters for various hmax values.
are 95% confident that the number of clusters will fall
within the range of the bars. The confidence intervals are
generally negligible, implying that the PSC performance is
quite stable. As expected, the number of clusters quickly
decreases for increased hmax, and converges to one when
hmax ¼ 20. We also plot the lower bound as given in
Theorem 1. The lower bounding curve lies below the PSC
curve. It can provide a rough estimate for the number of
clusters formed, but it is not very tight for some hmax

values. It would be an interesting future work item to
further tighten this bound.

Finally we examine the computational cost reduction as
given in Theorem 2 and Corollaries 2.1 and 2.2. Let G″DG′
be the subgraph corresponding to A″. We define the
computation reduction ratio as

γ ¼ jVðG′Þj�jVðG″Þj
jVðG′Þj � 100ð%Þ: ð27Þ

A larger ratio implies multiplication of smaller matrices
and larger computation reduction. Fig. 6 shows the reduc-
tion ratios by deleting a node from a 500-node network
and a 1000-node network. It can be seen that deleting a
border nodes results in smaller A″ than deleting a central
node, and more significant reductions can be achieved for
larger networks.

6.2. Topology optimization results

When the clusters are formed, location and degree
information of cluster heads are used as input to GEA
algorithm for optimizing the top tier topology. We assume
that Γth ¼ 0:9, I=I0 ¼ 0:8, and λ¼ 1;550 nm. The link relia-
bility Γij and weight ωij are determined by distance and
weather condition using the FSO channel model. The
distances are computed from cluster head locations. For
weather condition, the index of refraction structure para-
meter C2

n is randomly generated in ½10�16; 10�14�m�2=3.
The typical weather condition is set to C2

n ¼ 10�15 m�2=3.

6.2.1. Small FSO network
We first examined a small network with the same setting

as that in Fig. 4. With cluster diameter bound hmax ¼ 3, the
mesh routers are divided into 26 clusters. The traffic demand
requires that m¼39 FSO edges should be added in the top
tier, and the total degree is ∑26

i ¼ 1Ki ¼ 2 �m¼ 78. We first
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Fig. 6. Computational cost reduction achieved by using the reduced
adjacency matrix A″.
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Fig. 8. Algebraic connectivity for the large network.
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execute the enhanced Prim's algorithm to build a degree
bounded minimum spanning tree, which uses 25 edges. GEA
then iteratively inserts 14 edges to the tree graph.

In Fig. 7, we plot the resulting algebraic connectivity
after each edge is appended. For comparison, we also plot
the upper bound as given in Theorem 3 and the global
optimal values found by an exhaustive search, which is
possible for this small network. We also implement the
distributed GEA algorithm and the simple greedy algo-
rithm, and plot the corresponding algebraic connectivity
curves in the figure.

We find that the upper bound provides a very good
approximation for the global optimum. The GEA curve
overlaps with the global optimal curve for most of the
iterations, except for the 26th, 33rd, 35th, and 38th edge
insertions. When GEA terminates, the upper bounding
algebraic connectivity is 0.6357 and the GEA value is
0.6353, which are all identical to the global optimum.
There is a moderate gap between the centralized GEA
curve and the distributed GEA curve. The distributed GEA
terminates with algebraic connectivity value 0.5698,
which is 89.7% of the global optimal solution. This shows
that the distributed GEA slightly sacrifices the achievable
algebraic connectivity in order to exclude the need for a
centralized entity. Although the simple greedy algorithm
always chooses the link with the best quality to insert and
achieves the largest link weight sum among all the
algorithms, it performs poorly with respect to algebraic
connectivity. The algebraic connectivity achieved by the
simple greedy algorithm is 0.2624, which is 41.3% of the
global optimum.

6.2.2. Large FSO network
We next design a large-sized network deployed in a

6000�6000 m2 area. The PSC algorithm forms 184 clus-
ters, and 326 edges are to be inserted according to the
traffic demand. The unweighted node degree of each node
ranges from 2 to 5. Building the spanning tree uses 183
edges, and the remaining 143 edges are iteratively
appended by GEA.

In Fig. 8, we plot the algebraic connectivity traces as
edges are iteratively inserted. Due to the large network
size, exhaustive search is not feasible. We plot the upper
bound as given in (26) as indicator of the global optimal
solutions. We find the GEA curve overlaps with the upper
bound curve for most of the iterations. When GEA termi-
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Fig. 7. Algebraic connectivity for the small network.
nates, it achieves the same algebraic connectivity value
0.3527 as the upper bound. Clearly, not only the upper
bound is highly tight, the greedy heuristic GEA algorithm
also achieves the global optimum for this large network.
Similarly to the case of small network, the distributed GEA
and simple greedy algorithms also show similar trends. At
the last iteration, the algebraic connectivity of distributed
GEA algorithm is 0.3010, which is 85.3% of the upper
bound. However, the simple heuristic algorithm achieves
an algebraic connectivity value of 0.0413, which is 11.7% of
the upper bound.

Using the same 184-cluster FSO network, we examine
the impact of several network parameters on algebraic
connectivity in Fig. 9, including the minimum node degree
and link weight. The minimum node degree is determined
by the traffic matrix and is an indicator of the network
traffic demand. Link weights are determined by weather
conditions. In Fig. 9(a), we plot algebraic connectivity for
increased minimum node degree. It can be seen that the
three algebraic connectivity curves all increase with the
minimum node degree. This is because a larger minimum
node degree allows more edges to be inserted. According
to Fact 6, algebraic connectivity increases when more
edges are inserted. However, both GEA curves increase
with minimum node degree at a much fast rate than the
simple greedy algorithm curve, indicating their effective-
ness in building well connected graphs.

In Fig. 9(b), we reduce link reliability by certain ratios
and plot the resulting algebraic connectivities. Since link
reliability largely depends on weather condition, this is
equivalent to examine the algorithms under various
weather conditions. As expected, all the three curves
decrease as link reliability is reduced. When link reliability
is reduced by 50%, the GEA algebraic connectivity is
reduced in half, i.e., from 0.3527 to 0.1764. The distributed
GEA value is reduced from 0.3010 to 0.1575, and the simple
greedy algorithm value is constantly low and is reduced
from 0.0413 to 0.0206. Interestingly, choosing the most
reliable edges as in the simple greedy algorithm does not
necessarily provide strongly connected topology with
respect to algebraic connectivity.

6.2.3. Comparison with regular topologies
A natural question that arises at this juncture is “how

about topologies with regular structures?” To answer this
question, we consider grid network deployment, such as
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Fig. 10. Lattice topologies of 20-node networks. (a) Triangle lattice. (b) Square lattice. (c) GEA topology.
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Fig. 11. Algebraic connectivity of lattice networks. (a) Unweighted lattice network. (b) Weighted lattice network.
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the triangular and square lattice networks as shown in
Figs. 10(a) and (b). We assume that each node in the
triangular lattice network can have a fixed degree from 2
to 6, which depends on its location (i.e., center or edge).
Each node in the square lattice network can have a degree
between 2 and 4. We also execute GEA for the same
network deployment and the same number of edges. The
topology designed by GEA is plotted in Fig. 10(c), which
looks quite different from the lattice ones.

How about algebraic connectivity performance? In
Fig. 11, we plot the algebraic connectivity curves for
different network sizes. For comparison, we first assume
that FSO links are not weighted (or, all the links have
identical reliability 1) in Fig. 11(a). We find that lattice
networks are not well connected by the measure of
algebraic connectivity. The algebraic connectivity of the
20-node triangular network is 0.5204, which is only 39.4%
of the corresponding GEA value. For the 56-node square
network, the algebraic connectivity is 0.1522, which is only
32.3% of the corresponding GEA value. This is due to the
fact that algebraic connectivity is determined by various
graph invariants, not only edge/vertex connectivity, but
also graph diameter and minimum degree. In the lattice
networks, nodes only connect to their neighbors, so their
network diameters are usually larger than that of the GEA
topology, indicating smaller algebraic connectivity accord-
ing to inequality (12).

There are several interesting observations to make.
First, algebraic connectivity is a decreasing function of
network size, since a larger network usually has a larger
diameter. Second, it can be seen that the square lattice
network is a subgraph of the triangular lattice network.
According to Fact 6, the triangular lattice network always
has better connectivity than the square lattice network.
Finally, we also considered weighted lattice networks, in
which each FSO can have different weights according to
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the channel model in Section 2.2. The results are plotted in
Fig. 11(b), where similar trends can be observed for the
four curves. However the algebraic connectivity value in
Fig. 11(b) is always lower than the corresponding value in
Fig. 11(a), due to the worse link qualities.

7. Related work

This paper is closely related to the class of network
planning work [28–30,22]. Network planning problems
usually belong to the class of combinatorial optimization
problems, which are NP-hard, and metaheuristics, e.g.,
simulated annealing [29] or genetic algorithms [30,22]
are used to provide sub-optimal solutions. The main
limitations of these approaches are the lack of perfor-
mance guarantees and the relatively high complexity.

This work is also related to FSO research. See excellent
surveys in [7,31]. Major FSO research has focused on the
PHY so far, such as hardware architecture [31] and optical
channel modeling [13]. Recently, there have been several
work on the design [32–34] and (re)configuration
[7,27,35,36] of FSO networks. As in the class of network
planning work, ILPs are usually formulated and various
heuristic algorithms are proposed to provide sub-optimal
solutions. In [33,34], the authors study two generic family
of mesh-based topologies for FSO networks: GPeterNet, a
graph theoretic framework based on the well known
Petersen graph, and FraNtiC, a fractal geometric architec-
ture, for arbitrary access network deployments.

FSO links and traditional RF links are complementary to
each with respect to data rate, interference, robustness,
and range. Several papers have investigated the hybrid RF/
FSO networks for enhanced performance [36–38]. In [37],
genetic algorithms are used to improve the capacity
performance with a minimum number of hybrid FSO/RF
gateways. In [36], the authors propose to adaptively adjust
both transmission power (of RF and FSO transmitters) and
the optical beamwidth, to meet prescribed QoS require-
ments. In [38], the authors investigate radio signal trans-
mission over terrestrial optical wireless channels under a
WiMAX network setting, and provide an outage probabil-
ity analysis. The “pseudo-wired” FSO links are highly
desirable for interference management and security. As
contrast to wired links, the FSO links also allow great
flexibility for adaptive to network dynamics since they are
steerable. In [39], the authors exploit slow-fading FSO
channels and propose an adaptive transmission algorithm
that can adjust transmit power and modulation according
to channel status information feedback. In [40], the
authors propose a fiber-bundle approach for beam steering
to enhance the tolerance of optical link misalignment.

WMNs are known to suffer from capacity and fairness
problems, especially when size grows [4]. A hierarchical
network architecture represents a solution to the scalabil-
ity problem, as observed in wireless sensor networks
[20,5]. In [20], Bandyopadhyay and Coyle present a hier-
archical clustering algorithm for wireless sensor networks
with the objective of energy efficiency. In [9], the authors
study the problem of optimal placement of the gateway
nodes in a WMN and propose a recursive dominating set
(DS) selection algorithm under delay and bandwidth
constraints. Genetic algorithms are used in [22] to improve
the capacity performance with minimum number of
hybrid FSO/RF gateways. A similar approach, using as
wired backend the Passive Optical Network architecture,
has been widely studied under the definition of WOBAN
(Wireless-Optical Broadband Access Networks) [41]. The
main difference here is that, unlike the optical backhaul
network that has a static star topology [41], the FSO links
considered in this paper can be flexibly redirected to form
different topologies in response to weather change or
node/link failures, while the mesh topology of the FSO
network can provide richer connectivity.

Algebraic connectivity is a useful tool from spectral
graph theory [15,19]. It has been used in several papers
as a measure of connectivity [42,43]. In an interesting
work [42], Ghosh and Boyd present an SDP formulation as
well as a greedy perturbation heuristic for adding edges
into existing graph, with the objective to maximize its
algebraic connectivity. In [43], the authors propose a
multi-level algorithm for finding the best locations for a
given set of relays, for enhancing the connectivity of
wireless sensor networks. A standard SDP problem is
formulated and solved in each level.

8. Conclusion

We studied the problem of design and optimization of a
tiered wireless access network. The lower tier mesh net-
work is first partitioned into clusters, and then the
topology of the upper tier FSO network is optimized. The
objective is to maximize connectivity (and thus robust-
ness) while meeting traffic demand and delay require-
ments. We presented a PSC algorithm for cluster formation
and a GEA algorithm for topology optimization, and
derived bounds on their performance. Simulation studies
show that the algorithms are effective for the design and
optimization of the tiered access network, as indicated by
the closeness of their performance to the performance
bounds.
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