Hierarchical & Parameterized VHDL Modeling, Simulation & Synthesis

- Write a parameterized VHDL model for a rising edge-triggered N-bit universal register/counter with following specifications (in order of precedence):
 - Active high reset (RST)
 - Active high clock enable (CE)
 - Two mode control inputs (M1 & M0)
 - See function table for modes of operation

- Simulate & verify design for at least 2 different values of N

- Synthesize, download & verify multiple implementations of design in Spartan 3 FPGA

- Note: during shift register mode $Q_{n-1} \leq D_{n-1}$

<table>
<thead>
<tr>
<th>RST</th>
<th>CE</th>
<th>M1</th>
<th>M0</th>
<th>Q^+</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>$Q_{1}^+ \leq 0$</td>
<td>Reset</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>$Q^+ \leq Q$</td>
<td>Hold</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>$Q_{i+1}^+ \leq Q_{i+1}$</td>
<td>Shift</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>$Q^+ \leq Q+1$</td>
<td>Count</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$Q^+ \leq Din$</td>
<td>Load</td>
</tr>
</tbody>
</table>

C. E. Stroud

ELEC 4200 Lab #5
Parameterized VHDL Register/Counter

• Pre-lab assignment:
 ➢ Write a parameterized VHDL for the register/counter using the specifications on the previous page
 ➢ Write a separate VHDL model for the digital one-shot from Lab#4
 ➢ Write a hierarchical VHDL model that calls and connects the register/counter model and the digital one-shot model
 • Where the output of the digital one-shot drives the clock enable (CE)
 ➢ Determine the values of N you will use for simulation and design verification
 • Explain why you are choosing these values?
 ➢ Determine the FPGA pin numbers you will use for LEDs, push buttons, and/or switches during operation in the FPGA for the various values of N
 • Make a table of these pin numbers and their function
Parameterized VHDL Register/Counter

• Lab exercise Part 1:
 - Show your pre-lab work to the GTA at the beginning of the lab session
 - Simulate and verify your register/counter VHDL design
 • Use at least two different values of N & debug as necessary
 - Simulate and verify your hierarchical model that calls the register/counter and the digital one-shot
 - Synthesize your design for the Spartan-3 PCB using your input pin and output pin assignments
 • Record the number of flip-flops (FFs), LUTs, and slices used
 • Test your circuit using the PCB LEDs, switches, and/or push buttons
 - Demonstrate your working circuit
 - Repeat the exercise with a different value of N
 • Record the number of flip-flops (FFs), LUTs, and slices used
Parameterized VHDL Register/Counter

• Lab exercise Part 2:
 ➢ For each of the following circuits, modify your hierarchical VHDL model, synthesize, download and verify your design for the Spartan-3 PCB using your input pin and output pin assignments
 • Record the number of flip-flops (FFs), LUTs, and slices used
 • Also record the value of N used in the design
 ➢ Circuit #1 – counter (tie M1=1 and M0=0)
 ➢ Circuit #2 – shift register (tie M1=0 and M0=1)
 ➢ Circuit #3 – parallel load register (tie M1=1 and M0=1)
 • Note that RST and CE must still work on all three circuits
 ➢ Demonstrate your working circuits
Parameterized VHDL Register/Counter

- Post-lab: Turn in your lab report at the beginning of the next lab session, including:
 - Verified parameterized VHDL models
 - Simulation results
 - Table of synthesis results
 - for each value of N and each hierarchical implementation
 - #slices, #LUTs, and #FFs/latches
 - Pre-lab work, including
 - FPGA pin numbers and PCB functions used for synthesis
 - A brief explanation of why you chose the values of N you chose for your design verification