Field Programmable Gate Arrays

- Configuration Memory
- Programmable Logic Blocks (PLBs)
- Programmable Input/Output Cells
- Programmable Interconnect

Typical Complexity = 5M – 1B transistors
Basic FPGA Operation

Write Configuration Memory
- Defines system function
 - Input/Output Cells
 - Logic in PLBs
 - Connections between PLBs & I/O cells

Changing configuration memory data => changes system function
- Can change at anytime
 - Even while system function is in operation
 - Run-time reconfiguration (RTR)
Basic PLB Architecture

- Look-up Table (LUT) implements truth table
- Memory elements:
 - Flip-flop/latch
 - Some FPGAs - LUTs can also implement small RAMs
- Carry & control logic implements fast adders/subtractors
A Simple PLB

- Two 3-input LUTs
 - Can implement any 4-input combinational logic function
- 1 flip-flop
 - Programmable:
 - Active levels
 - Clock edge
 - Set/reset
- 22 configuration memory bits
 - 8 per LUT
 - C0-7
 - S0-7
 - 6 controls
 - CB0-7

![Diagram of a simple PLB with LUTs and flip-flops]
Combinational Logic Functions

- Gates are combined to create complex circuits
- Multiplexer example
 - If S = 0, Z = A
 - If S = 1, Z = B
 - Very common digital circuit
 - Heavily used in FPGAs
 - S input controlled by configuration memory bit
 - We’ll see it again
Look-up Tables

- Recall multiplexer example
- Configuration memory holds outputs for truth table
- Internal signals connect to control signals of multiplexers to select value of truth table for any given input value
Look-up Table Based RAMs

- Normal LUT mode performs read operations
- Address decoder with write enable generates clock signals to latches for write operations
- Small RAMs but can be combined for larger RAMs
Example PLB

- 1/4 of a PLB (called a slice) from Xilinx Spartan 3
 - Two 4-input Look-Up Tables (LUTs)
 - Can perform any combinational logic function of up to 4 inputs
 - Can function as small RAM (16x1-bit) or shift register (up to 16-bit)
 - Two D-type flip-flops
 - Programmable as level sensitive latches
 - Programmable clock edge, clock enable, set/reset
 - Extra logic
 - Fast carry for adders
 - MUXs for Shannon expansion
 - And more
Spartan 3 PLB Slices
Interconnect Network

• Wire segments of varying length
 – $xN = N$ PLBs in length
 • 1, 2, 4, 6, and 8 are most common
 – $xH = \text{half the array in length}$
 – $xL = \text{length of full array}$

• Programmable Interconnect Points (PIPs)
 • Also known as Configurable Interconnect Points (CIPs)
 – Transmission gate connects to 2 wire segments
 – Controlled by configuration memory bit
 • 0 = wires disconnected
 • 1 = wires connected
PIPs

- **Break-point PIP**
 - Connect or isolate 2 wire segments
- **Cross-point PIP**
 - Turn corners
- **Compound cross-point PIP**
 - Collection of 6 break-point PIPs
 - Can route to two isolated signal nets
- **Multiplexer PIP**
 - Directional and buffered
 - Select 1-of-N inputs for output
 - Decoded MUX PIP – N config bits select from 2^N inputs
 - Non-decoded MUX PIP – 1 config bit per input
PLB consists of 4 slices over 2,400 PIPs mostly MUX PIPs. The switch matrix consists of x6 wire segments, x2 wire segments, xH & xL wire segments, over 450 total wire segments in PLB.
Input/Output Cells

• Bi-directional buffers
 – Programmable for input or output
 – Tri-state control for bi-directional operation
 – Flip-flops/latches for improved timing
 • Set-up and hold times
 • Clock-to-output delay
 – Pull-up/down resistors

• Routing resources
 – Connections to core of array

• Programmable I/O voltage & current levels
FPGAs

• Recent trend - incorporate specialized cores
 – RAMs – single-port, dual-port, FIFOs
 • 128 bits to 36K bits per RAM
 • 4 to 575 per FPGA
 – DSPs – 18x18-bit multiplier, 48-bit accumulator, etc.
 • up to 512 per FPGA
 – Microprocessors and/or microcontrollers
 • up to 2 per FPGA
 – Hard core processor
 • Support soft core processors
 – Synthesized from HDL into programmable resources
Specialized Cores

Virtex and Spartan II

Virtex II and Spartan 3

4K-bit RAMs

18K-bit RAMs and 18×18-bit multipliers

RAMs/multipliers

2S15 2S30 2S50 2S100 2S150 2S200 2V40 2V80 2V250 2V500 2V1000 2V1500 2V2000 2V4000 2V6000 2V8000 2VP2 2VP4 2VP7 2VP20 2VP40 2VP50 2VP70 2VX100
Spartan 3 Programmable RAMs

- 18 Kbit dual-port RAM
- Each port independently configurable as
 - 512 words x 36 bits
 - 32 data bits + 4 parity bits
 - 1K words x 18 bits
 - 16 data bits + 2 parity bits
 - 2K words x 9 bits
 - 8 data bits + 1 parity bit
 - 4K words x 4 bits (no parity)
 - 8K words x 2 bits (no parity)
 - 16K words x 1 bit (no parity)
- Each port has independently programmable
 - clock edge
 - active levels for write enable, RAM enable, reset
Spartan 3 (XC3S200)

- PLBs = 24 rows x 20 columns = 480
 - 4 slices/PLB
 - 2 L slices
 - L = logic
 - 2 M slices
 - M = memory
- RAMs = 12
 18Kbit dual port RAMs
- Multipliers = 12
 18x18-bit signed
Ranges of Resources

<table>
<thead>
<tr>
<th>FPGA Resource</th>
<th>Small FPGA</th>
<th>Large FPGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLBs per FPGA</td>
<td>256</td>
<td>25,920</td>
</tr>
<tr>
<td>LUTs and flip-flops per PLB</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Routing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wire segments per PLB</td>
<td>45</td>
<td>406</td>
</tr>
<tr>
<td>PIPs per PLB</td>
<td>139</td>
<td>3,462</td>
</tr>
<tr>
<td>Specialized Cores</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bits per memory core</td>
<td>128</td>
<td>36,864</td>
</tr>
<tr>
<td>Memory cores per FPGA</td>
<td>16</td>
<td>576</td>
</tr>
<tr>
<td>DSP cores</td>
<td>0</td>
<td>512</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input/output cells</td>
<td>62</td>
<td>1,200</td>
</tr>
<tr>
<td>Configuration memory bits</td>
<td>42,104</td>
<td>79,704,832</td>
</tr>
</tbody>
</table>
Xilinx FPGAs

- Virtex and Spartan 2
 - Array of 96 to 6,144 PLBs
 - 4 LUTs/RAMs (4-input)
 - 4 FF/latches
 - 4 to 32 4K-bit dual-port RAMs
- Virtex II, Virtex II Pro
 - Array of 352 to 11,204 PLBs
 - 8 LUTs/RAMs (4-input)
 - 8 FF/latches
 - 12 to 444 18K-bit dual-port RAMs
 - 12 to 444 18×18-bit multipliers
 - 0 to 2 PowerPC processor cores
- Virtex 4
 - Array of 1,536 to 22,272 PLBs
 - 4 LUTs/RAMs (4-input)
 - 8 FF/latches
 - 48 to 552 18K-bit dual-port RAMs
 - Also operate as FIFOs
 - 32 to 512 DSP cores include:
 - 0 to 2 PowerPC processor cores
- Spartan 3
 - Array of 192 to 8,320 PLBs
 - 4 LUTs/RAMs (4-input)
 - 4 LUTs (4-input)
 - 8 FF/latches
 - 480–3S200
 - 4 to 104 18K-bit dual-port RAMs
 - 4 to 104 18×18-bit multipliers