ELEC 2200 Digital Logic Circuits
Charles E. Stroud, Professor
Dept. of Electrical & Computer Engineering
Office: 325 Broun Hall
Email: cestroud@eng.auburn.edu

Text: Digital Logic Circuit Analysis & Design
Nelson, Nagle, Irwin & Carroll, Prentice Hall, ‘95
Class web page: www.eng.auburn.edu/~strouce
Some Basic Digital System Concepts

• Levels of design abstraction & hierarchy
 – System (behavioral) level – highest level
 – Register level – widely used for design in industry today
 – Gate level – level we will deal with most in this class
 – Transistor level – lowest level

• Top-down design
 – Begins at system level & moves toward transistor level
 • Typical way complex digital systems are designed in industry
 – CAD tools can synthesize lower levels of design abstraction from higher level descriptions
 • So what is the point of logic design?
 – CAD tools are not a magic wand, they don’t design the circuit for you!
Example of Digital System Design

- The integrated circuit design process
Hierarchical System Design

• Hierarchy is everywhere
 – Systems consist of units
 – Units consist of printed circuit boards (PCBs)
 – PCBs consist of integrated circuits (ICs)
 – ICs consist of logic gates
 – Logic gates consist of transistors

• Allows us to partition big designs into manageable components

• Once the circuit design works, why redesign it?
 – Instead, reuse it through hierarchical design
 – Reduces design time and design errors
Analog vs. Digital Systems

• Analog
 – Continuous time-varying voltages and/or currents
 – Basic elements of analog circuits:
 • Resistors
 • Capacitors
 • Inductors
 • Transistors

• Digital
 – Discrete signals sampled in time
 – Two possible values
 • 0V, low, false (logic 0)
 • 5V, high, true (logic 1)
 – Basic elements of digital circuits:
 • Logic gates: AND, OR, NOT
Elementary Logic Gates

Name
- Inverter (NOT Gate)

Symbol

Truth Table

<table>
<thead>
<tr>
<th>In</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Logic Equation
- Out = In’

AND Gate

<table>
<thead>
<tr>
<th>In 1</th>
<th>In 2</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Logic Equation
- Out = In1 • In2

OR Gate

<table>
<thead>
<tr>
<th>In 1</th>
<th>In 2</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Logic Equation
- Out = In1 + In2
Advantages of Digital Systems

- Reproducible results
- Relative ease of design
- Flexibility and functionality
- High speed
- Small size
- Low cost
- Low power
- Steadily advancing technology
- Programmable logic devices
Digital Systems

• Most general model of a digital system
 – Often referred to as *General Sequential Logic*
 • aka *Huffman model*
 – Consists of:
 • Combinational logic
 – Performs logical operations
 • Memory elements
 – Stores data
 • These two items will be the focus of this course
 – Beginning with combinational logic
Stored Program Digital Computer

- Good example of a digital system
- Basic architecture consists of:
 - CPU
 - Control Unit
 - ALU
 - Memory
 - Input/Output (I/O) Devices

![Diagram of a digital computer system]

Central Processing Unit (CPU)

Control Unit

Arithmetic Logic Unit (ALU)

Memory

I/O Devices
Stored Program Digital Computer

Memory:
- Program Memory (MEM)
- Data Register (DR)

I/O Devices:
- Input Register (IN)
- Output Register (OR)

Arithmetic-Logic Unit:
- Arithmetic/Logic Unit (ALU)
- Accumulator (AC)
- ALU Carry Register (C)

Control Unit:
- Program Counter (PC)
- Address Register (AR)
- Instruction Register (IR)
- Timing Counter (TC)
- Control Logic
Stored Program Digital Computer

Sequential Logic:
- Program Memory (MEM)
- Program Counter (PC)
- Address Register (AR)
- Data Register (DR)
- Input Register (IN)
- Output Register (OR)
- Accumulator (AC)
- ALU Carry Register (C)
- Instruction Register (IR)
- Timing Counter (TC)

Combinational Logic:
- Control Logic
- Arithmetic/Logic Unit (ALU)
- Multiplexers 1&2 (MUX)
Digital Computer Basic Operation

• Consists of a series of instructions cycles, each consisting of:
 – Fetch
 • Fetch instruction from Program Memory (MEM) to Data Register (DR)
 – Decode
 • Pass instruction from DR to Instruction Register (IR) and decode using Control Logic
 – Execute
 • Perform operations decoded by Control Logic such as:
 – Get operands from MEM or Input Register (IN)
 – Arithmetic/logic operations
 – Store results in MEM or Output Register (OR)