VLSI Power Estimation & Dual-Transition Glitch Filtering in Probabilistic Simulation

Fei Hu
Department of ECE,
Auburn University, AL 36849
Outline

- **Introduction**
 - Levels of power estimation techniques

- **Gate-level Probabilistic Approach**
 - Signal Probability
 - Transition probability
 - Transition density
 - Probability waveform

- **Dual-transition glitch filtering**
 - Idea and examples
 - Detailed algorithm
 - Experimental results

- **Summary**
Introduction

- Power estimation is critical to IC (low power) design
 - Total power consumption must be estimated during the design phase.
 - Helps identifying hot-spot on the chip, useful for thermal design
- Levels of power estimation
 - Transistor Level
 - Gate Level
 - RTL Level
 - Behavior Level
 - Software Level
- Two approaches
 - Simulation based
 - Non-simulative
Simulation based approach

- Transistor Level Simulation
 - Circuit level
 - SPICE
 - Solving a large matrix of node current using KCL
 - Components - Resistor, capacitor, inductors, current sources and voltage sources.
 - Diodes and transistors are modeled by basic components
 - PowerMill
 - Table based device model
 - Event driven timing simulation
 - 2-3 orders of magnitude faster than Spice
Simulation based approach

- **Switch level**
 - Transistor as a on-off switch with a resistor
 - Short circuit power - observing the time in which the switches form a power-ground path

- **Gate Level Simulation**
 - Components - logic gates
 - Logic simulation to find switching activity, \(P = \frac{1}{2}CV^2f_{\text{active}} \)
 - Monte Carlo simulation, statistical method
 - Each sample has \(N \) Random input vector
 - Energy consumption has a normal distribution
 - Stopping criterion derived from sample average and sample standard deviation
Simulation based approach

- RTL level simulation
 - Components - register, adder, multiplier, etc.
 - Macro-modeling of each component based on simulation
 - Simulating the component with random input
 - Fitting a multi-variable regression curve (power macro model equation) using a least mean square error fit.
 - RT-level simulation collect input statistics of each module
High level estimation

- Behavior level estimation
 - No much information about gate level structure of design component
 - Information theoretic models
 - Average switching activity for each line is approximated by $\frac{1}{2}$ its entropy
 - Total capacitance estimated based on output entropy
 - Complexity based models, “equivalent gate”

- Software level estimation
 - Energy consumption by a application program
 - Instruction level power macro-modeling
 - Profile-driven program synthesis with RT level simulation
Non-simulative approach

- Gate level probabilistic approach
 - Concepts
 - Signal Probability
 - Transition probability
 - Transition density
 - Probability waveform
 - Factors in building up a model
 - Spatial, temporal correlation
 - Zero delay or real delay (glitch power)
 - With or w/o glitch filtering
Gate level probabilistic approach - concepts

○ Signal Probability
 ● $P_s(x)$, the fraction of clock cycles in which the steady-state value of signal x is high
 ● Spatial independence, the logic value of an input node is independent of the logic value of other input nodes
 ● Under spatial independence
 ○ Inverter: $c=a$, $P_s(c)=1-P_s(a)$
 ○ AND gate: $c=ab$, $P_s(c)=P_s(a)P_s(b)$
 ○ OR gate: $c=a+b$, $P_s(c)=1-[1-P_s(a)][1-P_s(b)]$

○ Signal correlation
 ● $P_s(x_1,x_2)=P_s(x_1)P_s(x_2)W_{x_1,x_2}$
Signal probability with spatial correlation

- **Global OBDD**
 - Ordered binary decision diagram corresponding to the global function of a node (function of node in terms of circuit input)
 - Give exact signal correlation
 - Example, function $y = x_1x_2 + x_1x_3$

$P_s(y) = P_s(x_1)P_s(f_{x_1}) + P_s(x_1)P_s(f_{x_1})$

- Traversal from bottom to top to derive signal probability
Gate level probabilistic approach - concepts

- Transition probability
 - $P_t(x)$, average fraction of clock cycles in which the steady state value of x is different from its initial value
 - Temporal independence, the signal value of a node at current clock cycle is independent to its signal value at previous clock cycles
 - Under temporal independence assumption
 - $P_t(x) = 2P_s(x)[1 - P_s(x)]$

- Transition correlation
 - Zero delay assumption, lag one markov chain
 - $TC_{xy}(ij,mn) = P(x_{i->j},y_{m->n}) / P(x_{i->j})P(y_{m->n})$ where $i,j,m,n \in \{0,1\}$
Gate level probabilistic approach - concepts

○ Transition density
 ● $D(x)$, average number of transitions a logic signal x makes in a unit time (one clock cycle)
 ● Boolean difference, if y is a function depending on x then
 \[\frac{\partial y}{\partial x} = y|_{x=1} \oplus y|_{x=0} \]

 and
 \[D(y) = \sum_{i=1}^{n} P(\frac{\partial y}{\partial x_i})D(x_i) \]
 ● Assume no two signal transit simultaneously.
 ● Assume spatial independence
 ● Glitch power included w/o glitch filtering effect
Gate level probabilistic approach - concepts

- Probabilistic simulation
 - Probability waveform, a sequence of signal probability and transition probability over signal transition interval
 - Real delay model, spatial independence
 - Transition density, sum of transition probabilities
 - Our refined definitions
 - **Signal probability** $s_{p_n}(t)$, probability of node n having logic 1 at time t
 - **Transition probability** $P^s_{n}(t)$, probability that node n has a logic transition state s ($s \in \{00, 01, 10, 11\}$) at time t
 - Properties: $s_{p_n}(t-) = P^{10}_{n}(t) + P^{11}_{n}(t)$, $s_{p_n}(t+) = P^{01}_{n}(t) + P^{11}_{n}(t)$
Probability waveform

- An example
Probability waveform propagation

○ AND gate, $c=ab$

\[P_{c}^{01}(t_{1}) = P_{a}^{01}(t_{1})P_{b}^{01}(t_{1}) + P_{a}^{01}(t_{1})P_{b}^{11}(t_{1}) + P_{a}^{11}(t_{1})P_{b}^{01}(t_{1}) \]
\[= 0.1 \times 0.1 + 0.1 \times 0.3 + 0.3 \times 0.1 \]
\[= 0.07 \]

\[P_{c}^{10}(t_{1}) = P_{a}^{10}(t_{1})P_{b}^{10}(t_{1}) + P_{a}^{10}(t_{1})P_{b}^{11}(t_{1}) + P_{a}^{11}(t_{1})P_{b}^{10}(t_{1}) \]
\[= 0.2 \times 0.2 + 0.2 \times 0.3 + 0.3 \times 0.2 \]
\[= 0.16 \]

\[P_{c}^{11}(t_{1}) = sp_{c}(t_{1}+) - P_{c}^{10}(t_{1})+ = 0.25 - 0.16 = 0.09 \]

\[sp_{c}(t_{1}+) = P_{c}^{01}(t_{1}) + P_{c}^{11}(t_{1}) = 0.07 + 0.09 = 0.16 \]
Tagged Probabilistic Simulation

- Partition of probability waveform according to the steady state signal values, \(w^{00}_{n}, w^{01}_{n}, w^{10}_{n}, w^{11}_{n} \)
- Approximate exact spatial correlations with the macroscopic spatial correlations between steady state signal values (tags)

\[
\omega_{a,b}^{xy,wz} = \frac{P(w^{xy}_{a} \land w^{wz}_{b})}{P(w^{xy}_{a})P(w^{wz}_{b})}
\]

- Glitch filtering effect attempted
Tagged probability waveform

○ Definitions
 ● Signal probability, $sp_{n,xy}^n(t)$, probability of node n having logic 1 at time t on waveform $w_{n,xy}^n$. $x,y \in \{0,1\}$
 ● Transition probability, $Ps_{n,xy}^n(t)$, probability that node n has a logic transition state s ($s \in \{00,01,10,11\}$) at time t on waveform $w_{n,xy}^n$

○ Propagation of waveform
 ● Similar to untagged waveform
 ○ Two input gates, 16 joint tagged waveform combined to 4 output waveform
 ● For an two inputs AND gate, $c=ab$

\[
P_{c,(xy,wz)}^{01}(t+d) = (P_{a,xy}^{01}(t)P_{b,wz}^{11}(t) + P_{a,xy}^{01}(t)P_{b,wz}^{01}(t) + P_{a,xy}^{11}(t)P_{b,wz}^{01}(t))\omega_{xy,wz}
\]

\[
P_{c,(xy,wz)}^{10}(t+d) = (P_{a,xy}^{10}(t)P_{b,wz}^{11}(t) + P_{a,xy}^{10}(t)P_{b,wz}^{10}(t) + P_{a,xy}^{11}(t)P_{b,wz}^{10}(t))\omega_{xy,wz}
\]

where $x,y,w,z \in \{0,1\}$
New glitch filtering method

- Original glitch filtering scheme in TPS
 - If pulse width less than gate inertial delay d, it is subject to glitch filtering
 - Example, two input AND gate for time $t1$ for all $t2$, where $t2-t1<d$
 \[
 p_{01}^{c,(xy,wz)}(t1+d) = p_{01}^{a,xy}(t1) p_{10}^{b,wz}(t2) \omega_{a,b}^{xy,wz} \\
 p_{10}^{c,(xy,wz)}(t2+d) = p_{01}^{a,xy}(t1) p_{10}^{b,wz}(t2) \omega_{a,b}^{xy,wz}
 \]
- Limitations
 - Imprecise, not an accurate description of glitch
 - Can’t filter glitch coming from single input
Original glitch filtering in TPS

\[t_1 < t_2 < t_3 < t_1 + d \]

Actual waveform

TPS Glitch filtering
New glitch filtering method

- Dual-transition probability
 - Find the exact condition for a pulse, knowing that each signal has 4 possible state at t1, t2
 - In probability waveform

\[
P_{01,10}(t_1,t_2) = P\{c \text{ is } 0 \rightarrow 1 \text{ at } t_1 \text{ and } 1 \rightarrow 0 \text{ at } t_2\}
\]

\[
= P\{(a,b) \text{ at } t_1 \text{ is } (01,11) \text{ or } (11,01) \text{ or } (01,01) \text{ and } (a,b) \text{ at } t_2 \text{ is } (10,11) \text{ or } (11,10) \text{ or } (10,10)\}
\]
Dual-transition probability

- $P_{01,10}^{c}(t_1,t_2)$ is a sum of 9 product terms
 - Example term: $P_{01,10}^{a}(t_1,t_2)P_{11,11}^{b}(t_1,t_2)$
Dual-transition probability

- In TPS, use macroscopic spatial correlations to approximate spatial correlations

\[P_{c,(xy,wz)}^{01,10}(t_1 + d, t_2 + d) = \sum_{i=1}^{3} \sum_{j=1}^{3} P_{a,xy}^{sa_i,sa_j}(t_1, t_2) P_{b,wz}^{sb_i,sb_j}(t_1, t_2) \omega_{a,b}^{xy,wz} \]

\[(sa_i, sb_i) \in \{(01,11), (11,01), (01,01)\}\]

\[(sa_j, sb_j) \in \{(10,11), (11,10), (10,10)\}\]

\[x, y, w, z \in \{0,1\}\]
New glitch filtering method

- Dual-transition glitch filtering
 - If pulse width less than gate inertial delay d, it is subject to glitch filtering
 - For a two input AND gate for time t_1
 for all t_2, where $t_2-t_1<d$

$$p_{01}^{c,(xy,wz)}(t_1) = p_{01,10}^{c,(xy,wz)}(t_1,t_2)$$
$$p_{10}^{c,(xy,wz)}(t_2) = p_{01,10}^{c,(xy,wz)}(t_1,t_2)$$

$$p_{10}^{c,(xy,wz)}(t_1) = p_{10,01}^{c,(xy,wz)}(t_1,t_2)$$
$$p_{01}^{c,(xy,wz)}(t_2) = p_{10,01}^{c,(xy,wz)}(t_1,t_2)$$
Dual-transition glitch filtering

t_1 < t_2 < t_3 < t_1 + d

\[
P_{c,11}^{10,01}(t_i', t_{i'}') = 0.2 \times 0.3 + 0... + 0 = 0.06
\]

\[
P_{c,11}^{10,01}(t_2', t_3') = 0.2 \times 0.3 + 0... + 0 = 0.06
\]

\[
P_{c,11}^{10,01}(t_1', t_3') = 0.2 \times 0.2 + 0... + 0 = 0.04
\]
Dual-transition probability propagation

- **Dual-transition probability**
 - Propagated from primary inputs towards output
 - General equation
 \[
 P_{sc_1,sc_2}^{x,y,w}(t_1 + d, t_2 + d) = \sum_{i=1}^{k} \sum_{j=1}^{l} P_{sa_1,sa_2}^{x,y}(t_1, t_2) P_{sb_1,sb_2}^{x,y}(t_1, t_2) \omega_{a,b}^{x,y,wz}
 \]
 - For primary inputs, transition only occur at time 0
 - \(P_{sn_1,sn_2}^{x,y}(0, t) = P_{sn_1}^{x,y}(0) \) if \(sn_1, sn_2 \) is a valid sequence of state,
 - e.g. \(P_{11}^{01,11}(0, t) = P_{11}^{01}(0) \)
 - Otherwise, \(P_{sn_1,sn_2}^{x,y}(0, t) = 0 \)
Update dual-transition probability

- No two transition can occur within gate delay \(d \) after the filtering.
- Dual-transition correlation coefficient
 \[
 \omega_{n,xy}^{sn1,sn2}(t_1,t_2) = \frac{P_{n,xy}^{sn1,sn2}(t_1,t_2)}{P_{n,xy}^{sn1}(t_1)P_{n,xy}^{sn2}(t_2)}
 \]

- After the filtering
 - If \(t_2-t_1<d \),
 - \(P_{n,xy}^{01,10}(t1,t2) \), \(P_{n,xy}^{10,01}(t1,t2) \) set to 0
 - \(P_{n,xy}^{01,11}(t1,t2) \) set to \(P_{n,xy}^{01}(t1) \)
 - Otherwise
 - Update
 \[
 P_{n,xy}^{sn1,sn2}(t_1,t_2) = P_{n,xy}^{sn1}(t_1)P_{n,xy}^{sn2}(t_2)\omega_{n,xy}^{sn1,sn2}(t_1,t_2)
 \]
 where \(P_{n,xy}^{sn1}(t1) \), \(P_{n,xy}^{sn2}(t2) \) are transition probability after the filtering.
Experimental results

- Dual-transition glitch filtering is implemented in both probabilistic simulation and TPS
 - ProSim+DT
 - TPS+DT
- Stand alone software implemented in C++
 - Input - circuit netlist, signal probabilities
 - Output – power (transition density) for each node and the total power
- Results compared to event driven logic simulation
 - Assuming spatial and temporal independence for primary inputs
 - 40,000 randomly generated vectors
- Steady state signal probability and macroscopic correlations are obtained from a zero delay simulator
Experimental results

- Small tree structure circuit
 - No spatial correlations
 - Arbitrarily specified delay
 - Input signal probability = 0.5
 - $P_{\text{switching}}$, switching power in terms of transition density D_x
Experimental results – tree circuit

<table>
<thead>
<tr>
<th>Nd</th>
<th>Logic Sim.</th>
<th>ProSim</th>
<th>ProSim+DT</th>
<th>TPS</th>
<th>TPS+DT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P_{switch} (D_x)</td>
<td>P_{switch} (D_x)</td>
<td>Err. (%)</td>
<td>P_{switch} (D_x)</td>
<td>Err. (%)</td>
</tr>
<tr>
<td>26</td>
<td>0.491</td>
<td>0.563</td>
<td>14.6</td>
<td>0.492</td>
<td>0.3</td>
</tr>
<tr>
<td>27</td>
<td>0.564</td>
<td>0.563</td>
<td>0.2</td>
<td>0.563</td>
<td>0.2</td>
</tr>
<tr>
<td>28</td>
<td>0.489</td>
<td>0.563</td>
<td>15.0</td>
<td>0.492</td>
<td>0.6</td>
</tr>
<tr>
<td>29</td>
<td>0.434</td>
<td>0.453</td>
<td>4.4</td>
<td>0.432</td>
<td>0.4</td>
</tr>
<tr>
<td>30</td>
<td>0.450</td>
<td>0.593</td>
<td>31.8</td>
<td>0.455</td>
<td>1.0</td>
</tr>
<tr>
<td>31</td>
<td>0.351</td>
<td>0.453</td>
<td>29.1</td>
<td>0.339</td>
<td>3.2</td>
</tr>
<tr>
<td>32</td>
<td>0.450</td>
<td>0.593</td>
<td>31.8</td>
<td>0.455</td>
<td>1.0</td>
</tr>
<tr>
<td>33</td>
<td>0.263</td>
<td>0.375</td>
<td>42.4</td>
<td>0.256</td>
<td>2.8</td>
</tr>
</tbody>
</table>
Experimental results – tree circuit

- Observations
 - ProSim gives large error because it neglects glitch filtering at nodes 26, 28, 30, 31
 - Original TPS gives large error at node 30, 31 because of inaccurate glitch filtering
 - For tree structure circuit, ProSim+DT and TPS+DT has similar accuracy because there is no spatial correlations
Experimental results – benchmark circuits

- ISCAS 85’ benchmark circuits
- Input signal probability 0.5
- Gate delay is proportional to number of fanouts
- Error statistics
 - E_{avg}, average node error, percentage error with respect to average node power obtained from logic simulation
 - σ, standard deviation of node errors
 - E_{tot}, percentage error of total power
- Results from ProSim+DT, TPS, TPS+DT are compared with logic simulation results
Experimental results – benchmark circuits

<table>
<thead>
<tr>
<th>Circuits</th>
<th>ProSim+DT</th>
<th>TPS</th>
<th>TPS+DT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E_{avg} (%)</td>
<td>σ(%)</td>
<td>E_{tot} (%)</td>
</tr>
<tr>
<td>c17</td>
<td>5.8</td>
<td>7.8</td>
<td>0.7</td>
</tr>
<tr>
<td>c432</td>
<td>14.7</td>
<td>17.3</td>
<td>8.5</td>
</tr>
<tr>
<td>c499</td>
<td>6.2</td>
<td>11.6</td>
<td>6.6</td>
</tr>
<tr>
<td>c880</td>
<td>11.2</td>
<td>18.3</td>
<td>7.3</td>
</tr>
<tr>
<td>c1355</td>
<td>16.8</td>
<td>21.5</td>
<td>18.3</td>
</tr>
<tr>
<td>c1908</td>
<td>21.9</td>
<td>33.8</td>
<td>19.7</td>
</tr>
<tr>
<td>c2670</td>
<td>20.6</td>
<td>29.7</td>
<td>15.0</td>
</tr>
<tr>
<td>c3540</td>
<td>16.6</td>
<td>36.3</td>
<td>10.0</td>
</tr>
<tr>
<td>c5315</td>
<td>20.2</td>
<td>40.1</td>
<td>17.2</td>
</tr>
<tr>
<td>c6288</td>
<td>29.6</td>
<td>29.9</td>
<td>26.4</td>
</tr>
<tr>
<td>c7552</td>
<td>21.6</td>
<td>39.9</td>
<td>16.4</td>
</tr>
<tr>
<td>Avg.</td>
<td>16.6</td>
<td>25.6</td>
<td>13.1</td>
</tr>
<tr>
<td>Max.</td>
<td>29.6</td>
<td>40.1</td>
<td>26.4</td>
</tr>
</tbody>
</table>
Experimental results – benchmark circuits

- **Observations**
 - ProSim+DT gives large error because it neglects spatial correlations
 - TPS+DT has up to 29% improvement on E_{tot}
 - c432, c1355, c6288 contains a large component of glitch power
 - Estimation accuracy is improved due to the new glitch filtering method
 - TPS+DT gives a more consistent estimation in terms of average and maximum errors
 - TPS+DT gives larger error for certain circuits
 - Estimation accuracy is jointly decided by TPS and DT
 - Effectiveness of DT is limited by the inherent errors in TPS
Experimental results – computation cost

- TPS+DT is 2-3 times faster than the logic simulation over all input vectors.
- ProSim+DT is 20-30 times faster than the logic simulation.
- Original TPS is 2 order of magnitude faster than logic simulation.
- TPS+DT is much slower due to the propagation of dual-transition probabilities.
- ProSim+DT is faster since it only has one probability waveform for each node.
 - Idea for tree structure circuit where no spatial correlation exists.
Summary

- Intro. to different Levels of power estimation
- Gate-level Probabilistic Approach
 - Signal Probability, Transition probability, Transition density
 - Probabilistic simulation, tagged probabilistic simulation
- A improved glitch filtering method
 - A new concept of dual-transition probability
 - Can be applied to both probabilistic simulation and Tagged probabilistic simulation
 - Enhanced TPS achieves a more accurate and consistent estimation, with up to 29% improvement on estimation accuracy
 - Accuracy and computation cost needs to be improved
Recent works

- Some more improvements on estimation accuracy is obtained

<table>
<thead>
<tr>
<th>Circuits</th>
<th>TPS</th>
<th>TPS+DT</th>
<th>New method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E_{avg} (%)</td>
<td>σ (%)</td>
<td>E_{tot} (%)</td>
</tr>
<tr>
<td>c17</td>
<td>2.3</td>
<td>2.6</td>
<td>0.1</td>
</tr>
<tr>
<td>c432</td>
<td>29.9</td>
<td>38.8</td>
<td>35.8</td>
</tr>
<tr>
<td>c499</td>
<td>6.8</td>
<td>14.0</td>
<td>7.0</td>
</tr>
<tr>
<td>c880</td>
<td>8.3</td>
<td>15.3</td>
<td>1.6</td>
</tr>
<tr>
<td>c1355</td>
<td>24.2</td>
<td>31.6</td>
<td>32.9</td>
</tr>
<tr>
<td>c1908</td>
<td>15.0</td>
<td>23.1</td>
<td>4.1</td>
</tr>
<tr>
<td>c2670</td>
<td>16.6</td>
<td>29.8</td>
<td>7.2</td>
</tr>
<tr>
<td>c3540</td>
<td>13.8</td>
<td>26.3</td>
<td>9.8</td>
</tr>
<tr>
<td>c5315</td>
<td>11.8</td>
<td>24.4</td>
<td>2.3</td>
</tr>
<tr>
<td>c6288</td>
<td>27.4</td>
<td>27.5</td>
<td>32.1</td>
</tr>
<tr>
<td>c7552</td>
<td>14.5</td>
<td>27.5</td>
<td>3.2</td>
</tr>
<tr>
<td>Avg.</td>
<td>15.5</td>
<td>23.7</td>
<td>12.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>E_{avg} (%)</th>
<th>σ (%)</th>
<th>E_{tot} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c17</td>
<td>2.3</td>
<td>2.6</td>
<td>0.1</td>
</tr>
<tr>
<td>c432</td>
<td>29.9</td>
<td>38.8</td>
<td>35.8</td>
</tr>
<tr>
<td>c499</td>
<td>6.8</td>
<td>14.0</td>
<td>7.0</td>
</tr>
<tr>
<td>c880</td>
<td>8.3</td>
<td>15.3</td>
<td>1.6</td>
</tr>
<tr>
<td>c1355</td>
<td>24.2</td>
<td>31.6</td>
<td>32.9</td>
</tr>
<tr>
<td>c1908</td>
<td>15.0</td>
<td>23.1</td>
<td>4.1</td>
</tr>
<tr>
<td>c2670</td>
<td>16.6</td>
<td>29.8</td>
<td>7.2</td>
</tr>
<tr>
<td>c3540</td>
<td>13.8</td>
<td>26.3</td>
<td>9.8</td>
</tr>
<tr>
<td>c5315</td>
<td>11.8</td>
<td>24.4</td>
<td>2.3</td>
</tr>
<tr>
<td>c6288</td>
<td>27.4</td>
<td>27.5</td>
<td>32.1</td>
</tr>
<tr>
<td>c7552</td>
<td>14.5</td>
<td>27.5</td>
<td>3.2</td>
</tr>
<tr>
<td>Avg.</td>
<td>15.5</td>
<td>23.7</td>
<td>12.4</td>
</tr>
</tbody>
</table>
Questions?

For questions and comments, please contact me at
href="hufeih01@auburn.edu"