Announcements

- Take box, transmitter (with batteries!), and receiver to lab this week
- Preliminary design report due at Lab 9 (next Friday). See web site.
- IEEE Meeting – Eaton, Mon., 10/13, 5:40 PM in 238 Broun -- free pizza

Preliminary Design Report

- 5% of grade
- Team receives one grade. Individual contributions will be weighted at the end of the semester.
- Format is up to you.
- Length depends on what you have to say. Be thorough, but don’t ramble.

Content of Report

- Describe first choice of all design elements.
 » resistors for voltage regulator
 » body
 » battery type, connectors
 » driving strategy
 » others?
- Justify your choices in relation to specs.
- Explain any disadvantages, and why you’ll tolerate them.
- Include supporting drawings, figures, and tables.

Preliminary Report Grading

1. Discussion of design alternatives (50%)
2. Supporting documentation for chosen design (25%)
3. Overall readability (15%)
4. Grammar (10%)

This report should help you begin to think through basic issues and get started.

Grades

- Nuck L. Head
 » 3/4 on all labs, quizzes through #5 => 75 avg
 » 3/4 on all but one, zero on one lab => 65 avg
- Goo D. Tewshuse
 » 4/4 on all labs, 3/4 on all quizzes => 88 avg

>> Turn in all labs.
>> Read the book before class, and review notes.

Engineering Visuals

- Engineering visuals can be used for one of two primary purposes:
 » design
 » reporting/documentation
Visuals for Design

- A visual system description can aid in assessing feasibility or be used in simulation
 - PSpice -- circuit can easily be visualized as well as simulated
 - CAD -- treats parts as objects and can be used to construct assemblies to be machined

Visuals for Reporting

- These visuals are not intended to be used to build a device. Instead, they are used to inform another party about your engineering work, for example, to:
 - document the operation of a device
 - report to your boss
 - tutor other engineers
 - demonstrate feasibility to investors

Is a Picture Worth a Thousand Words?

- The definitive answer -- it depends!
- It depends:
 - on what you’re trying to communicate.
 - on who your audience is.
 - on how reliable the picture is! (Yes, the camera does sometimes lie.)

Pictures vs. Words

- Words are good for abstractions and logical relationships:
 - why
 - cause & effect
 - values
- Words provide an interpretation.
- Words require greater mental engagement.
- Words communicate serially

- Figures are good for spatial relationships:
 - maps
 - dimensions
- Figures convey more raw data.
- Figures convey “big picture”.
- Figures are better for concrete information
- Figures communicate in parallel
Pictures vs. Words

- This is really not an issue of “versus”. Pictures and words complement one another when used at appropriate times.
 - Some people are visual learners, while others are auditory or abstract.
 - Visuals should support and complement text, not vice versa.

Undersea Cable Example

* Fiber strands are wrapped around a copper-coated steel wire, then shrouded in a protective Hytrel/Nylon sheath, which is hermetically sealed in a welded sheath of thin copper. The assembly is further encased in liquid polyethylene into which high-strength steel cables are embedded before the plastic can harden. *

Undersea Cable

Undersea Cable

- Fiber strands are wrapped around a copper-coated steel wire, then shrouded in a protective Hytrel/Nylon sheath, which is hermetically sealed in a welded sheath of thin copper. The assembly is further encased in liquid polyethylene into which high-strength steel cables are embedded before the plastic can harden.

PSpice Text Representation

* Schematics Netlist *

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_R1</td>
<td>$N_0002 ; SN_0001 ; 1k</td>
</tr>
<tr>
<td>R_R2</td>
<td>0 ; $N_0001 ; 1k</td>
</tr>
<tr>
<td>C_C1</td>
<td>0 ; $N_0001 ; 1n</td>
</tr>
<tr>
<td>V_V1</td>
<td>$N_0002 ; 0</td>
</tr>
<tr>
<td>+SIN</td>
<td>0 ; 1 ; 100 ; 0 ; 0 ; 0</td>
</tr>
</tbody>
</table>

Types of Graphics Software

- CAD tools (PSpice, Solid Edge, AutoCAD) -- treat design elements as objects
- general drawing tools (Adobe Illustrator, CorelDraw) -- only simple objects are defined, but drawing is much more flexible
- painting tools (Adobe Photoshop, MS Paint) -- stores figures as images (2-D array of pixel values)
CAD tools

- Pros:
 - Can simulate real systems
 - Can quickly construct systems from predefined parts with exact dimensions
 - Can save as a set of predefined parts
 - Can rescale, modify, or create new views easily
- Cons:
 - Limited to predefined parts (very inflexible)

Drawing Tools

- Pros
 - Can use some simple predefined objects for drawing
 - Can save drawing as a set of objects
 - Can rescale/modify easily
 - Flexible drawing capability
- Cons
 - Drawings are limited to predefined patterns
 - No simulation capability
 - No multiple views or exact dimensions

Painting Tools

- Pros
 - Ultimate in flexibility -- can draw *anything*
- Cons
 - No simulation capability
 - Cannot neatly rescale, edit, or change views of objects, since no geometric objects are represented separately.
 - General drawing is slow.

Drawing vs. Painting

- Drawing Zoom
- Painting Zoom
Orthographic projection -- a 2-D representation of a 3-D object, generally showing 3 views from orthogonal directions:
- front view
- side view
- top view
Isometric -- corner of box enclosing object forms three 120-degree angles

Oblique

Perspective (One-Point)

Know the Purpose of Your Visual

- Save time
- Increase interest and attention
- Clarify an idea
- Reinforce an idea
- Prove a point
- Increase retention