Course Information

Professor: Stanley J. Reeves
Office: Room 221
Phone: 844-1821
Email: reevesj@auburn.edu
Web: http://www.eng.auburn.edu/~reevesj/

Class Hours: MWF 8:00 - 8:50 a.m.

Office Hours: W 1:30-2:30, Th 3-4. I also encourage email contact at any time and posted questions in the class forum.

Teaching Philosophy: A statement of my teaching philosophy can be found at http://www.eng.auburn.edu/~reevesj/.

References:

Web Site: Online material will be accessible via Canvas. Homework solutions, computer projects, and grades will be posted on Canvas.

Objectives:
This course introduces the fundamental principles and applications of digital image processing. The course lays a foundation in linear signals and system theory and digital signal processing and then explores major applications in image processing: enhancement, restoration, geometric transformations, color processing, and compression. Each student must carry out several hands-on computer assignments to complement the lecture material and a major project in one or more of the major topic areas.

Grading Policy:
- Midterm (March 9) 20%
- Computer exercises 25%
- Project preliminary report (March 4) 5%
- Project final report (April 15) 20%
- Final Exam (May 4) 30%

Computer Exercises:
Computer exercises will be assigned to complement and illustrate the lecture material. All exercises will be done using MATLAB. Late exercises will not be accepted.

Reference for Computer Exercises:
Beginning MATLAB for Engineers, S. J. Reeves. (available as an e-Book via Google Books)
Kermit Sigmon, MATLAB Primer, 3rd edition, 1993. An online version can be found on the class web site. The primer is 39 pages.
Other online help is also available through this site.

The professor may sometimes post online lecture to supplement or replace a class meeting. In that case, a simple assessment quiz may be given to make sure students have watched the online lecture material. These quizzes will be averaged with the computer exercises, weighting each one as 10% of an exercise.

Homework:
Homework will be assigned occasionally but will not ordinarily be turned in. Solutions will be covered in class or distributed.

Computer Project:
Each student in ELEC 7450 is expected to do a programming project. The student must consult with the professor to decide on a topic. A short paragraph describing the essentials of the proposed project is due on February 5. Several possible project ideas may be mentioned in class. A list of suggestions is also provided on the class web site, but you may devise your own project with the professor’s input. You may use any programming language you wish, but you are strongly encouraged to use MATLAB. If you choose to use a programming language or environment other than MATLAB, you are on your own.

The term project is intended to require approximately 30 hours of work and include a significant programming or experimental effort. Proposals for team projects will be considered for projects of greater scope as long as each individual is able to contribute approximately 30 hours.

A preliminary report is due on March 4. The preliminary report should contain a thorough literature review, a description of the primary algorithm or experimental plan, and an outline of the steps remaining. The preliminary report may also contain preliminary code and/or experimental results.

At the end of the semester, each student will be responsible for a written and oral report describing the project and the results. The final report should include an appendix detailing what code and ideas are original and what has been downloaded or borrowed from the web or existing literature. Giving detailed credit for borrowed ideas and code is a matter of academic honesty, and failure to disclose the use of others’ work will constitute a
violation of academic honesty and will be treated accordingly. More details will be posted on the class web site concerning the expectation for the project, the oral presentation, and the written report. All projects are due on April 15. Oral reports will begin that day.

Honesty Policy:
All out-of-class work is to be done independently and should represent your work alone. You may not obtain substantial help from others or by copying work done by students in previous classes on similar projects. Sharing of programming tips and discussing general concepts is ok. Collaborating on experiments or code-writing is not. Any such collaboration or copying on these assignments will be considered an act of dishonesty and will be treated accordingly.

Professionalism:
Students are professionals in training and should make every effort to take a professional approach to learning and classroom behavior. The following are specific areas of concern:

1. Attendance: Attendance is important and expected but not required. However, it is unprofessional behavior for a student to miss class without a valid excuse and then expect individual help or consideration from the instructor.
2. Punctuality: Professionals show respect to others in a meeting by being on time. Walking in late distracts the instructor and other students. Tardiness should be a rare event.
3. Retrieving graded assignments: Be sure to get your graded assignments when they are returned. If you miss a class in which assignments were returned, please see the instructor as soon as possible to pick yours up, either after class or in his office.
4. Restroom: The restroom is for use before and after class and for medical emergencies. Plan ahead!
5. Talking in class: Avoid obscene and profane speech. Exchanges with classmates during class should be quiet and related to the lecture. Stop talking when the instructor begins the class.
6. End of class: Do not rustle papers, slam books shut, snap three-ring binders, or shuffle around near the end of class. The instructor will work hard to end class on time, but the last few statements may be the most important of the entire class period. Do not distract yourself or others from hearing these.
7. Laptops: Laptops are encouraged but are to be used only for class purposes. Do not display anything that will distract others. Laptops are to be closed during quizzes and tests.
8. Cell phones: Cell phones should be in silent or vibrate mode and not answered during class apart from an emergency. Do not text in class or surf the web for information unrelated to the class.
9. Personal audio devices: These should be turned off and earphones removed during class.
10. Spitballs: Do not throw spitballs or put tacks in the instructor’s chair. This is generally considered unprofessional behavior, except in Elbonia.

Students with Disabilities:
Students who need special accommodations are encouraged to see me after class or in my office as soon as possible so we can discuss your situation confidentially. You can contact me by phone or email if my office hours conflict with your schedule. Please bring your memo from The Program for Students with Disabilities (PSD) to me as soon as possible; we can discuss it during your appointment. Exam accommodations must be arranged at least one week in advance. If at any time during the quarter you feel that the accommodations we have put in place are not working, please consult with me and/or the professional staff in the PSD office. If you do not have a memo from the PSD office that tells me about your accommodations, please make an appointment to see them in 1232 Haley Center (844-2096).

Contingency:
If normal class activities or computer lab availability are disrupted due to many students or the instructor experiencing illness or an emergency or crisis situation, the syllabus and other course plans and assignments may be modified to allow completion of the course. If this occurs, an addendum to your syllabus and/or course assignments will replace the original materials.

Topical Outline
1. Introduction to digital image processing
 (a) Definitions
 (b) Image processing systems
 (c) Image representation
 (d) Image capture & display
 (e) Visual perception
2. Signals and systems for image processing
 (a) 2-D continuous signals and systems
 (b) 1-D discrete signals and systems
 (c) 2-D discrete signals and systems
3. Image enhancement
 (a) Histogram modification methods
 (b) Algebraic operations
 (c) Spatial operations
4. Color
 (a) Perception
 (b) Quantization
 (c) Coordinate conversion
 (d) Color enhancement
5. Geometric operations
 (a) Pointwise interpolation
 (b) Spatial transformations
6. Image restoration
 (a) Degradation models
 (b) Inverse filtering
 (c) Weiner filtering
 (d) Regularized restoration
7. Image compression
 (a) Differential coding
 (b) Quantization and adaptive bit allocation
 (c) Transform coding
 (d) Video coding