
Dancing Hamsters and Marble Statues: Characterizing Student
Visualizations of Algorithms

Teresa Hübscher-Younger *

Language, Literature & Communication
Rensselaer Polytechnic Institute

Troy, NY 12180

N. Hari Narayanan‡
Computer Science & Software Engineering

Auburn University
Auburn, AL 36849

Abstract

Algorithm visualization research for computer science education
has primarily focused on expert-created visualizations. However,
constructionist and situated theories of learning suggest that
students should develop and share their own diverse
understandings of a concept for deep learning. This paper presents
a novel approach to algorithm learning by visualization
construction, sharing, and evaluation. Three empirical studies in
which students engaged in these activities are discussed. The
resulting learning benefits are quantified, and student
visualizations are characterized in multiple ways. Then another
study that investigated how specific characteristics of such
visualizations influence learning is described. This work
demonstrates the effectiveness of having students create algorithm
visualizations, identifies characteristics of student-created
algorithm visualizations and illuminates the learning benefits
derived from these characteristics.

CR Categories: K.3.1 [Computers & Education]: Computer Uses
in Education – Collaborative Learning; K.3.2 [Computers &
Education]: Computer & Information Science Education -
Computer Science Education, Self-assessment.

Keywords: algorithms, empirical studies, learning, multimedia,
representation, visualization.

1 Introduction

As a recent survey [Hundhausen et al. 2002] indicates, a
predominant portion of the literature on algorithm visualization
from the last two decades focuses on expert-created visualizations
intended for a student audience. However, constructionist and
situated theories of learning [e.g., Lave & Wenger 1991; Linn &
Burbules 1993] hold that learning will be deeper if mediated by
active creation and negotiation by individual and communities of
learners. These theories suggest that students must develop and
share their own diverse understandings of a concept. This presents
a dilemma to those interested in using or researching algorithm
visualizations as learning tools: if students gain their
understanding solely from expert-created materials, how likely are
they to develop a diverse set of insights?

--

*e-mail: hubsct@rpi.edu
‡e-mail: narayan@eng.auburn.edu

Meanwhile, perhaps spurred by the lack of strong empirical proof
that such expert-created algorithm visualizations significantly
improve student learning, a number of researchers have of late
investigated an alternative pedagogy: students learning by
constructing their own algorithm visualizations [e.g., Anderson &
Naps 2001; Astrachan & Rodger 1998; Hundhausen & Douglas
2000; Stasko 1997]. Several questions can be raised about such a
constructive approach to learning from algorithm visualizations.
Do students exhibit significant improvements in their
understanding of algorithms as a result of building their own
visualizations? What is the nature of student-created algorithm
visualizations? How do characteristics of student-created
visualizations affect their learning?

Extant literature on algorithm visualization is insufficient to
provide unequivocal answers to these questions. Survey,
observational and anecdotal data [Astrachan & Rodger 1998;
Stasko 1997] do suggest that students are motivated by, and
benefit from, constructing their own visualizations. However, it is
not clear whether these benefits are of a statistically significant or
generalizable nature. Hundhausen and Douglas [2000]
investigated the comparative question, and found no performance
differences between a group of students that interacted with an
expert-created animation and another that constructed their own
animations using art supplies. We are not aware of any studies
that have rigorously explored the nature and learning effects of
student-created algorithm visualizations

It is in this context that we present new research on student-
created algorithm visualizations in this paper. We use the term
algorithm visualization to mean a multimodal (i.e. visual and
verbal) representation that could involve a variety of media (i.e.
sound, animation, graphics or text), and which helps students
internally visualize the operations of an algorithm. First, we
present a novel approach to algorithm learning by visualization
construction, sharing, and peer-evaluation, and outline a system
designed to support students in these activities. Second, we
provide an overview of three empirical studies in which we had
students create algorithm visualizations and evaluate the
visualizations created by their peers on six characteristics:
familiarity, originality, pleasure, salience, understandability, and
usefulness. The resulting learning benefits are quantified, and the
visualizations are further characterized in terms of media use,
presence of metaphors and similarity to familiar styles. We then
discuss a study that considered how specific characteristics of
such visualizations influence learning. Finally, the paper
concludes with a summary of the contributions of this research.
Related work is discussed throughout the paper as appropriate.

2 Our Approach

In order to learn an algorithm, we have students go through an
assignment consisting of the following four stages in the given
order.

To appear in ACM Symposium on Software Visualization Proceedings, ACM Press, 2003.

1. Individual Construction: Construct a visualization of the
algorithm, given its pseudocode. We intentionally keep this open-
ended, in that students are free to use any technique and software
tools they desire; in particular, no algorithm animation creation
tools are prescribed, and instructions to students used the more
neutral term “representation” instead of visualization to avoid bias
toward graphical representations and animations.

2. Sharing with the Community: Exhibit the visualization to other
students in the class.

3. Peer Evaluation: Rate visualizations created by everyone else
using a five point Likert scale along the following six
characteristics that we developed in order to characterize student-
constructed visualizations.

Familiarity (“How familiar were you with the content of the
representation?”)

Originality (“How much did this representation differ from
the other representations?”)

Pleasure (“How much did you enjoy the way this
representation communicated the algorithm?”)

Salience (“How well did this representation point out the
important features of the algorithm?”)

Understandability (“How easy was this representation to
understand?”)

Usefulness (“How central was this representation to your
understanding of the algorithm?”)

4. Collaborative Discussion: Commenting on others’
visualizations and responding to comments on one’s own
visualization.

This approach was developed based on several considerations.
First, evidence in the literature [Chi et al. 1994] points to
beneficial effects of individually trying to understand an
unfamiliar concept in order to explain it, to oneself or others. This
motivated the first stage of individually constructing an
explanatory visualization in an unrestricted manner.

In addition to individual reflection, group interaction and
negotiation to collaboratively build knowledge and shared
understanding are also important to learning within a community.
This suggests that students need to work together as well as alone.
Indeed, in earlier studies we found that computer science
undergraduate students already form a community of practice in
which learners tend to study collaboratively, discussing and
constructing a shared understanding of topics covered by their
instructor [Hübscher-Younger & Narayanan 2001; 2002].
Unfortunately, we also found that authority assigned to certain
explanatory visualizations (typically those provided by the
instructor) led students to ignore alternative explanations and fail
to understand the limitations of such visualizations [Hübscher-
Younger & Narayanan 2002]. We felt that visualizations built by
students themselves carry less authority. This would encourage
students to consider multiple peer-constructed visualizations
instead of a few expert-provided ones, examine a particular
visualization’s limitations as well as advantages, evaluate it
accordingly, and engage in discussions. This was the motivation
behind stages 2, 3 and 4.

A web-based system called CAROUSEL (Collaborative
Algorithm Representations Of Undergraduates for Self-Enhanced
Learning) was designed to support students in the second, third
and fourth stages. CAROUSEL is implemented using MySQL,
PHP, Javascript and HTML. A MySQL database running on an
Apache server stores visualizations that students upload,

evaluation information, comments, responses, user profile
information and student grades for activities. The server presents
students’ visualizations on web pages dynamically generated
using PHP. The web-based interface allows students and
instructors to set up course, schedule and activity information and
to submit visualizations, evaluations, comments, responses and
grades. Once all visualizations for a particular algorithm have
been uploaded, the instructor (or experimenter) can set a date on
which they will become publicly, but anonymously, available for
viewing, evaluating and commenting. CAROUSEL has additional
features for the instructor of a course to help manage course
activities. It permits students to share visualizations, provides
constant access to the visualizations, and allows the
instructor/experimenter to implement scheduled stages of
assignments. See [Hübscher-Younger & Narayanan 2003a] for
additional information on this system.

3 Efficacy Of Visualization Construction

In this section we summarize results from three studies designed
to investigate whether the visualization construction activity leads
to improved understanding of algorithms and what types of
visualizations students create. All studies had a common structure.
Student volunteers from a data structure or algorithms course
were solicited to participate for extra credit. In each study several
algorithms were assigned, and participants were asked to
construct, share, evaluate and discuss visualizations of these. For
each algorithm, participants first took a pretest to measure their
baseline knowledge about the algorithm. Then the algorithm was
assigned by making its pseudocode available through
CAROUSEL. After this, participants generally had one week to
construct and upload a visualization. We placed no restrictions on
the nature of, or media to be used for, these visualizations. We
also called these “representations” instead of “visualizations” to
avoid any bias toward graphics and animation. Students were free
to create these with paper, in which case scanning services were
offered to digitize such submissions. After the deadline for
uploading visualizations was over, CAROUSEL made these
publicly available to all participants. They were then given about
a week to rate every visualization (other than their own) on the
aforementioned six characteristics and to input comments and
responses. Afterwards they were given a posttest.

The pretests and posttests included three kinds of questions:
conceptual questions that probed factual knowledge (e.g. what is
the element used to partition an array in quick sort called?),
procedural questions that probed the understanding of how the
algorithm manipulates data (e.g., given an array, show the array’s
contents at the end of the third recursive call to quick sort), and
simulative questions that probed the ability to mentally simulate
the algorithm on given data (e.g., draw a recursion tree showing
all recursive calls that will be made for a given initial input). The
four stages generally overlapped, so that students were creating
and sharing new visualizations as well as rating and commenting
on old visualizations in any given week. Extra credit was attached
to each stage of an assignment, and students could choose which
stages they completed. The minimum requirement was to take the
pretest and the posttest, but a participant could choose whether to
create a visualization, evaluate others’ visualizations and engage
in discussion.

Student learning performance (the difference between posttest and
pretest scores) was evaluated and compared based on which
activities they chose to do, i.e. whether they had chosen to both
create representations and evaluate others’ representations or to
just evaluate representations. All the students who created a

representation for a particular assignment did evaluate all the
other representations, although they could have chosen not to do
this. Also, no student chose to just take the pretest and posttest
without evaluating any representation, another possible choice.

3.1 The First Study

Twelve students volunteered from a data structures and algorithms
course taken mostly by sophomore students. The study was
conducted over four weeks with three algorithm assignments:
calculating the Fibonacci series, selection sort and merge sort. The
study did not use a pretest, and one rating characteristic used was
contiguity (“how well did this representation connect with the
other representations for this algorithm?”) instead of originality.
CAROUSEL identified authors when publicly displaying the
visualizations. Also, the threaded discussion feature of
CAROUSEL was not ready at the time of this study, so students
were asked to do only creation, sharing and evaluation. A total of
36 visualizations were created by 11 of the 12 volunteers. For two
of the three algorithms that were used in this study (selection and
merge sort), there was a significant positive correlation between
creating a visualization and posttest scores (r=.635, p=.07; r=.663,
p=.05), suggesting that visualization creation improves learning.

After this study, contiguity was replaced with originality, a
discussion capability was added to CAROUSEL, and the system
was changed to hide author information during the sharing,
evaluation and commenting stages. The rating characteristic was
changed and authors made anonymous in order to discourage
convergence of representations, but a detailed discussion of this
issue is beyond the scope of this paper. See [Hübscher-Younger &
Narayanan 2003b] for details.

3.2 The Second Study

Table 1. Test Scores

Algorithm Pretest Posttest Learning
Fibonacci 42% 59% 17%
Exponentiation 14% 51% 37%
Binary Search Tree 33% 62% 29%
Leftist Heap 12% 31% 19%
Selection Sort 40% 66% 26%
Merge Sort 11% 41% 30%
Quick Sort 29% 55% 26%
Disjoint Set 15% 56% 41%
Depth First Search 19% 50% 31%

Sixty students in an introductory algorithm analysis course (this
course is generally taken by juniors, and a few seniors and
beginning graduate students) participated in this study. The study
was conducted over 12 weeks with nine algorithm assignments:
calculating the Fibonacci series, exponentiation, inserting a node
in a binary search tree, merging leftist heaps, selection sort, merge
sort, quick sort, find with path compression in a disjoint set and
depth-first search. Each assignment included taking a pretest, the
four stages with six rating characteristics described in Section 2,
and taking a posttest. A total of 196 visualizations were created by
36 of the 60 volunteers.

Overall results implied that the activities of creating, sharing and
evaluating algorithm visualizations aided learning. The student
participants improved their score from pretest to posttest by 30%
on average across all algorithms. Table 1 displays the average
normalized pretest, posttest and learning scores for each
algorithm. Learning was measured as the difference between the

pretest and posttest scores for each algorithm. Scores were
normalized by dividing the raw score by the maximum score
attained by any student on a test for a particular algorithm.

Moreover, visualization construction had a clear beneficial effect.
There was a significant difference between the normalized
posttest scores (F(1,327)=14.4, p<.001) and the normalized
learning scores (F(1,327)=3.63, p=.058) of those who had and
those who had not created visualizations. In both cases, students
who created visualizations had higher scores than those who did
not (i.e. those who only evaluated and commented on others’
visualizations). The mean for the normalized posttest scores for
the students who did not create a visualization was 46% and for
the students who did create one was 57%. The mean for the
normalized learning scores for the students who did not create a
visualization was 25% and for those who did create one was 31%.
When multiple linear regression analysis techniques were used to
look at how visualization creation and the algorithm covered
affected normalized learning scores, it was found that the model
was significant (F(9,318)=3.37, p<.001) and creating a
visualization had a significant positive effect on learning when the
choice of algorithm was controlled for (F(1,318)=5.025, p=.026).

In particular, the learning scores were significantly related to
whether a student created a visualization for two of the nine
algorithms: the recursive exponentiation algorithm (F(1, 35)
=5.06, p=.03) and quick sort (F (1,34) =3.99, p=.05). In the case
of the recursive exponentiation algorithm, the students who did
not create a visualization increased their score by 27%, and the
students who did create one increased their score by 45%. In the
case of quick sort, the students who did not create a visualization
increased their score by 17%, and the students who did create one
increased their score by 34%.

3.3 The Third Study

Table 2. Test Scores

Algorithm Pretest Posttest Learning
Disjoint Set 20% 63% 43%
Shortest Path 42% 67% 25%
Huffman’s Codes 8% 56% 48%
Depth First Search 21% 42% 21%

In this study 43 students in the same algorithms course (but in a
different term) created visualizations of four algorithms (find with
path compression in a disjoint set, Dijkstra’s shortest path,
Huffman’s codes and depth-first search) over a four-week period.
Each assignment included pretesting, the four stages with six
rating characteristics described in Section 2, and posttesting. The
schedule was quite compressed in this study due to circumstances
beyond our control, so students were dealing with multiple
algorithms during each week. A total of 65 visualizations were
created by 22 of the 43 volunteers.

Overall results implied that the activities of creating, sharing and
evaluating algorithm visualizations aided learning. The student
participants improved their score from pretest to posttest by 40%
on average across all algorithms. Table 2 displays the average
normalized pretest, posttest and learning scores for each
algorithm. Learning was measured as the difference between the
pretest and posttest scores for each algorithm. Scores were
normalized by dividing the raw score by the maximum score
attained by any student on a test for a particular algorithm.

Furthermore, visualization construction had a clear beneficial
effect. The normalized posttest scores (F(1,94)=5.44, p=.02) and
the normalized learning scores (F(1,94)=4.43, p=.04) across all
algorithms were significantly different between those students
who created visualizations and those who only evaluated and
commented on others’ visualizations. In both cases, the students
who created the visualizations had higher scores than those who
did not. The mean for the normalized posttest scores for the
students who did not create a visualization was 48.2% and for the
students who did create one was 62%. The mean for the
normalized learning scores for the students who did not create a
visualization was 26.3% and for those who did create one was
40.2%. When multiple linear regression analysis techniques were
used to analyze how visualization creation and the algorithm
covered affected normalized learning scores, it was found that the
model was significant (F(4, 90)=5.71, p<.001). In the model,
creating a visualization had a significant positive effect on
learning (F(1,90)=7.351, p=.008).

In particular, the normalized learning scores were significantly
related to whether a student created a visualization for the
algorithm to generate Huffman’s Codes (F (1, 23)=5.92, p=.02).
The average normalized learning score for this algorithm was
57% for those students who did create visualizations and 28% for
those who did not.

3.4 Discussion

It is fairly well established in the general education literature that
constructing one’s own explanations of a concept can lead to
better learning. But such work [e.g., Chi et al. 1994] generally
pertains to children learning concepts. Our studies provide
evidence that this holds true for adult college students learning a
complex subject by constructing explanatory visualizations. These
results add to similar evidence presented by Hundhausen and
Douglas [2000]. What sets these studies apart, however, is that
this is the first time to our knowledge that a systematic series of
studies have demonstrated the benefits of visualization
construction in the algorithm domain with quantitative data. Our
studies were conducted over 20 weeks during three terms, and
involved over 100 students working with 11 different algorithms.

Hundhausen [2002] reports on ethnographic studies of students
constructing visualizations, but the students were encouraged to
build “animations” and “visualization storyboards”, biasing them
toward a certain kind of visualizations. What our studies showed
was that construction of explanatory visualizations, unfettered by
both specific instructions and the need to learn a non-trivial
algorithm visualization language, does lead to improved learning.
This is an important result, given the time and effort that
researchers expend on building newer and better algorithm
animation tools [e.g., Lahtinen et al. 1998], and the time and effort
that an instructor and students of an algorithms course have to set
aside for learning to use such tools. For instance, Hundhausen and
Douglas [2002] report that in one particular study they found
students spending 33 hours on average constructing an algorithm
visualization, most of which was devoted to low-level graphics
programming needed to make animations work.

Even the use of so-called low-fidelity algorithm visualizations
[Hundhausen & Douglas 2002] introduces a layer of complexity
over and above that of understanding the underlying algorithm: in
this case translating the algorithm’s mathematical logic to the
spatial logic of a scripting language. As an example, a sample
script for bubble sort provided in the aforementioned paper is 42
lines long, whereas the pseudocode for this algorithm can be

written in about 8 lines. End-user programming languages like
SALSA that these authors propose for building low-fidelity
algorithm visualizations may ameliorate this translation problem
somewhat compared to the graphical programming required with
high-fidelity algorithm visualization construction tools. While it
can be argued that representational translation is unavoidable, and
perhaps even desirable, in learning, specific algorithm
visualization construction tools force certain kinds of translations.
Any such tool will require students to spend time learning it, and
bias them toward a particular kind of visualization – one that
involves algorithm animations. But recent research [Narayanan &
Hegarty 2002; Tversky et al. 2002] calls into question the
communicative efficacy and educational benefits of animations
and interactivity found in typical computer-based visualizations.

So our studies explored a more radical position: why not have
students define a visualization in whatever way they want
(thereby defining their own representational translations), and
construct it using whichever tools they have at their disposal?
Visualizations in our studies were constructed by students using a
variety of tools – simple text and html editors, Javascript,
Macromedia Flash, etc., and many did not contain any graphical
representations whatsoever. Whether students will learn more or
less if they construct specific kinds of visualizations using
algorithm animation construction tools is a question yet to be
addressed. The studies reported here provide baseline data on
unrestricted self-construction of algorithm visualizations, a
prerequisite to future comparative studies investigating such
questions.

One possible explanation for the increased learning evidenced in
these studies is that since self-selection was involved, only the
brightest and most motivated students constructed visualizations.
However, informal feedback indicated that several struggling
students participated in the hopes of improving their course
grades, since extra credit was awarded for participation and was
not dependent on pretest and posttest scores. Furthermore, 92%,
60% and 51% of those who participated constructed at least one
visualization in each study. These suggest that a broad group of
students, not just the smart and motivated ones, participated, and
that a majority of participants engaged in visualization
construction.

There were three factors that we did not control for. Even though
we avoided teaching an algorithm in class at the same time it was
being used in an assignment, given the nature of the study it was
impossible to control for students learning about an algorithm
outside the assigned tasks. Similarly, volunteers in the studies
presumably spent more time studying algorithms than those who
did not participate. But since most of the students in the classes in
which these studies were conducted chose to participate, and since
all of the volunteers undertook at least \representation evaluation,
we did not have control groups that did not use CAROUSEL but
who spent a similar amount of time doing other educational
activities with these algorithms for comparison purposes.

4 Characterizing Visualizations

Now we turn to a discussion of characterizing the visualizations
constructed by students in these studies. Participants rated each
visualization along six characteristics: familiarity, originality,
pleasure, salience, understandability and usefulness. These raw
ratings and their average values provide a set of peer-measures for
the perceived quality of a visualization. The experimenter did
three additional analyses on the visualizations. The first was to
characterize media use. Media use was rated on a scale of 1 to 4

with level 1 being the use of only text, level 2 being the use of
graphics and/or text, level 3 being the use of graphics, text, sound
and/or animation and level 4 being the use of all of the previously
mentioned plus hypermedia and/or 3-D animation. The second
was to characterize the metaphoric content of a visualization.
Metaphoric content was rated with dummy variables to indicate
whether metaphors beyond the kind conventionally found in
textbooks were present or not. The third was to characterize how
similar a visualization was to explanations found in the course
textbook or lectures. The experimenter rated visualizations on a
scale of 1 to 5 with 1 being a rating for visualizations that are least
like a textbook or classroom explanation and 5 being a rating for
visualizations that are most like a textbook or classroom
explanation.

4.1 Media Use

At the beginning of the first study, students chose to work with a
wide variety of media, including text, graphics, sound and
animation, based on their personal preferences. However, over the
course of the study, the students converged on a simple style, one
incorporating primarily graphics and text (Figure 1).

It was found in the first study that adding graphics, animation and
sound to text resulted in a higher overall rating. However, when
more complicated media, such as hypermedia or 3-D animation
were added, the ratings did not rise. Multiple linear regression
analysis techniques were used to explore how the use of different
media affected student ratings. The parameter estimates for media
use led to consistent conclusions about how media use affected
student ratings. The effect of adding graphics to text was positive
in all cases, except for the familiarity rating, where only a small
negative effect was estimated (-0.02). The effect of adding
animation or sound was always positive, except for the contiguity
rating, where only a small negative effect was estimated (-0.02).
Adding hypermedia and/or 3-D animation always led to a large
significant negative effect on the rating.

Student ratings of all visualization characteristics were
significantly affected (p<.0001) by the type of media used in the
second study. The results are similar to the first study. Adding
graphics to text improved the rating of all characteristics. Adding
sound and/or animation to a visualization improved the pleasure
and originality ratings more than 0.5 points and the
understandability rating 0.1 point. Adding hypermedia (there were
actually no examples of 3-D animation in this study) improved the
ratings of all characteristics, except pleasure and originality.
Figure 2 shows levels of media use in visualizations across
algorithms in the second study.

Media use in study three is illustrated in Figure 3. Adding
graphics to text always led to increased ratings. Adding sound
and/or animation always led to higher ratings for pleasure and
originality, and sometimes led to other rating benefits. Adding
hypermedia or interactive components did not necessarily lead to
increased ratings and sometimes led to decreased ratings. In
studies two and three, media use converged less toward any
specific style compared to the first study.

4.2 Metaphoric Content

In the first study it was found, using multiple logistic regression
analysis techniques, that the existence of unconventional
metaphoric content had a significant effect on the student ratings
for salience and pleasure, G2s(5, 236) = 9.7 and 14.5, ps<0.1 and
0.05, respectively. The lack of metaphoric content led to higher
salience ratings, and the presence of metaphoric content led to
higher pleasure ratings.

The existence of a metaphor outside those normally used in the
classroom was significantly related to the student ratings of

Figure 1. Media use patterns in study 1.

0

10

20

30

40

50

60

70

1 2 3

Algorithm

P
er

ce
n

ta
g

e
o

f
re

p
re

se
n

ta
ti

o
n

s

Media level 1

Media level 2

Media level 3

Media level 4

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9

Algorithm

P
er

ce
n

ta
g

e
o

f
re

p
re

se
n

ta
ti

o
n

s

Media level 1

Media level 2

Media level 3

Media level 4

Figure 2. Media use patterns in study 2.

Figure 3. Media use patterns in study 3.

0

10

20

30

40

50

60

70

80

1 2 3 4

Algorithm

P
er

ce
n

ta
g

e
o

f
re

p
re

se
n

ta
ti

o
n

s

Media level 1

Media level 2

Media level 3

Media level 4

pleasure and originality (F(1, 205)= 8.37 and 23.38, p<.005,
respectively) in the second study. In both cases the relation was
positive, so the use of an unconventional metaphor led students to
rate the visualization more enjoyable and original.

In the third study, unconventional metaphor was significantly and
negatively related to the student ratings of all characteristics
(p<.0001). However, unlike the second study, only a small portion
(15%) of the representations in this study contained an
unconventional metaphor.

4.3 Similarity to Familiar Styles

Similarity (to textbook or classroom styles) ratings of
visualizations from the first study increased over time with each
new algorithm: the first algorithm had an average rating of 3.4;
the second had 3.9; and the third had 4.7. Furthermore, the
average of all the ratings the students gave each visualization was
significantly positively related to the rating of how similar that
visualization was to a textbook or classroom explanation (F(1,
24)=3.9, p=.06). Multiple linear regression analysis techniques
were used to explore how the ratings of the visualizations’
similarity to textbook or classroom explanations were related to
the student ratings of different characteristics. The similarity
rating’s relations to students’ ratings of usefulness, salience and
contiguity were positive and significant (F(1,24)=6.5, 6.0, and
10.6 respectively, p<.05). In other words, how similar a
visualization was to a textbook or classroom explanation
positively influenced not only the overall rating that visualization
received, but also student ratings for how useful that visualization
was for their understanding of the algorithm; how well that
visualization pointed out the salient features of the algorithm; and
how well it was contiguous with (built upon) the other
visualizations for that algorithm. For understandability and
familiarity, the effect was also positive, but not significant.
Interestingly, pleasure was the only student rating that was
negatively affected by a visualization’s similarity to a textbook or
classroom explanation, but the effect was not significant.

Unlike in the first study, there was not a trend toward the
visualizations becoming more similar to those found in the
textbook in the second study. The average of all the ratings the
students gave each visualization was not significantly positively
related to the rating of how similar that visualization was to a
textbook or classroom explanation. Multiple linear regression
analysis techniques were used to explore how the ratings of the
visualizations’ similarity to textbook or classroom explanations
were related to the average student ratings of different
characteristics. The similarity ratings’ relation to students’ ratings
of usefulness, understandability and salience were positive and
significant (F(1,205)= 4.56, 5.25 and 9.65 respectively, p<.05). In
other words, student ratings of how useful a visualization was,
how understandable it was, and how well it pointed out the
important points of the algorithm were positively influenced by
how similar that visualization was to classroom and textbook
conventions. Familiarity was positively related, but the effect was
not significant. The similarity ratings’ relation to students’ ratings
of pleasure and originality were negative and significant
(F(1,205)= 4.09 and 16.6 respectively, p<.05). In other words,
students rated a visualization higher in pleasure and originality, if
it differed from their classroom conventions.

There was not a trend toward the visualizations becoming more
like classroom or textbook explanations in study three. The
average of all the ratings the students gave each visualization was
not significantly related to the rating of how similar that

visualization was to a textbook or classroom explanation. Multiple
linear regression analysis techniques were used to explore how the
ratings of the visualizations’ similarity to textbook or classroom
explanations were related to the average student ratings of
different characteristics. The similarity ratings’ relation to
students’ rating of originality was significant, but the relation was
negative. In other words, the higher the similarity rating was, the
lower the students rated the originality of the visualization.

4.4 Diversity

Students constructed a variety of visualizations, differing both in
style and content. Some produced entertaining animations that
illustrated the mathematical basis of an algorithm, such as the
Dancing Hamsters showing the Fibonacci series (Figure 5).
Others submitted pure text containing elaborate metaphorical
stories that illustrated what an algorithm computes (but not how),
such as a story about a shopkeeper who used the Fibonacci series
to balance his shelf of statues (Figure 6). A large portion of the
visualizations were in a walkthrough style (60% in the second
study and 70% in the third), giving an example of a data set and
showing how it would change over time as the algorithm operated
on it. This style focused on the execution of pseudocode. There
were also graphical representations of pseudocode (Figure 7),
interactive calculators that illustrated algorithm efficiency, textual
representations that explained the main ideas and reasoning
behind an algorithm, and visualizations that only represented the
results of algorithm execution on a specific input data set.

5 Linking Visualization Characteristics to
Learning Benefits

Now we turn to a study that addressed the following question.
How do specific characteristics of student-created visualizations
affect what other students can learn about the algorithm from
these visualizations (when the pseudocode is also provided)?

While analyzing students’ visualizations we discovered that
salience and pleasure were important characteristics, because the
representations differed most in these characteristics.
Visualizations with unconventional metaphoric content generally
scored higher in pleasure and lower in salience, and visualizations
using a style of explanation similar to the course textbook (which
generally used a walkthrough style) had in general higher salience
scores, but lower pleasure scores. If a student considers a
particular style of explanation more pleasurable than others, he or
she is likely to be more engaged with that visualization, and hence
learn more from it. Salience (“how well did this representation
point out the important features of the algorithm?”) indicates the
extent to which a particular visualization captures all the
important features of an algorithm. So the higher the salience
rating of a visualization, the more one is likely to learn from it. In
order to explore this issue further, we conducted the following
study.

5.1 Procedure

Forty-five students enrolled in an introductory algorithm analysis
class participated for extra credit. They were split into two
matched (based on course standing) groups: Group 1 (23 students)
and Group 2 (22 students). Participants met with the experimenter
in a computer lab. They were given an introduction to the study
and then asked to take a pretest. After completing the pretest, the
students were given the pseudocode for three algorithms
(Fibonacci, exponentiation and binary tree insertion) on paper, a

posttest and a URL to access a website. The URLs given to each
participant presented different visualizations based on the
student’s assigned group, as explained below. The students could
work with the pseudocode and visualizations to answer the
posttest questions, taking as much time as they needed. Learning
was measured as the difference between the score on the pretest
and the score on the posttest. Students could look at the
pseudocode and visualizations while taking the posttest.

The URL for Group 1 contained three visualizations. One was for
the Fibonacci algorithm that received the highest average salience
rating (4.32) among all visualizations of this algorithm in the three
previous studies. The second was for the exponentiation algorithm
that received the highest average pleasure rating (3.55) among all
visualizations of this algorithm in the three previous studies. The
third was for the binary search tree insertion algorithm that had
the maximum positive (average pleasure rating – average salience
rating) value (0.61) among all visualizations of this algorithm in
the three previous studies. The URL for Group 2 contained three
visualizations. One was for the Fibonacci algorithm that received
the highest average pleasure rating (4.11) among all visualizations
of this algorithm in the three previous studies. The second was for
the exponentiation algorithm that received the highest average
salience rating (3.84) among all visualizations of this algorithm in
the three previous studies. The third was for the binary search tree
insertion algorithm that had the maximum positive (average
salience rating – average pleasure rating) value (0.59) among all
visualizations of this algorithm in the three previous studies.

The two visualizations with the highest average pleasure ratings
that the groups saw were both created by the same person and had
a similar style. They were both humorous stories using only text.
The one for the Fibonacci series was titled “A Tale of Fear,
Loathing and Greed on a College Campus” and was about how a
university employee used the algorithm to determine how many
tickets to give out each day. The one for the exponentiation
algorithm titled “A Tale of Two Engineers” told the story of
engineers from two rival universities writing iterative and
recursive algorithms for exponentiation.

The two visualizations with the highest average salience ratings
that the groups saw were also created by the same person and had
a similar style. They both had a discussion of the problem, a
comparison between iterative and recursive algorithms for solving
the problem, and interactive components that calculated results so
that students could see the efficiency difference between the two
discussed implementations.

The binary tree insertion visualizations had different authors.
Group 1’s visualization contained an animation while Group 2’s
visualization had text and static graphics.

5.2 Results

Table 3. Test Scores

Algorithm Pretest Posttest Learning
Fibonacci 39% 75% 36%
Exponentiation 20% 69% 49%
Binary Search Tree 56% 71% 15%

The maximum score possible on the pretests and posttests for the
different algorithms differed. Although there was one pretest and
one posttest given to the students, the tests were separated into
three sections, one for each algorithm. For the purposes of
analysis, the three sections are treated as three different tests. The

maximum possible score for the Fibonacci algorithm was 18, the
maximum score for the exponentiation algorithm was 11, and for
the binary search tree insertion algorithm was 12. Test scores
were normalized to percentages of the appropriate maximum.
Table 3 provides the pretest, posttest and learning score
percentages for each algorithm averaged over the entire set of 45
participants. Clearly, students were able to learn the algorithms
from pseudocode with the help of peer-constructed explanatory
visualizations.

Multiple linear regression analysis techniques were used to see
how the learning scores associated with a visualization were
related to its average rating of salience, average rating of pleasure
and the algorithm covered. The whole model with these variables
was significant (F(4, 130)=13.1, p<.0001). The learning score’s
relations to the visualization’s average rating of salience and
average rating of pleasure were both positive and significant
(F(1,130)=5.8 and 4.8, p=.02 and .03 respectively). In other
words, the higher the salience rating and the higher the pleasure
rating of a visualization, the more a student learned from it. The
parameter estimates for the average salience and pleasure ratings
are 22.1 and 39.1 respectively, which suggest that how
pleasurable a visualization has more of an effect than the
visualization’s salience on how much a student is able to learn
from it.

This result was also obtained when a similar analysis that included
all six characteristics was performed. A multiple linear regression
analysis technique was used to see how the learning scores
associated with a visualization were related to its average ratings
of salience, pleasure, originality/familiarity and
usefulness/understandability. Originality and familiarity (also
usefulness and understandability) were combined for this analysis
because these two sets of characteristics turned out to be highly
correlated in the sample of visualizations used. The whole model
with these variables was significant (F(4, 130)=6.02, p=.0001).
The learning score’s relations to the visualization’s average
ratings of salience and pleasure were again both positive and
significant (F(1,130)=10.37 and 3.29, p=.002 and .072
respectively).

5.3 Discussion

The interesting finding from this study is that pleasure and
salience are characteristics of student-created visualizations with a
positive impact on how much other students gain from these
visualizations. The implication of this for the design of algorithm
visualizations is that making them pleasurable to use is not just
icing on the cake, but has an impact on students’ ability to derive
information from the presented materials. It is also important, but
not enough, to make the central points regarding the algorithm
stand out well in the visualization. Also note that the highest
pleasure ratings for two algorithms went to visualizations that
only involved text, the contents of which were humorous and
related to everyday experiences of the student community. It is
often believed that the more polished the graphics or the more
advanced the media, the more pleasurable students will find the
presentation. When students become designers and evaluators of
visualizations themselves, they do not conform to this
presupposition.

6 Conclusion

Constructionism is gaining hold in the research on algorithm
visualization for education. Computer support for visualization
construction typically comes in the form of a custom-designed

scripting or programming language and a system that interprets
the language to generate various kinds of visualizations. But what
if computer support is provided instead in the form of a system
that allows students to exhibit and evaluate their visualizations,
which they construct with whatever means they have at their
disposal? Will they learn from these activities? What kinds of
algorithm visualizations will they construct? Are there
characteristics of visualizations that are predictors of how much
viewers of these visualizations will learn from them? This paper
presented studies and analyses addressing these questions.

We found that authoring and evaluating visualizations helped
students learn about algorithms. Moreover, those who authored
visualizations learned significantly more than those who only
evaluated others’ visualizations did. Students constructed a richer
and more diverse set of visualizations than those found in typical
instructional materials. They also rated visualizations of their
peers on six characteristics. Contrary to the conventional wisdom
that multimedia is attractive to young adults, students did not give
high ratings to visualizations with complex media. We also found
that viewers tend to learn more from visualizations that were rated
high in salience and pleasure.

The first contribution of this work is to provide quantitative
evidence to show that novices constructing, sharing and
evaluating algorithm visualizations do indeed learn about the
underlying algorithms from these activities. These are activities
that can be instituted in the classroom with minimal effort on the
part of an instructor and minimal training on the part of students.
They can be supported with a simple web-based system that
allows students to exhibit, rate and discuss the visualizations. The
second contribution is that it presents multiple ways of analyzing
student constructed algorithm visualizations: in terms of media
use, metaphoric content and similarity to conventional styles, or
rated on a set of six characteristics. Two of these, salience and
pleasure, were found to positively impact learning.

7 Acknowledgments

Studies reported here form a part of the first author’s unpublished
doctoral dissertation [Hübscher-Younger 2002]. This research was
supported by NSF under contract REC-9815016.

References

ANDERSON, J. M., AND NAPS, T. L. 2001. A context for the

assessment of algorithm visualization systems as pedagogical
tools. In Proceedings of the First International Program
Visualization Workshop, University of Jonesuu Press, 121–130.

ASTRACHAN, O., AND RODGER, S. H. 1998. Animation,

visualization and interaction in CS 1 assignments. In
Proceedings of the 29th SIGCSE Technical Symposium on
Computer Science Education, ACM Press, 317–321.

CHI, M. T. H., DE LEEUW, N., CHIU, M.-H., AND LAVANCHER, C.

1994. Eliciting self-explanations improves understanding.
Cognitive Science 18, 3, 439–477.

HÜBSCHER-YOUNGER, T. 2002. Understanding Algorithms

through Shared Representations. PhD thesis, Auburn
University.

HÜBSCHER-YOUNGER, T., AND NARAYANAN, N. H. 2001. How
undergraduate students' learning strategy and culture effect
algorithm animation use and interpretation. In Proceedings of
the First IEEE International Conference on Advanced Learning
Technologies, IEEE Press, 113–116.

HÜBSCHER-YOUNGER, T., AND NARAYANAN, N. H. 2002. The

influence of authority on convergence in collaborative learning.
In Proceedings of the Computer Support for Collaborative
Learning Conference, Lawrence Erlbaum, 481–489.

HÜBSCHER-YOUNGER, T., AND NARAYANAN, N. H. 2003a.

Constructive and collaborative learning of algorithms. In
Proceedings of the 34th SIGCSE Technical Symposium on
Computer Science Education, ACM Press, 6–10.

HÜBSCHER-YOUNGER, T., AND NARAYANAN, N. H. 2003b.

Designing for divergence. In Proceedings of the Computer
Support for Collaborative Learning Conference, in press.

HUNDHAUSEN, C. D. 2002. Integrating algorithm visualization

technology into an undergraduate algorithms course:
Ethnographic studies of a social constructivist approach.
Computers & Educations 39, 237–260.

HUNDHAUSEN, C. D., AND DOUGLAS, S. A. 2000. Using

visualizations to learn algorithms: Should students construct
their own, or view an expert’s? In Proceedings of the IEEE
Symposium on Visual Languages, IEEE Computer Society
Press, 21–28.

HUNDHAUSEN, C. D., AND DOUGLAS, S. A. 2002. Low-fidelity

algorithm visualization. Journal of Visual Languages and
Computing 13, 449–470.

HUNDHAUSEN, C. D., DOUGLAS, S. A., AND STASKO, J. T. 2002. A

meta-study of algorithm visualization effectiveness. Journal of
Visual Languages and Computing 13, 259–190.

LAHTINEN, S-P., SUTINEN, E., AND TARHIO, J. 1998. Automated

animation of algorithms with Eliot. Journal of Visual
Languages and Computing 9, 337–349.

LAVE, J., AND WENGER, E. 1991. Situated Learning: Legitimate

Peripheral Participation. Cambridge University Press.

LINN, M. C., AND BURBULES, N. C. 1993. Construction of

knowledge and group learning. In K. Tobin (Ed.), The Practice
of Constructivism In Science Education. Lawrence Erlbaum
Associates, 91–119.

NARAYANAN, N. H., AND HEGARTY, M. 2002. Multimedia design

for communication of dynamic information. International
Journal of Human-Computer Studies 57, 4, 279–315.

STASKO, J. T. 1997. Using student-built algorithm animations as

learning aids. In Proceedings of the 28th SIGCSE Technical
Symposium on Computer Science Education, ACM Press, 25–
29.

TVERSKY, B., MORRISON, J. B., AND BETRANCOURT, M. 2002.

Animation: Can it facilitate? International Journal of Human-
Computer Studies 57, 4, 247–262.

Figure 5. A screenshot from the Dancing Hampsters
(sic) visualization of the Fibonacci algorithm.

Figure 6. A portion of the Marble Statues visualization
of the Fibonacci algorithm.

Figure 7. Another visualization of the Fibonacci
algorithm.

