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Abstract

Algorithm visudization research for computer science education
has primarily focused on expert-created visudizations. However,
congtructionist and situated theories of learning suggest that
students should deveop and share their own diverse
understandings of a concept for deep learning. This paper presents
a novel approach to dgorithm learning by visudization
congtruction, sharing, and evaluation. Three empirica studies in
which students engaged in these activities are discussed. The
resulting learning benefits are quantified, and student
visualizations are characterized in multiple ways. Then another
study that investigated how specific characteristics of such
visualizations influence learning is described. This work
demonstrates the effectiveness of having students create algorithm
visualizations, identifies characteristics of student-created
agorithm visualizations and illuminates the learning benefits
derived from these characteristics.

CR Categories. K.3.1 [Computers & Education]: Computer Uses
in Education — Coallaborative Learning; K.3.2 [Computers &
Education]: Computer & Information Science Education -
Computer Science Education, Self-assessment.
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1 Introduction

As a recent survey [Hundhausen et d. 2002] indicates, a
predominant portion of the literature on dgorithm visudization
from the last two decades focuses on expert-created visualizations
intended for a student audience. However, constructionist and
situated theories of learning [e.g., Lave & Wenger 1991; Linn &
Burbules 1993] hold that learning will be deeper if mediated by
active creation and negotiation by individual and communities of
learners. These theories suggest that students must develop and
share their own diverse understandings of a concept. This presents
a dilemma to those interested in using or researching algorithm
visudlizations as learning tools. if students gan their
understanding solely from expert-created materids, how likey are
they to develop adiverse set of insights?
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Meanwhile, perhaps spurred by the lack of strong empirica proof
that such expert-created agorithm visuaizations significantly
improve student learning, a number of researchers have of late
investigated an adternative pedagogy: students learning by
congtructing their own agorithm visudizations [e.g., Anderson &
Naps 2001; Astrachan & Rodger 1998; Hundhausen & Douglas
2000; Stasko 1997]. Severd questions can be raised about such a
congtructive approach to learning from agorithm visuaizations.
Do students exhibit significant improvements in their
understanding of algorithms as a result of building their own
visualizations? What is the nature of student-created algorithm
visualizations? How do characteristics of student-created
visualizations affect their learning?

Extant literature on dgorithm visualization is insufficient to
provide unequivocal answers to these questions. Survey,
observationd and anecdotd data [Astrachan & Rodger 1998;
Stasko 1997] do suggest that students are motivated by, and
benefit from, constructing their own visudizations. However, it is
not clear whether these benefits are of a satistically significant or
generdizable nature. Hundhausen and Douglas [2000]
investigated the comparative question, and found no performance
differences between a group of students that interacted with an
expert-created animation and another that constructed their own
animations using art supplies. We are not aware of any studies
that have rigorously explored the nature and learning effects of
student-created a gorithm visuaizations

It is in this context that we present new research on student-
created algorithm visudizations in this paper. We use the term
agorithm visudization to mean a multimoda (i.e. visud and
verbal) representation that could involve a variety of media (i.e.
sound, animation, graphics or text), and which helps students
internally visudize the operations of an algorithm. Fird, we
present a novel approach to algorithm learning by visuaization
construction, sharing, and peer-evauation, and outline a system
designed to support students in these activities. Second, we
provide an overview of three empirical studies in which we had
students create agorithm visudizations and evaluate the
visualizations created by their peers on six characterigtics
familiarity, originality, pleasure, salience, understandability, and
usefulness. The resulting learning benefits are quantified, and the
visualizations are further characterized in terms of media use,
presence of metaphors and similarity to familiar styles. We then
discuss a study that considered how specific characteristics of
such visudizations influence learning. Finaly, the paper
concludes with a summary of the contributions of this research.
Related work is discussed throughout the paper as appropriate.

2 Our Approach
In order to learn an agorithm, we have students go through an

assignment consisting of the following four stages in the given
order.
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1. Individual Congtruction: Construct a visualization of the
algorithm, given its pseudocode. We intentionally keep this open-
ended, in that students are free to use any technique and software
tools they desire; in particular, no agorithm animation creation
tools are prescribed, and instructions to students used the more
neutral term “representation” instead of visuaization to avoid bias
toward graphica representations and animations.

2. Sharing with the Community: Exhibit the visualization to other
studentsin the class.

3. Peer Evaluation: Rate visudizations created by everyone else
using a five point Likert scale along the following six
characteristics that we devel oped in order to characterize student-
constructed visualizations.
Familiarity (“How familiar were you with the content of the
representation?”’)
Originality (“How much did this representation differ from
the other representations?’)
Pleasure (“How much did you enjoy the way this
representation communicated the algorithm?”)
Salience (“How well did this representation point out the
important features of the agorithm?’)
Understandability (“How easy was this representation to
understand?’)
Usefulness (“How central was this representation to your
understanding of the algorithm?")

4. Collaborative Discusson: Commenting on others
visualizations and responding to comments on one's own
visualization.

This approach was developed based on several considerations.
First, evidence in the literature [Chi et a. 1994] points to
beneficia effects of individudly trying to understand an
unfamiliar concept in order to explain it, to onesdf or others. This
motivated the fird stage of individually congtructing an
explanatory visudization in an unrestricted manner.

In addition to individua reflection, group interaction and
negotiation to collaboratively build knowledge and shared
understanding are also important to learning within a community.
This suggests that students need to work together as well asalone.
Indeed, in earlier studies we found that computer science
undergraduate students already form a community of practice in
which learners tend to study collaboratively, discussng and
congtructing a shared understanding of topics covered by their
ingructor [Hulbscher-Younger & Narayanan 2001; 2002].
Unfortunately, we also found that authority assigned to certain
explanatory visudizations (typicaly those provided by the
ingtructor) led students to ignore adternative explanations and fail
to understand the limitations of such visudizations [Hubscher-
Younger & Narayanan 2002]. We fet that visudizations built by
students themselves carry less authority. This would encourage
students to consder multiple peer-constructed visualizations
ingead of a few expert-provided ones, examine a particular
visualization's limitations as well as advantages, evduate it
accordingly, and engage in discussions. This was the motivation
behind stages 2, 3 and 4.

A web-based system caled CAROUSEL (Collaborative
Algorithm Representations Of Undergraduates for Self-Enhanced
Learning) was designed to support students in the second, third
and fourth stages. CAROUSEL is implemented using MySQL,
PHP, Javascript and HTML. A MySQL database running on an
Apache server dores visudizations that students upload,

evaluation information, comments, responses, user profile
information and student grades for activities. The server presents
students visualizations on web pages dynamically generated
using PHP. The web-based interface alows students and
instructors to set up course, schedule and activity information and
to submit visudizations, evauations, comments, responses and
grades. Once all visudizations for a particular agorithm have
been uploaded, the ingtructor (or experimenter) can set a date on
which they will become publicly, but anonymoudy, available for
viewing, evauating and commenting. CAROUSEL has additional
features for the instructor of a course to help manage course
activities. It permits students to share visualizations, provides
constant access to the visudizations, and dlows the
ingructor/experimenter to implement scheduled stages of
assignments. See [Hlbscher-Younger & Narayanan 2003a] for
additional information on this system.

3 Efficacy Of Visualization Construction

In this section we summarize results from three studies designed
to investigate whether the visuaization construction activity leads
to improved understanding of algorithms and what types of
visualizations students create. All studies had a common structure.
Student volunteers from a data structure or agorithms course
were solicited to participate for extra credit. In each study severa
agorithms were assigned, and participants were asked to
construct, share, evaluate and discuss visualizations of these, For
each agorithm, participants first took a pretest to measure their
baseline knowledge about the agorithm. Then the algorithm was
assigned by making its pseudocode avalable through
CAROUSEL. After this, participants generally had one week to
construct and upload a visualization. We placed no restrictions on
the nature of, or media to be used for, these visudizations. We
also caled these “representations’ instead of “visualizations’ to
avoid any bias toward graphics and animation. Students were free
to create these with paper, in which case scanning services were
offered to digitize such submissions. After the deadline for
uploading visualizations was over, CAROUSEL made these
publicly available to dl participants. They were then given about
a week to rate every visudization (other than their own) on the
aforementioned six characterigtics and to input comments and
responses. Afterwards they were given a posttest.

The pretests and posttests included three kinds of quegtions:
conceptua questions that probed factual knowledge (e.g. what is
the dement used to partition an array in quick sort called?),
procedurd questions that probed the understanding of how the
agorithm manipulates data (e.g., given an array, show the array’s
contents at the end of the third recursive cdl to quick sort), and
simulative questions that probed the ability to mentally simulate
the agorithm on given data (e.g., draw a recursion tree showing
all recursive cals that will be made for a given initid input). The
four stages generally overlapped, so that students were creating
and sharing new visualizations as well as rating and commenting
on old visudizations in any given week. Extra credit was attached
to each stage of an assignment, and students could choose which
stages they completed. The minimum requirement was to take the
pretest and the posttest, but a participant could choose whether to
create a visualization, evaluate others' visudizations and engage
in discussion.

Student learning performance (the difference between posttest and
pretest scores) was evaluated and compared based on which
activities they chose to do, i.e. whether they had chosen to both
create representations and evaluate others representations or to
just evduate representations. All the students who created a



representation for a particular assgnment did evaluate dl the
other representations, although they could have chosen not to do
this. Also, no student chose to just take the pretest and posttest
without evauating any representation, another possible choice.

3.1 The First Study

Twelve students vol unteered from a data structures and algorithms
course taken mostly by sophomore students. The study was
conducted over four weeks with three agorithm assignments:
calculating the Fibonacci series, selection sort and merge sort. The
study did not use a pretest, and one rating characteristic used was
contiguity (“how well did this representation connect with the
other representations for this algorithm?’) instead of originality.
CAROUSEL identified authors when publicly displaying the
visualizations. Also, the threaded discussion feature of
CAROUSEL was not ready at the time of this study, so students
were asked to do only creation, sharing and evaluation. A total of
36 visudizations were created by 11 of the 12 volunteers. For two
of the three dgorithms that were used in this study (selection and
merge sort), there was a significant positive correlation between
creating a visudization and posttest scores (r=.635, p=.07; r=.663,
p=.05), suggesting that visudization creation improves learning.

After this study, contiguity was replaced with originality, a
discussion capability was added to CAROUSEL, and the system
was changed to hide author information during the sharing,
evduation and commenting stages. The rating characteristic was
changed and authors made anonymous in order to discourage
convergence of representations, but a detailed discussion of this
issueis beyond the scope of this paper. See [Hlbscher-Y ounger &
Narayanan 2003b] for details.

3.2 The Second Study

Tablel. Test Scores

Algorithm Pretest Posttest Learning
Fibonacci 42% 59% 17%
Exponentiation 14% 51% 37%
Binary Search Tree 33% 62% 29%

L eftist Heap 12% 31% 19%
Selection Sort 40% 66% 26%
Merge Sort 11% 41% 30%
Quick Sort 29% 55% 26%
Disjoint Set 15% 56% 41%
Depth First Search 19% 50% 31%

Sixty students in an introductory agorithm anaysis course (this
course is generally taken by juniors, and a few seniors and
beginning graduate students) participated in this study. The study
was conducted over 12 weeks with nine algorithm assignments:
calculating the Fibonacci series, exponentiation, inserting a node
in abinary search tree, merging leftist heaps, selection sort, merge
sort, quick sort, find with path compression in a digjoint set and
depth-first search. Each assignment included taking a pretest, the
four stages with six rating characteristics described in Section 2,
and taking a posttest. A tota of 196 visudizations were created by
36 of the 60 volunteers.

Overdl results implied that the activities of creating, sharing and
evauating dgorithm visualizations aided learning. The student
participants improved their score from pretest to posttest by 30%
on average across all algorithms. Table 1 displays the average
normalized pretest, posttest and learning scores for each
agorithm. Learning was measured as the difference between the

pretest and posttest scores for each agorithm. Scores were
normaized by dividing the raw score by the maximum score
attained by any student on atest for a particular algorithm.

Moreover, visualization construction had a clear beneficia effect.
There was a dgnificant difference between the normalized
posttest scores (F(1,327)=14.4, p<.001) and the normalized
learning scores (F(1,327)=3.63, p=.058) of those who had and
those who had not created visudizations. In both cases, students
who created visudizations had higher scores than those who did
not (i.e. those who only evaluated and commented on others
visualizations). The mean for the normalized posttest scores for
the students who did not creste a visuaization was 46% and for
the students who did create one was 57%. The mean for the
normalized learning scores for the students who did not create a
visualization was 25% and for those who did create one was 31%.
When multiple linear regression analysis techniques were used to
look a how visualization creation and the agorithm covered
affected normalized learning scores, it was found that the model
was significant (F(9,318)=3.37, p<.001) and creating a
visualization had a significant positive effect on learning when the
choice of algorithm was controlled for (F(1,318)=5.025, p=.026).

In particular, the learning scores were significantly related to
whether a student created a visudization for two of the nine
agorithms: the recursive exponentiation agorithm (F(1, 35)
=5.06, p=.03) and quick sort (F (1,34) =3.99, p=.05). In the case
of the recursive exponentiation algorithm, the students who did
not create a visualization increased their score by 27%, and the
students who did create one increased their score by 45%. In the
case of quick sort, the students who did not create a visudization
increased their score by 17%, and the students who did create one
increased their score by 34%.

3.3 The Third Study

Table2. Test Scores

Algorithm Pretest Posttest Learning
Disjoint Set 20% 63% 43%
Shortest Path 42% 67% 25%
Huffman's Codes 8% 56% 48%
Depth First Search 21% 42% 21%

In this study 43 students in the same agorithms course (but in a
different term) created visualizations of four algorithms (find with
path compresson in a digoint set, Dijkstra’'s shortest path,
Huffman’s codes and depth-first search) over a four-week period.
Each assignment included pretesting, the four stages with six
rating characteristics described in Section 2, and posttesting. The
schedule was quite compressed in this study due to circumstances
beyond our control, so students were dealing with multiple
agorithms during each week. A total of 65 visualizations were
created by 22 of the 43 volunteers.

Overdl results implied that the activities of creating, sharing and
evaluating algorithm visualizations aided learning. The student
participants improved their score from pretest to posttest by 40%
on average across all algorithms. Table 2 displays the average
normalized pretest, posttest and learning scores for each
algorithm. Learning was measured as the difference between the
pretest and posttest scores for each agorithm. Scores were
normaized by dividing the raw score by the maximum score
attained by any student on atest for a particular algorithm.



Furthermore, visualization construction had a clear beneficia
effect. The normalized posttest scores (F(1,94)=5.44, p=.02) and
the normdized learning scores (F(1,94)=4.43, p=.04) across all
agorithms were dgnificantly different between those students
who created visudizations and those who only evauated and
commented on others' visualizations. In both cases, the students
who created the visudizations had higher scores than those who
did not. The mean for the normaized posttest scores for the
students who did not create a visualization was 48.2% and for the
students who did create one was 62%. The mean for the
normalized learning scores for the students who did not create a
visualization was 26.3% and for those who did create one was
40.2%. When multiple linear regression analysis techniques were
used to analyze how visudization creation and the algorithm
covered affected normalized learning scores, it was found that the
model was significant (F(4, 90)=5.71, p<.001). In the mode,
creating a visudization had a dgnificant podtive effect on
learning (F(1,90)=7.351, p=.008).

In particular, the normalized learning scores were significantly
related to whether a student crested a visudization for the
algorithm to generate Huffman's Codes (F (1, 23)=5.92, p=.02).
The average normalized learning score for this agorithm was
57% for those students who did create visualizations and 28% for
those who did not.

3.4 Discussion

It isfairly well established in the general education literature that
congtructing one€'s own explanations of a concept can lead to
better learning. But such work [e.g., Chi et a. 1994] generdly
pertains to children learning concepts. Our studies provide
evidence that this holds true for adult college students learning a
complex subject by constructing explanatory visualizations. These
results add to similar evidence presented by Hundhausen and
Douglas [2000]. What sets these studies apart, however, is that
this is the first time to our knowledge that a systematic series of
studies have demonstrated the benefits of visudization
construction in the algorithm domain with quantitative data. Our
studies were conducted over 20 weeks during three terms, and
involved over 100 students working with 11 different agorithms.

Hundhausen [2002] reports on ethnographic studies of students
constructing visuaizations, but the students were encouraged to
build “animations’” and “visualization storyboards’, biasing them
toward a certain kind of visualizations. What our studies showed
was that construction of explanatory visualizations, unfettered by
both specific ingructions and the need to learn a non-trivid
agorithm visudization language, does lead to improved learning.
This is an important result, given the time and effort that
researchers expend on building newer and better algorithm
animation tools[e.g., Lahtinen et d. 1998], and the time and effort
that an instructor and students of an a gorithms course have to set
aside for learning to use such tools. For instance, Hundhausen and
Douglas [2002] report that in one particular study they found
students spending 33 hours on average constructing an algorithm
visualization, mosgt of which was devoted to low-level graphics
programming needed to make animations work.

Even the use of so-called low-fiddity agorithm visualizations
[Hundhausen & Douglas 2002] introduces a layer of complexity
over and above that of understanding the underlying algorithm: in
this case trandating the agorithm’s mathematica logic to the
spatial logic of a scripting language. As an example, a sample
script for bubble sort provided in the aforementioned paper is 42
lines long, whereas the pseudocode for this algorithm can be

written in about 8 lines. End-user programming languages like
SALSA that these authors propose for building low-fidelity
agorithm visuaizations may ameliorate this translation problem
somewhat compared to the graphical programming required with
high-fidelity agorithm visualization construction tools. While it
can be argued that representational translation is unavoidable, and
perhaps even dedrable, in learning, specific algorithm
visualization construction tools force certain kinds of trandations.
Any such tool will require students to spend time learning it, and
bias them toward a particular kind of visualization — one that
involves agorithm animations. But recent research [Narayanan &
Hegarty 2002; Tversky et d. 2002] calls into question the
communicative efficacy and educationd benefits of animations
and interactivity found in typical computer-based visuaizations.

So our studies explored a more radical position: why not have
students define a visudization in whatever way they want
(thereby defining their own representational trandations), and
congtruct it using whichever tools they have at their disposal?
Visualizations in our studies were constructed by students using a
variety of tools — smple text and html editors, Javascript,
Macromedia Flash, etc., and many did not contain any graphica
representations whatsoever. Whether students will learn more or
less if they construct specific kinds of visudizations using
agorithm animation congtruction tools is a question yet to be
addressed. The studies reported here provide basdine data on
unrestricted self-congtruction of adgorithm visudizations, a
prerequisite to future comparative studies investigating such
questions.

One possible explanation for the increased learning evidenced in
these studies is that since sdlf-selection was involved, only the
brightest and most mativated students constructed visuaizations.
However, informal feedback indicated that severd struggling
students participated in the hopes of improving their course
grades, since extra credit was awarded for participation and was
not dependent on pretest and posttest scores. Furthermore, 92%,
60% and 51% of those who participated constructed at least one
visualization in each study. These suggest that a broad group of
students, not just the smart and motivated ones, participated, and
that a mgority of paticipants engaged in visudization
construction.

There were three factors that we did not control for. Even though
we avoided teaching an algorithm in class at the same time it was
being used in an assignment, given the nature of the study it was
impossible to control for students learning about an algorithm
outside the assigned tasks. Similarly, volunteers in the studies
presumably spent more time studying agorithms than those who
did not participate. But since mogt of the studentsin the classesin
which these studies were conducted chose to participate, and since
al of the volunteers undertook at least \representation evauation,
we did not have control groups that did not use CAROUSEL but
who spent a similar amount of time doing other educationa
activities with these a gorithms for compari son purposes.

4 Characterizing Visualizations

Now we turn to a discussion of characterizing the visualizations
congtructed by students in these studies. Participants rated each
visualization aong six characteristics: familiarity, origindity,
pleasure, sdience, understandability and usefulness. These raw
ratings and their average values provide a set of peer-measures for
the perceived qudity of a visudization. The experimenter did
three additional anadyses on the visudizations. The first was to
characterize media use. Media use was rated on a scale of 1 to 4



with level 1 being the use of only text, level 2 being the use of
graphics and/or text, level 3 being the use of graphics, text, sound
and/or animation and level 4 being the use of al of the previously
mentioned plus hypermedia and/or 3-D animation. The second
was to characterize the metaphoric content of a visualization.
Metaphoric content was rated with dummy variables to indicate
whether metaphors beyond the kind conventionaly found in
textbooks were present or not. The third was to characterize how
similar a visudization was to explanations found in the course
textbook or lectures. The experimenter rated visudizations on a
scaleof 1to 5 with 1 being arating for visudizations that are least
like a textbook or classroom explanation and 5 being a rating for
visualizations that are most like a textbook or classroom
explanation.

4.1 Media Use
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Figure 2. Media use patternsin study 2.

At the beginning of the first study, students chose to work with a
wide variety of media, including text, graphics, sound and
animation, based on their persond preferences. However, over the
course of the study, the students converged on asimple style, one
incorporating primarily graphics and text (Figure 1).
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Figure 3. Media use patternsin study 3.

It was found in the first study that adding graphics, animation and
sound to text resulted in a higher overdl rating. However, when
more complicated media, such as hypermedia or 3-D animation
were added, the ratings did not rise. Multiple linear regression
andysis techniques were used to explore how the use of different
media affected student ratings. The parameter estimates for media
use led to consistent conclusions about how media use affected
student ratings. The effect of adding graphics to text was positive
in all cases, except for the familiarity rating, where only a small
negative effect was estimated (-0.02). The effect of adding
animation or sound was always positive, except for the contiguity
rating, where only a smal negative effect was estimated (-0.02).
Adding hypermedia and/or 3-D animation always led to a large
significant negative effect on the rating.

Student ratings of al visudization characteristics were
significantly affected (p<.0001) by the type of media used in the
second study. The results are similar to the first study. Adding
graphics to text improved the rating of al characterigtics. Adding
sound and/or animation to a visudization improved the pleasure
and origindity ratings more than 0.5 points and the
understandability rating 0.1 point. Adding hypermedia (there were
actually no examples of 3-D animation in this study) improved the
ratings of al characteristics, except pleasure and origindity.
Figure 2 shows levels of media use in visualizations across
algorithmsin the second study.

Media use in study three is illustrated in Figure 3. Adding
graphics to text always led to increased ratings. Adding sound
and/or animation adways led to higher ratings for pleasure and
originality, and sometimes led to other rating benefits. Adding
hypermedia or interactive components did not necessarily lead to
increased ratings and sometimes led to decreased ratings. In
studies two and three, media use converged less toward any
specific style compared to the first study.

4.2 Metaphoric Content

In the firgt study it was found, using multiple logistic regression
andysis techniques, that the existence of unconventiona
metaphoric content had a significant effect on the student ratings
for salience and pleasure, G’S(5, 236) = 9.7 and 14.5, ps<0.1 and
0.05, respectively. The lack of metaphoric content led to higher
salience ratings, and the presence of metaphoric content led to
higher pleasure ratings.

The existence of a metaphor outside those normally used in the
classsoom was dignificantly related to the student ratings of



pleasure and originality (F(1, 205)= 8.37 and 23.38, p<.005,
respectively) in the second study. In both cases the relation was
positive, so the use of an unconventional metaphor led students to
rate the visualization more enjoyable and origind.

In the third study, unconventional metaphor was significantly and
negatively related to the student ratings of all characteristics
(p<.0001). However, unlike the second study, only a small portion
(15%) of the representations in this study contained an
unconventional metaphor.

4.3 Similarity to Familiar Styles

Similarity (to textbook or classroom styles) ratings of
visualizations from the first study increased over time with each
new agorithm: the first algorithm had an average rating of 3.4;
the second had 3.9; and the third had 4.7. Furthermore, the
average of al the ratings the students gave each visudization was
significantly positively related to the rating of how similar that
visualization was to a textbook or classroom explanation (F(1,
24)=3.9, p=.06). Multiple linear regresson andysis techniques
were used to explore how the ratings of the visuaizations
similarity to textbook or classroom explanations were related to
the student ratings of different characteristics. The similarity
rating's relations to students' ratings of usefulness, salience and
contiguity were positive and significant (F(1,24)=6.5, 6.0, and
10.6 respectively, p<.05). In other words, how smilar a
visudlization was to a textbook or classroom explanation
positively influenced not only the overdl rating that visudization
received, but aso student ratings for how useful that visudization
was for their understanding of the algorithm; how well that
visualization pointed out the salient features of the algorithm; and
how well it was contiguous with (built upon) the other
visualizations for that agorithm. For understandability and
familiarity, the effect was also positive, but not significant.
Interestingly, pleasure was the only student rating that was
negatively affected by a visudization’s similarity to a textbook or
classroom explanation, but the effect was not significant.

Unlike in the first study, there was not a trend toward the
visualizations becoming more smilar to those found in the
textbook in the second study. The average of al the ratings the
students gave each visualization was not significantly positively
related to the rating of how similar that visudization was to a
textbook or classroom explanation. Multiple linear regression
andysis techniques were used to explore how the ratings of the
visualizations' smilarity to textbook or classroom explanations
were relaed to the average student ratings of different
characteristics. The similarity ratings relation to students’ ratings
of usefulness, understandability and salience were positive and
significant (F(1,205)= 4.56, 5.25 and 9.65 respectively, p<.05). In
other words, student ratings of how useful a visudization was,
how understandable it was, and how well it pointed out the
important points of the agorithm were positively influenced by
how smilar that visuaization was to classroom and textbook
conventions. Familiarity was positively related, but the effect was
not significant. The similarity ratings' relation to students' ratings
of pleasure and originality were negative and sgnificant
(F(1,205)= 4.09 and 16.6 respectively, p<.05). In other words,
students rated a visualization higher in pleasure and originality, if
it differed from their classroom conventions.

There was not a trend toward the visualizations becoming more
like classroom or textbook explanations in study three. The
average of al the ratings the students gave each visudization was
not sgnificantly related to the rating of how similar that

visualization was to atextbook or classroom explanation. Multiple
linear regression analysis techniques were used to explore how the
ratings of the visualizations' similarity to textbook or classroom
explanations were related to the average student ratings of
different characterigics. The similarity ratings reation to
students’ rating of originaity was significant, but the relation was
negative. In other words, the higher the similarity rating was, the
lower the students rated the origindity of the visualization.

4.4 Diversity

Students congtructed a variety of visuaizations, differing both in
style and content. Some produced entertaining animations that
illustrated the mathematica basis of an dgorithm, such as the
Dancing Hamsters showing the Fibonacci series (Figure 5).
Others submitted pure text containing eaborate metaphorical
stories that illustrated what an agorithm computes (but not how),
such as a story about a shopkeeper who used the Fibonacci series
to balance his shelf of statues (Figure 6). A large portion of the
visualizations were in a walkthrough style (60% in the second
study and 70% in the third), giving an example of a data set and
showing how it would change over time as the algorithm operated
on it. This style focused on the execution of pseudocode. There
were aso graphica representations of pseudocode (Figure 7),
interactive caculators that illustrated agorithm efficiency, textua
representations that explained the main ideas and reasoning
behind an agorithm, and visuaizations that only represented the
results of agorithm execution on a specific input data set.

5 Linking Visualization Characteristics to
Learning Benefits

Now we turn to a study that addressed the following question.
How do specific characterigtics of student-created visualizations
affect what other students can learn about the dgorithm from
these visudizations (when the pseudocode is d so provided)?

While analyzing students’ visualizations we discovered that
salience and pleasure were important characteristics, because the
representations  differed  most in  these characteritics.
Visualizations with unconventional metaphoric content generdly
scored higher in pleasure and lower in salience, and visualizations
using a style of explanation similar to the course textbook (which
generaly used a walkthrough style) had in genera higher sdlience
scores, but lower pleasure scores. If a student considers a
particular style of explanation more pleasurable than others, he or
sheislikely to be more engaged with that visualization, and hence
learn more from it. Salience (“how well did this representation
point out the important features of the algorithm?”) indicates the
extent to which a particular visualization captures all the
important features of an algorithm. So the higher the sdience
rating of avisualization, the more oneislikely to learn from it. In
order to explore this issue further, we conducted the following

study.
5.1 Procedure

Forty-five students enrolled in an introductory agorithm analysis
class participated for extra credit. They were split into two
matched (based on course standing) groups. Group 1 (23 students)
and Group 2 (22 students). Participants met with the experimenter
in a computer lab. They were given an introduction to the study
and then asked to take a pretest. After completing the pretest, the
students were given the pseudocode for three agorithms
(Fibonacci, exponentiation and binary tree insertion) on paper, a



posttest and a URL to access a website. The URLSs given to each
participant presented different visuaizations based on the
student’s assigned group, as explained below. The students could
work with the pseudocode and visudizations to answer the
posttest questions, taking as much time as they needed. Learning
was measured as the difference between the score on the pretest
and the score on the posttest. Students could look at the
pseudocode and visudizations whil e taking the posttest.

The URL for Group 1 contained three visuaizations. One was for
the Fibonacci agorithm that received the highest average sdience
rating (4.32) among all visuaizations of this adgorithm in the three
previous studies. The second was for the exponentiation algorithm
that received the highest average pleasure rating (3.55) among all
visualizations of this algorithm in the three previous studies. The
third was for the binary search tree insertion algorithm that had
the maximum positive (average pleasure rating — average salience
rating) value (0.61) among al visualizations of this algorithm in
the three previous studies. The URL for Group 2 contained three
visualizations. One was for the Fibonacci dgorithm that received
the highest average pleasure rating (4.11) among all visualizations
of thisalgorithm in the three previous studies. The second was for
the exponentiation algorithm that received the highest average
salience rating (3.84) among al visualizations of this algorithm in
the three previous studies. The third was for the binary search tree
insertion adgorithm that had the maximum postive (average
salience rating — average pleasure rating) value (0.59) among all
visualizations of this algorithm in the three previous studies.

The two visualizations with the highest average pleasure ratings
that the groups saw were both created by the same person and had
asimilar style. They were both humorous stories using only text.
The one for the Fibonacci series was titled “A Tale of Fear,
Loathing and Greed on a College Campus’ and was about how a
university employee used the agorithm to determine how many
tickets to give out each day. The one for the exponentiation
algorithm titled “A Tale of Two Engineers’ told the story of
engineers from two riva universities writing iterative and
recursive algorithms for exponentiation.

The two visudizations with the highest average sdience ratings
that the groups saw were also created by the same person and had
a similar style. They both had a discussion of the problem, a
comparison between iterative and recursive algorithms for solving
the problem, and interactive components that cal culated results so
that students could see the efficiency difference between the two
discussed implementations.

The binary tree insertion visualizations had different authors.
Group 1's visudization contained an animation while Group 2's
visualization had text and static graphics.

5.2 Results

Table 3. Test Scores

Algorithm Pretest Posttest Learning
Fibonacci 39% 75% 36%
Exponentiation 20% 69% 49%
Binary Search Tree 56% 71% 15%

The maximum score possible on the pretests and posttests for the
different algorithms differed. Although there was one pretest and
one posttest given to the students, the tests were separated into
three sections, one for each algorithm. For the purposes of
andysis, the three sections are treated as three different tests. The

maximum possible score for the Fibonacci agorithm was 18, the
maximum score for the exponentiation algorithm was 11, and for
the binary search tree insertion agorithm was 12. Test scores
were normalized to percentages of the appropriate maximum.
Table 3 provides the pretest, posttest and learning score
percentages for each algorithm averaged over the entire set of 45
participants. Clearly, students were able to learn the agorithms
from pseudocode with the help of peer-constructed explanatory
visualizations.

Multiple linear regression analysis techniques were used to see
how the learning scores associated with a visualization were
related to its average rating of saience, average rating of pleasure
and the agorithm covered. The whole model with these variables
was ggnificant (F(4, 130)=13.1, p<.0001). The learning score's
relations to the visudization's average rating of sadience and
average ratiing of pleasure were both positive and significant
(F(1,130)=5.8 and 4.8, p=.02 and .03 respectively). In other
words, the higher the sdience rating and the higher the pleasure
rating of a visualization, the more a student learned from it. The
parameter estimates for the average salience and pleasure ratings
are 221 and 39.1 respectively, which suggest that how
pleasurable a visudization has more of an effect than the
visualization's salience on how much a student is able to learn
fromit.

This result was also obtained when a similar analysis that included
all six characterigtics was performed. A multiple linear regression
andysis technique was used to see how the learning scores
associated with a visualization were related to its average ratings
of sdience, pleasure, origindity/familiarity and
usefulness/understandability. Originality and familiarity (dso
usefulness and understandability) were combined for this analysis
because these two sets of characteristics turned out to be highly
correlated in the sample of visuaizations used. The whole model
with these variables was significant (F(4, 130)=6.02, p=.0001).
The learning scor€'s relations to the visualization's average
ratings of salience and pleasure were again both positive and
significant (F(1,130)=10.37 and 329, p=.002 and .072
respectively).

5.3 Discussion

The interesting finding from this study is that pleasure and
salience are characterigtics of student-created visualizations with a
positive impact on how much other students gain from these
visualizations. The implication of this for the design of algorithm
visualizations is that making them pleasurable to use is not just
icing on the cake, but has an impact on students' ability to derive
information from the presented materials. It is aso important, but
not enough, to make the central points regarding the algorithm
stand out well in the visualization. Also note that the highest
pleasure ratings for two agorithms went to visualizations that
only involved text, the contents of which were humorous and
related to everyday experiences of the student community. It is
often believed that the more polished the graphics or the more
advanced the media, the more pleasurable students will find the
presentation. When students become designers and eva uators of
visualizations themselves, they do not conform to this
presupposition.

6 Conclusion
Constructionism is gaining hold in the research on algorithm

visualization for education. Computer support for visuaization
congtruction typically comes in the form of a custom-designed



scripting or programming language and a system that interprets
the language to generate various kinds of visualizations. But what
if computer support is provided instead in the form of a system
that alows students to exhibit and evaluate their visudizations,
which they construct with whatever means they have at their
disposal? Will they learn from these activities? What kinds of
algorithm visudizations will they construct? Are there
characteristics of visualizations that are predictors of how much
viewers of these visuaizations will learn from them? This paper
presented studies and analyses addressing these questions.

We found that authoring and evauating visudizations helped
students learn about agorithms. Moreover, those who authored
visualizations learned significantly more than those who only
evauated others’ visudizations did. Students constructed a richer
and more diverse set of visualizations than those found in typica
ingructional materials. They also rated visualizations of their
peers on six characteristics. Contrary to the conventional wisdom
that multimedia is attractive to young adults, students did not give
high ratings to visualizations with complex media. We aso found
that viewers tend to learn more from visuaizations that were rated
high in sdience and pleasure.

The first contribution of this work is to provide quantitative
evidence to show that novices constructing, sharing and
evauating algorithm visualizations do indeed learn about the
underlying algorithms from these activities. These are activities
that can be instituted in the classroom with minimal effort on the
part of an instructor and minima training on the part of students.
They can be supported with a smple web-based system that
allows students to exhibit, rate and discuss the visudizations. The
second contribution is that it presents multiple ways of analyzing
student constructed algorithm visualizations. in terms of media
use, metaphoric content and similarity to conventiond styles, or
rated on a set of six characteristics. Two of these, salience and
pleasure, were found to positively impact learning.
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Now that the audience is prepared,

ON WITH THE HAMPSTERS!!!

Figure 5. A screenshot from the Dancing Hampster s
(gc) visualization of the Fibonacci algorithm.

Fibonacci algorithm representation 7

The Marble Statues

There was once an old salesman who had just acquired a large inventory of marble statues. Almost all the
statues were different sizes, ranging from very small to some that were so big the salesman could hardly Lft them.

Thinking to make his fortune with these statues, the salesman rented a small shop on the main street, and bought
a shelf to display some of his statues to the public. Unfortunately, once he got the shelf to his shop he realized
that although the shelf was very strong, it wasn't very stable. He found that if the items on the shelf were
unbalanced, then the shelf would eventually begin to lean until it finally toppled over.

Unable to afford a new shelf, the salesman hit upon an idea. He searched through his inventory of statues until
he found two one pound statues. He placed one statue on each end of the shelf to keep it balanced, but after
looking at it for awhile decided that the shelflooked to bare. 3o he searched through his inventory until he found
a two pound statue. He placed the two one pound statues on one end of the shelf, and balanced it out with the
two pound statue on the other end. Now satisfied, he made up a sign, and opened his shop for business.

Later that day, a woman came into his shop and was quite taken by the two one pound statues on the shelf. She
wanted to buy both statues, but couldn't afford them. Eventually, she made up her mind, and decided to just buy
one of the statues. The salesman gladly wrapped up the statue for her and took her money.

Although he was happy to have finally made a sale, this caused a bit of a problem for the salesmen. Now his
shelf was no longer balanced, and he could already see that it was leaning slightly. He searched and searched
through his inventory for another one pound statue to replace the one he had sold, but the closest he could get
was a three pound statue.

Figure 6. A portion of the M arble Statues visualization
of the Fibonacd algorithm.



Fibonacci Number Series Algorithm

Fib (N)
Return Fib (N-1) + Fib {N-2
R T

Figure 7. Another visualization of the Fibonacci
algorithm.



