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Abstract 
 
Algorithm visualization research for computer science education 
has primarily focused on expert-created visualizations. However, 
constructionist and situated theories of learning suggest that 
students should develop and share their own diverse 
understandings of a concept for deep learning. This paper presents 
a novel approach to algorithm learning by visualization 
construction, sharing, and evaluation. Three empirical studies in 
which students engaged in these activities are discussed. The 
resulting learning benefits are quantified, and student 
visualizations are characterized in multiple ways. Then another 
study that investigated how specific characteristics of such 
visualizations influence learning is described. This work 
demonstrates the effectiveness of having students create algorithm 
visualizations, identifies characteristics of student-created 
algorithm visualizations and illuminates the learning benefits 
derived from these characteristics. 
 
CR Categories: K.3.1 [Computers & Education]: Computer Uses 
in Education – Collaborative Learning; K.3.2 [Computers & 
Education]: Computer & Information Science Education - 
Computer Science Education, Self-assessment. 
 
Keywords: algorithms, empirical studies, learning, multimedia, 
representation, visualization. 
 
1 Introduction 
 
As a recent survey [Hundhausen et al. 2002] indicates, a 
predominant portion of the literature on algorithm visualization 
from the last two decades focuses on expert-created visualizations 
intended for a student audience. However, constructionist and 
situated theories of learning [e.g., Lave & Wenger 1991; Linn & 
Burbules 1993] hold that learning will be deeper if mediated by 
active creation and negotiation by individual and communities of 
learners. These theories suggest that students must develop and 
share their own diverse understandings of a concept. This presents 
a dilemma to those interested in using or researching algorithm 
visualizations as learning tools: if students gain their 
understanding solely from expert-created materials, how likely are 
they to develop a diverse set of insights? 
 
-------------------------------------------- 

*e-mail: hubsct@rpi.edu 
‡e-mail: narayan@eng.auburn.edu 

Meanwhile, perhaps spurred by the lack of strong empirical proof 
that such expert-created algorithm visualizations significantly 
improve student learning, a number of researchers have of late 
investigated an alternative pedagogy: students learning by 
constructing their own algorithm visualizations [e.g., Anderson & 
Naps 2001; Astrachan & Rodger 1998; Hundhausen & Douglas 
2000; Stasko 1997]. Several questions can be raised about such a 
constructive approach to learning from algorithm visualizations. 
Do students exhibit significant improvements in their 
understanding of algorithms as a result of building their own 
visualizations? What is the nature of student-created algorithm 
visualizations? How do characteristics of student-created 
visualizations affect their learning? 
 
Extant literature on algorithm visualization is insufficient to 
provide unequivocal answers to these questions. Survey, 
observational and anecdotal data [Astrachan & Rodger 1998; 
Stasko 1997] do suggest that students are motivated by, and 
benefit from, constructing their own visualizations. However, it is 
not clear whether these benefits are of a statistically significant or 
generalizable nature. Hundhausen and Douglas [2000] 
investigated the comparative question, and found no performance 
differences between a group of students that interacted with an 
expert-created animation and another that constructed their own 
animations using art supplies. We are not aware of any studies 
that have rigorously explored the nature and learning effects of 
student-created algorithm visualizations 
 
It is in this context that we present new research on student-
created algorithm visualizations in this paper. We use the term 
algorithm visualization to mean a multimodal (i.e. visual and 
verbal) representation that could involve a variety of media (i.e. 
sound, animation, graphics or text), and which helps students 
internally visualize the operations of an algorithm. First, we 
present a novel approach to algorithm learning by visualization 
construction, sharing, and peer-evaluation, and outline a system 
designed to support students in these activities. Second, we 
provide an overview of three empirical studies in which we had 
students create algorithm visualizations and evaluate the 
visualizations created by their peers on six characteristics: 
familiarity, originality, pleasure, salience, understandability, and 
usefulness. The resulting learning benefits are quantified, and the 
visualizations are further characterized in terms of media use, 
presence of metaphors and similarity to familiar styles. We then 
discuss a study that considered how specific characteristics of 
such visualizations influence learning. Finally, the paper 
concludes with a summary of the contributions of this research. 
Related work is discussed throughout the paper as appropriate. 
 
2 Our Approach 
 
In order to learn an algorithm, we have students go through an 
assignment consisting of the following four stages in the given 
order. 
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1. Individual Construction: Construct a visualization of the 
algorithm, given its pseudocode. We intentionally keep this open-
ended, in that students are free to use any technique and software 
tools they desire; in particular, no algorithm animation creation 
tools are prescribed, and instructions to students used the more 
neutral term “representation” instead of visualization to avoid bias 
toward graphical representations and animations. 
 
2. Sharing with the Community: Exhibit the visualization to other 
students in the class. 
 
3. Peer Evaluation: Rate visualizations created by everyone else 
using a five point Likert scale along the following six 
characteristics that we developed in order to characterize student-
constructed visualizations. 

Familiarity (“How familiar were you with the content of the 
representation?”) 

Originality (“How much did this representation differ from 
the other representations?”) 

Pleasure (“How much did you enjoy the way this 
representation communicated the algorithm?”) 

Salience (“How well did this representation point out the 
important features of the algorithm?”) 

Understandability (“How easy was this representation to 
understand?”) 

Usefulness (“How central was this representation to your 
understanding of the algorithm?”) 

 
4. Collaborative Discussion: Commenting on others’ 
visualizations and responding to comments on one’s own 
visualization. 
 
This approach was developed based on several considerations. 
First, evidence in the literature [Chi et al. 1994] points to 
beneficial effects of individually trying to understand an 
unfamiliar concept in order to explain it, to oneself or others. This 
motivated the first stage of individually constructing an 
explanatory visualization in an unrestricted manner. 
 
In addition to individual reflection, group interaction and 
negotiation to collaboratively build knowledge and shared 
understanding are also important to learning within a community. 
This suggests that students need to work together as well as alone. 
Indeed, in earlier studies we found that computer science 
undergraduate students already form a community of practice in 
which learners tend to study collaboratively, discussing and 
constructing a shared understanding of topics covered by their 
instructor [Hübscher-Younger & Narayanan 2001; 2002]. 
Unfortunately, we also found that authority assigned to certain 
explanatory visualizations (typically those provided by the 
instructor) led students to ignore alternative explanations and fail 
to understand the limitations of such visualizations [Hübscher-
Younger & Narayanan 2002]. We felt that visualizations built by 
students themselves carry less authority. This would encourage 
students to consider multiple peer-constructed visualizations 
instead of a few expert-provided ones, examine a particular 
visualization’s limitations as well as advantages, evaluate it 
accordingly, and engage in discussions. This was the motivation 
behind stages 2, 3 and 4. 
 
A web-based system called CAROUSEL (Collaborative 
Algorithm Representations Of Undergraduates for Self-Enhanced 
Learning) was designed to support students in the second, third 
and fourth stages. CAROUSEL is implemented using MySQL, 
PHP, Javascript and HTML. A MySQL database running on an 
Apache server stores visualizations that students upload, 

evaluation information, comments, responses, user profile 
information and student grades for activities. The server presents 
students’ visualizations on web pages dynamically generated 
using PHP. The web-based interface allows students and 
instructors to set up course, schedule and activity information and 
to submit visualizations, evaluations, comments, responses and 
grades. Once all visualizations for a particular algorithm have 
been uploaded, the instructor (or experimenter) can set a date on 
which they will become publicly, but anonymously, available for 
viewing, evaluating and commenting. CAROUSEL has additional 
features for the instructor of a course to help manage course 
activities. It permits students to share visualizations, provides 
constant access to the visualizations, and allows the 
instructor/experimenter to implement scheduled stages of 
assignments. See [Hübscher-Younger & Narayanan 2003a] for 
additional information on this system. 
 
3 Efficacy Of Visualization Construction 
 
In this section we summarize results from three studies designed 
to investigate whether the visualization construction activity leads 
to improved understanding of algorithms and what types of 
visualizations students create. All studies had a common structure. 
Student volunteers from a data structure or algorithms course 
were solicited to participate for extra credit. In each study several 
algorithms were assigned, and participants were asked to 
construct, share, evaluate and discuss visualizations of these. For 
each algorithm, participants first took a pretest to measure their 
baseline knowledge about the algorithm. Then the algorithm was 
assigned by making its pseudocode available through 
CAROUSEL. After this, participants generally had one week to 
construct and upload a visualization. We placed no restrictions on 
the nature of, or media to be used for, these visualizations. We 
also called these “representations” instead of “visualizations” to 
avoid any bias toward graphics and animation. Students were free 
to create these with paper, in which case scanning services were 
offered to digitize such submissions. After the deadline for 
uploading visualizations was over, CAROUSEL made these 
publicly available to all participants. They were then given about 
a week to rate every visualization (other than their own) on the 
aforementioned six characteristics and to input comments and 
responses. Afterwards they were given a posttest. 
 
The pretests and posttests included three kinds of questions: 
conceptual questions that probed factual knowledge (e.g. what is 
the element used to partition an array in quick sort called?), 
procedural questions that probed the understanding of how the 
algorithm manipulates data (e.g., given an array, show the array’s 
contents at the end of the third recursive call to quick sort), and 
simulative questions that probed the ability to mentally simulate 
the algorithm on given data (e.g., draw a recursion tree showing 
all recursive calls that will be made for a given initial input). The 
four stages generally overlapped, so that students were creating 
and sharing new visualizations as well as rating and commenting 
on old visualizations in any given week. Extra credit was attached 
to each stage of an assignment, and students could choose which 
stages they completed. The minimum requirement was to take the 
pretest and the posttest, but a participant could choose whether to 
create a visualization, evaluate others’ visualizations and engage 
in discussion. 
 
Student learning performance (the difference between posttest and 
pretest scores) was evaluated and compared based on which 
activities they chose to do, i.e. whether they had chosen to both 
create representations and evaluate others’ representations or to 
just evaluate representations. All the students who created a 



representation for a particular assignment did evaluate all the 
other representations, although they could have chosen not to do 
this. Also, no student chose to just take the pretest and posttest 
without evaluating any representation, another possible choice. 
 
3.1  The First Study 
 
Twelve students volunteered from a data structures and algorithms 
course taken mostly by sophomore students. The study was 
conducted over four weeks with three algorithm assignments: 
calculating the Fibonacci series, selection sort and merge sort. The 
study did not use a pretest, and one rating characteristic used was 
contiguity (“how well did this representation connect with the 
other representations for this algorithm?”) instead of originality. 
CAROUSEL identified authors when publicly displaying the 
visualizations. Also, the threaded discussion feature of 
CAROUSEL was not ready at the time of this study, so students 
were asked to do only creation, sharing and evaluation. A total of 
36 visualizations were created by 11 of the 12 volunteers. For two 
of the three algorithms that were used in this study (selection and 
merge sort), there was a significant positive correlation between 
creating a visualization and posttest scores (r=.635, p=.07; r=.663, 
p=.05), suggesting that visualization creation improves learning. 
 
After this study, contiguity was replaced with originality, a 
discussion capability was added to CAROUSEL, and the system 
was changed to hide author information during the sharing, 
evaluation and commenting stages. The rating characteristic was 
changed and authors made anonymous in order to discourage 
convergence of representations, but a detailed discussion of this 
issue is beyond the scope of this paper. See [Hübscher-Younger & 
Narayanan 2003b] for details. 
 
3.2  The Second Study 
 

Table 1. Test Scores 

Algorithm Pretest Posttest Learning 
Fibonacci  42% 59% 17% 
Exponentiation 14% 51% 37% 
Binary Search Tree 33% 62% 29% 
Leftist Heap 12% 31% 19% 
Selection Sort 40% 66% 26% 
Merge Sort 11% 41% 30% 
Quick Sort 29%  55% 26% 
Disjoint Set 15% 56% 41% 
Depth First Search 19% 50% 31% 
 
Sixty students in an introductory algorithm analysis course (this 
course is generally taken by juniors, and a few seniors and 
beginning graduate students) participated in this study. The study 
was conducted over 12 weeks with nine algorithm assignments: 
calculating the Fibonacci series, exponentiation, inserting a node 
in a binary search tree, merging leftist heaps, selection sort, merge 
sort, quick sort, find with path compression in a disjoint set and 
depth-first search. Each assignment included taking a pretest, the 
four stages with six rating characteristics described in Section 2, 
and taking a posttest. A total of 196 visualizations were created by 
36 of the 60 volunteers. 
 
Overall results implied that the activities of creating, sharing and 
evaluating algorithm visualizations aided learning. The student 
participants improved their score from pretest to posttest by 30% 
on average across all algorithms. Table 1 displays the average 
normalized pretest, posttest and learning scores for each 
algorithm. Learning was measured as the difference between the 

pretest and posttest scores for each algorithm. Scores were 
normalized by dividing the raw score by the maximum score 
attained by any student on a test for a particular algorithm. 
 
Moreover, visualization construction had a clear beneficial effect. 
There was a significant difference between the normalized 
posttest scores (F(1,327)=14.4, p<.001) and the normalized 
learning scores (F(1,327)=3.63, p=.058) of those who had and 
those who had not created visualizations. In both cases, students 
who created visualizations had higher scores than those who did 
not (i.e. those who only evaluated and commented on others’ 
visualizations). The mean for the normalized posttest scores for 
the students who did not create a visualization was 46% and for 
the students who did create one was 57%. The mean for the 
normalized learning scores for the students who did not create a 
visualization was 25% and for those who did create one was 31%. 
When multiple linear regression analysis techniques were used to 
look at how visualization creation and the algorithm covered 
affected normalized learning scores, it was found that the model 
was significant (F(9,318)=3.37, p<.001) and creating a 
visualization had a significant positive effect on learning when the 
choice of algorithm was controlled for (F(1,318)=5.025, p=.026). 
 
In particular, the learning scores were significantly related to 
whether a student created a visualization for two of the nine 
algorithms: the recursive exponentiation algorithm (F(1, 35) 
=5.06, p=.03) and quick sort (F (1,34) =3.99, p=.05). In the case 
of the recursive exponentiation algorithm, the students who did 
not create a visualization increased their score by 27%, and the 
students who did create one increased their score by 45%. In the 
case of quick sort, the students who did not create a visualization 
increased their score by 17%, and the students who did create one 
increased their score by 34%. 
 
3.3  The Third Study 
 

Table 2. Test Scores 

Algorithm Pretest Posttest Learning 
Disjoint Set 20% 63% 43% 
Shortest Path 42%  67% 25% 
Huffman’s Codes 8% 56% 48% 
Depth First Search 21% 42% 21% 
 

In this study 43 students in the same algorithms course (but in a 
different term) created visualizations of four algorithms (find with 
path compression in a disjoint set, Dijkstra’s shortest path, 
Huffman’s codes and depth-first search) over a four-week period. 
Each assignment included pretesting, the four stages with six 
rating characteristics described in Section 2, and posttesting. The 
schedule was quite compressed in this study due to circumstances 
beyond our control, so students were dealing with multiple 
algorithms during each week. A total of 65 visualizations were 
created by 22 of the 43 volunteers. 
 
Overall results implied that the activities of creating, sharing and 
evaluating algorithm visualizations aided learning. The student 
participants improved their score from pretest to posttest by 40% 
on average across all algorithms. Table 2 displays the average 
normalized pretest, posttest and learning scores for each 
algorithm. Learning was measured as the difference between the 
pretest and posttest scores for each algorithm. Scores were 
normalized by dividing the raw score by the maximum score 
attained by any student on a test for a particular algorithm. 
 



Furthermore, visualization construction had a clear beneficial 
effect. The normalized posttest scores (F(1,94)=5.44, p=.02) and 
the normalized learning scores (F(1,94)=4.43, p=.04) across all 
algorithms were significantly different between those students 
who created visualizations and those who only evaluated and 
commented on others’ visualizations. In both cases, the students 
who created the visualizations had higher scores than those who 
did not. The mean for the normalized posttest scores for the 
students who did not create a visualization was 48.2% and for the 
students who did create one was 62%. The mean for the 
normalized learning scores for the students who did not create a 
visualization was 26.3% and for those who did create one was 
40.2%. When multiple linear regression analysis techniques were 
used to analyze how visualization creation and the algorithm 
covered affected normalized learning scores, it was found that the 
model was significant (F(4, 90)=5.71, p<.001). In the model, 
creating a visualization had a significant positive effect on 
learning (F(1,90)=7.351, p=.008). 
 
In particular, the normalized learning scores were significantly 
related to whether a student created a visualization for the 
algorithm to generate Huffman’s Codes (F (1, 23)=5.92, p=.02). 
The average normalized learning score for this algorithm was 
57% for those students who did create visualizations and 28% for 
those who did not. 
 
3.4  Discussion 
 
It is fairly well established in the general education literature that 
constructing one’s own explanations of a concept can lead to 
better learning. But such work [e.g., Chi et al. 1994] generally 
pertains to children learning concepts. Our studies provide 
evidence that this holds true for adult college students learning a 
complex subject by constructing explanatory visualizations. These 
results add to similar evidence presented by Hundhausen and 
Douglas [2000]. What sets these studies apart, however, is that 
this is the first time to our knowledge that a systematic series of 
studies have demonstrated the benefits of visualization 
construction in the algorithm domain with quantitative data. Our 
studies were conducted over 20 weeks during three terms, and 
involved over 100 students working with 11 different algorithms. 
 
Hundhausen [2002] reports on ethnographic studies of students 
constructing visualizations, but the students were encouraged to 
build “animations” and “visualization storyboards”, biasing them 
toward a certain kind of visualizations. What our studies showed 
was that construction of explanatory visualizations, unfettered by 
both specific instructions and the need to learn a non-trivial 
algorithm visualization language, does lead to improved learning. 
This is an important result, given the time and effort that 
researchers expend on building newer and better algorithm 
animation tools [e.g., Lahtinen et al. 1998], and the time and effort 
that an instructor and students of an algorithms course have to set 
aside for learning to use such tools. For instance, Hundhausen and 
Douglas [2002] report that in one particular study they found 
students spending 33 hours on average constructing an algorithm 
visualization, most of which was devoted to low-level graphics 
programming needed to make animations work. 
 
Even the use of so-called low-fidelity algorithm visualizations 
[Hundhausen & Douglas 2002] introduces a layer of complexity 
over and above that of understanding the underlying algorithm: in 
this case translating the algorithm’s mathematical logic to the 
spatial logic of a scripting language. As an example, a sample 
script for bubble sort provided in the aforementioned paper is 42 
lines long, whereas the pseudocode for this algorithm can be 

written in about 8 lines. End-user programming languages like 
SALSA that these authors propose for building low-fidelity 
algorithm visualizations may ameliorate this translation problem 
somewhat compared to the graphical programming required with 
high-fidelity algorithm visualization construction tools. While it 
can be argued that representational translation is unavoidable, and 
perhaps even desirable, in learning, specific algorithm 
visualization construction tools force certain kinds of translations. 
Any such tool will require students to spend time learning it, and 
bias them toward a particular kind of visualization – one that 
involves algorithm animations. But recent research [Narayanan & 
Hegarty 2002; Tversky et al. 2002] calls into question the 
communicative efficacy and educational benefits of animations 
and interactivity found in typical computer-based visualizations. 
 
So our studies explored a more radical position: why not have 
students define a visualization in whatever way they want 
(thereby defining their own representational translations), and 
construct it using whichever tools they have at their disposal? 
Visualizations in our studies were constructed by students using a 
variety of tools – simple text and html editors, Javascript, 
Macromedia Flash, etc., and many did not contain any graphical 
representations whatsoever. Whether students will learn more or 
less if they construct specific kinds of visualizations using 
algorithm animation construction tools is a question yet to be 
addressed. The studies reported here provide baseline data on 
unrestricted self-construction of algorithm visualizations, a 
prerequisite to future comparative studies investigating such 
questions. 
 
One possible explanation for the increased learning evidenced in 
these studies is that since self-selection was involved, only the 
brightest and most motivated students constructed visualizations. 
However, informal feedback indicated that several struggling 
students participated in the hopes of improving their course 
grades, since extra credit was awarded for participation and was 
not dependent on pretest and posttest scores. Furthermore, 92%, 
60% and 51% of those who participated constructed at least one 
visualization in each study. These suggest that a broad group of 
students, not just the smart and motivated ones, participated, and 
that a majority of participants engaged in visualization 
construction. 
 
There were three factors that we did not control for. Even though 
we avoided teaching an algorithm in class at the same time it was 
being used in an assignment, given the nature of the study it was 
impossible to control for students learning about an algorithm 
outside the assigned tasks. Similarly, volunteers in the studies 
presumably spent more time studying algorithms than those who 
did not participate. But since most of the students in the classes in 
which these studies were conducted chose to participate, and since 
all of the volunteers undertook at least \representation evaluation, 
we did not have control groups that did not use CAROUSEL but 
who spent a similar amount of time doing other educational 
activities with these algorithms for comparison purposes. 
 
4 Characterizing Visualizations 
 
Now we turn to a discussion of characterizing the visualizations 
constructed by students in these studies. Participants rated each 
visualization along six characteristics: familiarity, originality, 
pleasure, salience, understandability and usefulness. These raw 
ratings and their average values provide a set of peer-measures for 
the perceived quality of a visualization. The experimenter did 
three additional analyses on the visualizations. The first was to 
characterize media use. Media use was rated on a scale of 1 to 4 



with level 1 being the use of only text, level 2 being the use of 
graphics and/or text, level 3 being the use of graphics, text, sound 
and/or animation and level 4 being the use of all of the previously 
mentioned plus hypermedia and/or 3-D animation. The second 
was to characterize the metaphoric content of a visualization. 
Metaphoric content was rated with dummy variables to indicate 
whether metaphors beyond the kind conventionally found in 
textbooks were present or not. The third was to characterize how 
similar a visualization was to explanations found in the course 
textbook or lectures. The experimenter rated visualizations on a 
scale of 1 to 5 with 1 being a rating for visualizations that are least 
like a textbook or classroom explanation and 5 being a rating for 
visualizations that are most like a textbook or classroom 
explanation. 
 
4.1  Media Use 

 
At the beginning of the first study, students chose to work with a 
wide variety of media, including text, graphics, sound and 
animation, based on their personal preferences. However, over the 
course of the study, the students converged on a simple style, one 
incorporating primarily graphics and text (Figure 1). 
 

It was found in the first study that adding graphics, animation and 
sound to text resulted in a higher overall rating. However, when 
more complicated media, such as hypermedia or 3-D animation 
were added, the ratings did not rise. Multiple linear regression 
analysis techniques were used to explore how the use of different 
media affected student ratings. The parameter estimates for media 
use led to consistent conclusions about how media use affected 
student ratings. The effect of adding graphics to text was positive 
in all cases, except for the familiarity rating, where only a small 
negative effect was estimated (-0.02). The effect of adding 
animation or sound was always positive, except for the contiguity 
rating, where only a small negative effect was estimated (-0.02). 
Adding hypermedia and/or 3-D animation always led to a large 
significant negative effect on the rating. 
 
Student ratings of all visualization characteristics were 
significantly affected (p<.0001) by the type of media used in the 
second study. The results are similar to the first study. Adding 
graphics to text improved the rating of all characteristics. Adding 
sound and/or animation to a visualization improved the pleasure 
and originality ratings more than 0.5 points and the 
understandability rating 0.1 point. Adding hypermedia (there were 
actually no examples of 3-D animation in this study) improved the 
ratings of all characteristics, except pleasure and originality. 
Figure 2 shows levels of media use in visualizations across 
algorithms in the second study. 
 
Media use in study three is illustrated in Figure 3. Adding 
graphics to text always led to increased ratings. Adding sound 
and/or animation always led to higher ratings for pleasure and 
originality, and sometimes led to other rating benefits. Adding 
hypermedia or interactive components did not necessarily lead to 
increased ratings and sometimes led to decreased ratings. In 
studies two and three, media use converged less toward any 
specific style compared to the first study. 
 
4.2  Metaphoric Content 
 
In the first study it was found, using multiple logistic regression 
analysis techniques, that the existence of unconventional 
metaphoric content had a significant effect on the student ratings 
for salience and pleasure, G2s(5, 236) = 9.7 and 14.5, ps<0.1 and 
0.05, respectively. The lack of metaphoric content led to higher 
salience ratings, and the presence of metaphoric content led to 
higher pleasure ratings. 
 
The existence of a metaphor outside those normally used in the 
classroom was significantly related to the student ratings of 

Figure 1. Media use patterns in study 1. 
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Figure 2. Media use patterns in study 2. 

Figure 3. Media use patterns in study 3. 
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pleasure and originality (F(1, 205)= 8.37 and 23.38, p<.005, 
respectively) in the second study. In both cases the relation was 
positive, so the use of an unconventional metaphor led students to 
rate the visualization more enjoyable and original.  
 
In the third study, unconventional metaphor was significantly and 
negatively related to the student ratings of all characteristics 
(p<.0001). However, unlike the second study, only a small portion 
(15%) of the representations in this study contained an 
unconventional metaphor. 
 
4.3  Similarity to Familiar Styles 
 
Similarity (to textbook or classroom styles) ratings of 
visualizations from the first study increased over time with each 
new algorithm: the first algorithm had an average rating of 3.4; 
the second had 3.9; and the third had 4.7. Furthermore, the 
average of all the ratings the students gave each visualization was 
significantly positively related to the rating of how similar that 
visualization was to a textbook or classroom explanation (F(1, 
24)=3.9, p=.06). Multiple linear regression analysis techniques 
were used to explore how the ratings of the visualizations’ 
similarity to textbook or classroom explanations were related to 
the student ratings of different characteristics. The similarity 
rating’s relations to students’ ratings of usefulness, salience and 
contiguity were positive and significant (F(1,24)=6.5, 6.0, and 
10.6 respectively, p<.05). In other words, how similar a 
visualization was to a textbook or classroom explanation 
positively influenced not only the overall rating that visualization 
received, but also student ratings for how useful that visualization 
was for their understanding of the algorithm; how well that 
visualization pointed out the salient features of the algorithm; and 
how well it was contiguous with (built upon) the other 
visualizations for that algorithm. For understandability and 
familiarity, the effect was also positive, but not significant. 
Interestingly, pleasure was the only student rating that was 
negatively affected by a visualization’s similarity to a textbook or 
classroom explanation, but the effect was not significant. 
 
Unlike in the first study, there was not a trend toward the 
visualizations becoming more similar to those found in the 
textbook in the second study. The average of all the ratings the 
students gave each visualization was not significantly positively 
related to the rating of how similar that visualization was to a 
textbook or classroom explanation. Multiple linear regression 
analysis techniques were used to explore how the ratings of the 
visualizations’ similarity to textbook or classroom explanations 
were related to the average student ratings of different 
characteristics. The similarity ratings’ relation to students’ ratings 
of usefulness, understandability and salience were positive and 
significant (F(1,205)= 4.56, 5.25 and 9.65 respectively, p<.05). In 
other words, student ratings of how useful a visualization was, 
how understandable it was, and how well it pointed out the 
important points of the algorithm were positively influenced by 
how similar that visualization was to classroom and textbook 
conventions. Familiarity was positively related, but the effect was 
not significant. The similarity ratings’ relation to students’ ratings 
of pleasure and originality were negative and significant 
(F(1,205)= 4.09 and 16.6 respectively, p<.05). In other words, 
students rated a visualization higher in pleasure and originality, if 
it differed from their classroom conventions. 
 
There was not a trend toward the visualizations becoming more 
like classroom or textbook explanations in study three. The 
average of all the ratings the students gave each visualization was 
not significantly related to the rating of how similar that 

visualization was to a textbook or classroom explanation. Multiple 
linear regression analysis techniques were used to explore how the 
ratings of the visualizations’ similarity to textbook or classroom 
explanations were related to the average student ratings of 
different characteristics. The similarity ratings’ relation to 
students’ rating of originality was significant, but the relation was 
negative. In other words, the higher the similarity rating was, the 
lower the students rated the originality of the visualization. 
 
4.4  Diversity 
 
Students constructed a variety of visualizations, differing both in 
style and content. Some produced entertaining animations that 
illustrated the mathematical basis of an algorithm, such as the 
Dancing Hamsters showing the Fibonacci series (Figure 5). 
Others submitted pure text containing elaborate metaphorical 
stories that illustrated what an algorithm computes (but not how), 
such as a story about a shopkeeper who used the Fibonacci series 
to balance his shelf of statues (Figure 6). A large portion of the 
visualizations were in a walkthrough style (60% in the second 
study and 70% in the third), giving an example of a data set and 
showing how it would change over time as the algorithm operated 
on it. This style focused on the execution of pseudocode. There 
were also graphical representations of pseudocode (Figure 7), 
interactive calculators that illustrated algorithm efficiency, textual 
representations that explained the main ideas and reasoning 
behind an algorithm, and visualizations that only represented the 
results of algorithm execution on a specific input data set. 
 
5 Linking Visualization Characteristics to 
Learning Benefits 
 
Now we turn to a study that addressed the following question. 
How do specific characteristics of student-created visualizations 
affect what other students can learn about the algorithm  from 
these visualizations (when the pseudocode is also provided)? 
 
While analyzing students’ visualizations we discovered that 
salience and pleasure were important characteristics, because the 
representations differed most in these characteristics. 
Visualizations with unconventional metaphoric content generally 
scored higher in pleasure and lower in salience, and visualizations 
using a style of explanation similar to the course textbook (which 
generally used a walkthrough style) had in general higher salience 
scores, but lower pleasure scores. If a student considers a 
particular style of explanation more pleasurable than others, he or 
she is likely to be more engaged with that visualization, and hence 
learn more from it. Salience (“how well did this representation 
point out the important features of the algorithm?”) indicates the 
extent to which a particular visualization captures all the 
important features of an algorithm. So the higher the salience 
rating of a visualization, the more one is likely to learn from it. In 
order to explore this issue further, we conducted the following 
study. 
 
5.1  Procedure 
 
Forty-five students enrolled in an introductory algorithm analysis 
class participated for extra credit. They were split into two 
matched (based on course standing) groups: Group 1 (23 students) 
and Group 2 (22 students). Participants met with the experimenter 
in a computer lab. They were given an introduction to the study 
and then asked to take a pretest. After completing the pretest, the 
students were given the pseudocode for three algorithms 
(Fibonacci, exponentiation and binary tree insertion) on paper, a 



posttest and a URL to access a website. The URLs given to each 
participant presented different visualizations based on the 
student’s assigned group, as explained below. The students could 
work with the pseudocode and visualizations to answer the 
posttest questions, taking as much time as they needed. Learning 
was measured as the difference between the score on the pretest 
and the score on the posttest. Students could look at the 
pseudocode and visualizations while taking the posttest. 
 
The URL for Group 1 contained three visualizations. One was for 
the Fibonacci algorithm that received the highest average salience 
rating (4.32) among all visualizations of this algorithm in the three 
previous studies. The second was for the exponentiation algorithm 
that received the highest average pleasure rating (3.55) among all 
visualizations of this algorithm in the three previous studies. The 
third was for the binary search tree insertion algorithm that had 
the maximum positive (average pleasure rating – average salience 
rating) value (0.61) among all visualizations of this algorithm in 
the three previous studies. The URL for Group 2 contained three 
visualizations. One was for the Fibonacci algorithm that received 
the highest average pleasure rating (4.11) among all visualizations 
of this algorithm in the three previous studies. The second was for 
the exponentiation algorithm that received the highest average 
salience rating (3.84) among all visualizations of this algorithm in 
the three previous studies. The third was for the binary search tree 
insertion algorithm that had the maximum positive (average 
salience rating – average pleasure rating) value (0.59) among all 
visualizations of this algorithm in the three previous studies. 
 
The two visualizations with the highest average pleasure ratings 
that the groups saw were both created by the same person and had 
a similar style. They were both humorous stories using only text. 
The one for the Fibonacci series was titled “A Tale of Fear, 
Loathing and Greed on a College Campus” and was about how a 
university employee used the algorithm to determine how many 
tickets to give out each day. The one for the exponentiation 
algorithm titled “A Tale of Two Engineers” told the story of 
engineers from two rival universities writing iterative and 
recursive algorithms for exponentiation. 
 
The two visualizations with the highest average salience ratings 
that the groups saw were also created by the same person and had 
a similar style. They both had a discussion of the problem, a 
comparison between iterative and recursive algorithms for solving 
the problem, and interactive components that calculated results so 
that students could see the efficiency difference between the two 
discussed implementations. 
 
The binary tree insertion visualizations had different authors. 
Group 1’s visualization contained an animation while Group 2’s 
visualization had text and static graphics. 
 
5.2  Results 
 

Table 3. Test Scores 

Algorithm Pretest Posttest Learning 
Fibonacci 39% 75% 36% 
Exponentiation 20%  69% 49% 
Binary Search Tree  56% 71% 15% 

 

The maximum score possible on the pretests and posttests for the 
different algorithms differed. Although there was one pretest and 
one posttest given to the students, the tests were separated into 
three sections, one for each algorithm. For the purposes of 
analysis, the three sections are treated as three different tests. The 

maximum possible score for the Fibonacci algorithm was 18, the 
maximum score for the exponentiation algorithm was 11, and for 
the binary search tree insertion algorithm was 12. Test scores 
were normalized to percentages of the appropriate maximum. 
Table 3 provides the pretest, posttest and learning score 
percentages for each algorithm averaged over the entire set of 45 
participants. Clearly, students were able to learn the algorithms 
from pseudocode with the help of peer-constructed explanatory 
visualizations. 
 
Multiple linear regression analysis techniques were used to see 
how the learning scores associated with a visualization were 
related to its average rating of salience, average rating of pleasure 
and the algorithm covered. The whole model with these variables 
was significant (F(4, 130)=13.1, p<.0001). The learning score’s 
relations to the visualization’s average rating of salience and 
average rating of pleasure were both positive and significant 
(F(1,130)=5.8 and 4.8, p=.02 and .03 respectively). In other 
words, the higher the salience rating and the higher the pleasure 
rating of a visualization, the more a student learned from it. The 
parameter estimates for the average salience and pleasure ratings 
are 22.1 and 39.1 respectively, which suggest that how 
pleasurable a visualization has more of an effect than the 
visualization’s salience on how much a student is able to learn 
from it. 
 
This result was also obtained when a similar analysis that included 
all six characteristics was performed. A multiple linear regression 
analysis technique was used to see how the learning scores 
associated with a visualization were related to its average ratings 
of salience, pleasure, originality/familiarity and 
usefulness/understandability. Originality and familiarity (also 
usefulness and understandability) were combined for this analysis 
because these two sets of characteristics turned out to be highly 
correlated in the sample of visualizations used. The whole model 
with these variables was significant (F(4, 130)=6.02, p=.0001). 
The learning score’s relations to the visualization’s average 
ratings of salience and pleasure were again both positive and 
significant (F(1,130)=10.37 and 3.29, p=.002 and .072 
respectively). 
 
5.3  Discussion 
 
The interesting finding from this study is that pleasure and 
salience are characteristics of student-created visualizations with a 
positive impact on how much other students gain from these 
visualizations. The implication of this for the design of algorithm 
visualizations is that making them pleasurable to use is not just 
icing on the cake, but has an impact on students’ ability to derive 
information from the presented materials. It is also important, but 
not enough, to make the central points regarding the algorithm 
stand out well in the visualization. Also note that the highest 
pleasure ratings for two algorithms went to visualizations that 
only involved text, the contents of which were humorous and 
related to everyday experiences of the student community. It is 
often believed that the more polished the graphics or the more 
advanced the media, the more pleasurable students will find the 
presentation. When students become designers and evaluators of 
visualizations themselves, they do not conform to this 
presupposition. 
 
6 Conclusion 
 
Constructionism is gaining hold in the research on algorithm 
visualization for education. Computer support for visualization 
construction typically comes in the form of a custom-designed 



scripting or programming language and a system that interprets 
the language to generate various kinds of visualizations. But what 
if computer support is provided instead in the form of a system 
that allows students to exhibit and evaluate their visualizations, 
which they construct with whatever means they have at their 
disposal? Will they learn from these activities? What kinds of 
algorithm visualizations will they construct? Are there 
characteristics of visualizations that are predictors of how much 
viewers of these visualizations will learn from them? This paper 
presented studies and analyses addressing these questions. 
 
We found that authoring and evaluating visualizations helped 
students learn about algorithms. Moreover, those who authored 
visualizations learned significantly more than those who only 
evaluated others’ visualizations did. Students constructed a richer 
and more diverse set of visualizations than those found in typical 
instructional materials. They also rated visualizations of their 
peers on six characteristics. Contrary to the conventional wisdom 
that multimedia is attractive to young adults, students did not give 
high ratings to visualizations with complex media. We also found 
that viewers tend to learn more from visualizations that were rated 
high in salience and pleasure. 
 
The first contribution of this work is to provide quantitative 
evidence to show that novices constructing, sharing and 
evaluating algorithm visualizations do indeed learn about the 
underlying algorithms from these activities. These are activities 
that can be instituted in the classroom with minimal effort on the 
part of an instructor and minimal training on the part of students. 
They can be supported with a simple web-based system that 
allows students to exhibit, rate and discuss the visualizations. The 
second contribution is that it presents multiple ways of analyzing 
student constructed algorithm visualizations: in terms of media 
use, metaphoric content and similarity to conventional styles, or 
rated on a set of six characteristics. Two of these, salience and 
pleasure, were found to positively impact learning. 
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Figure 5. A screenshot from the Dancing Hampsters 
(sic) visualization of the Fibonacci algorithm. 

 
 
 

Figure 6. A portion of the Marble Statues visualization 
of the Fibonacci algorithm.  

 
 



Figure 7. Another visualization of the Fibonacci 
algorithm.  

 
 


