Ex: A certain metal strain gauge has a nominal resistance of 1kΩ, and has a GF = 2. If it experiences a 1% axial strain, what does the resistance become?

Solution

\[\varepsilon = \frac{\Delta L}{L} = 0.01 \rightarrow \Delta L = 0.01 \times 1\% \]

\[GF = \frac{\Delta R}{R} \Rightarrow \Delta R = R \times GF = (1000 \times 0.01)(2) = 20 \Omega \]

\[R_{new} = R + \Delta R = 1000 + 20 = 1020 \Omega \]

Single Crystal Si:

- **P-Type**: GF up to +200
- **N-Type**: GF down to -125

Note: a negative GF means that resistance decreases with applied strain.

\[\frac{\Delta P}{P} = PE \] what causes the piezo-resistive effect?

Answer: the applied strain affects the majority charge carriers in the semiconductor material.

- **P-Type**: strain \(\uparrow \) mobility of the holes \(\psi : p \uparrow \)
- **N-Type**: strain \(\uparrow \) mobility of the electrons \(\uparrow : p \downarrow \)

Note: This effect is highly dependent on crystallographic orientation, doping level and temperature.
\[\frac{\Delta l}{l} = T_2 \sigma_2 + T_4 \sigma_4 \]

where:
- \(T_2 \) = longitudinal piezoresistive coefficient
- \(T_4 \) = transverse coefficient
- \(\sigma_2 \) = longitudinal stress
- \(\sigma_4 \) = transverse stress

The longitudinal direction is defined as the direction parallel to the current flow through the piezoresistor.

![Diagram](image)

\(T_2 \) and \(T_4 \) are a function of crystal orientation, doping and temperature.

Poly Silicon

A polycrystalline

\[\Rightarrow \text{ the piezoresistive effects average over all directions} \]

\[\therefore \text{GF}_{\text{poly}} < \text{GF}_{\text{single crystal}} \]

\(P \)-Type poly Si: \(\text{GF} \approx +30 \)

\(N \)-Type poly Si: \(\text{GF} \approx -30 \)

Poly Si can be deposited as a thin film (up to a few \(\mu \)m) \([\text{LPCVD}]\) and selectively doped.

\(\therefore \) both \(N \) and \(P \)-type poly Si piezoresistors can be realized
the same device is useful for realizing a Wheatstone bridge sensor.

Where to place a piezoresistor?

Consider this device:

\[
\begin{align*}
p; R &= R_0 + \Delta R \\
n; R &= R_0 - \Delta R \\
\Delta R &= f(\sigma) \\
&= f(\text{displacement})
\end{align*}
\]

Use Wheatstone Bridge Circuit Interface.
Example Microsensor: HMX2000

Hygrometry HM2000 MEMS Humidity Sensor

Glass backing over back side

Polymer coated beams - piezoresistive bridge

Back Side

Front Side

~2mm