1. Theoretical Analysis of Accelerometers

model: \[\begin{array}{c}
\dot{y}(t) \\
y(t) \\
\dot{x}(t) \\
x(t)
\end{array} \]
\[\begin{array}{c}
\ddot{y}(t) \\
k \\
C \\
m
\end{array} \]
\[y(t) \text{ is our input} \]
\[x(t) \text{ is our output} \]

For a constant acceleration, a steady state condition: \[\dot{x} = \ddot{y}, \quad x = y \]

\[F_{\text{inertial}} = F_{\text{spring}} \]
\[m\ddot{x} = k\dot{d}, \quad d = \text{spring displacement} \]
\[ma = kd \]
\[d = a \frac{m}{k} = \frac{a}{w_n^2} \quad \text{since} \quad w_n = \sqrt{\frac{k}{m}} \]

Define:
Sensitivity \(S = \frac{m}{k} = \frac{1}{w_n^2} \rightarrow d = aS \)

Trade Off:
wide bandwidth sensor: large \(w_n \rightarrow \) low sensitivity
high sensitivity sensor: large \(S \rightarrow \) low bandwidth

a) Damping Ratio, \(\xi \) for an accelerometer

another model: \[\begin{array}{c}
\dot{y}(t) \\
y(t) \\
\dot{x}(t) \\
x(t) \\
f(t)
\end{array} \]
\[\begin{array}{c}
k \\
C \\
m \\
f(t)
\end{array} \]

\(f(t) = \text{inertial force} = ma(t) \)

System dynamics: \[m\ddot{x} + c\dot{x} + k\dot{x} = f(t) = ma(t) \]
\[X(s) s^2 + X(s) s \frac{c}{m} + X(s) \frac{k}{m} = A(s) \]
\[\frac{X(s)}{A(s)} = \frac{1}{s^2 + \frac{c}{m} s + \frac{\omega_n^2}{m}} = \frac{1}{s^2 + 2\xi \omega_n s + \omega_n^2} \]

Plot of \(\frac{\left| X(s) \right|}{Y(s)} v.s. \omega : \)

\[\frac{1}{\omega_n^2} \quad \frac{\xi}{\omega_n} \]

For accelerometers, \(\xi = 1 \) usually \(\rightarrow \) critically damped

\(\rightarrow \) fast response time

\(\rightarrow \) no overshoot in the time response

b. Frequency Domain Analysis of an accelerometer with \(\xi = 1 \)

For the system spring model: \(F_s = k_{sys} d \)

where \(d(t) = y(t) - x(t) \) \(\rightarrow \) earlier: \(d = aS = a \frac{m}{m} = \frac{a}{\omega_n} \), \(a = \text{constant} \)

or \(D(s) = Y(s) - X(s) \)

From Transmissibility (earlier in the semester):

\[T(s) = \frac{X(s)}{Y(s)} = \frac{2\xi \omega_n s + \omega_n^2}{s^2 + 2\xi \omega_n s + \omega_n^2} \]

\(\therefore X(s) = Y(s) T(s) \)

and \(D(s) = Y(s) - X(s) \)

\[= Y(s) - Y(s) T(s) \]

\[= Y(s)(1 - T(s)) \]
\[1 - T(s) = \frac{s^2 + 2\beta \omega_n s + \omega_n^2}{s^2 + 2\beta \omega_n s + \omega_n^2} - \frac{2\beta \omega_n s + \omega_n^2}{s^2 + 2\beta \omega_n s + \omega_n^2} \]

\[= \frac{s^2}{s^2 + 2\beta \omega_n s + \omega_n^2} \]

\[\therefore D(s) = Y(s) \left[\frac{s^2}{s^2 + 2\beta \omega_n s + \omega_n^2} \right] \]

\[s = 1 \]

From last time:

- For a constant acceleration \(\dddot{y} = \alpha \rightarrow y(t) = \frac{1}{2}at^2 \)
 - and \(y(0) = \frac{a}{s^2} \)

Note:

\[s^2 + 2\omega_n s + \omega_n^2 = (s + \omega_n)^2 \]

\[\therefore D(s) = \frac{a}{s(s + \omega_n)^2} \]

We want to find \(\dddot{y}(t) = \mathcal{F}^{-1} \{ D(s) \} \)

- Use Partial Fraction Expansion

\[\frac{a}{s(s + \omega_n)^2} = \frac{k_1}{s} + \frac{k_2}{s + \omega_n} + \frac{k_3}{(s + \omega_n)^2} \]

\[k_1 = \frac{a}{(s + \omega_n)^2} \bigg|_{s=0} = \frac{a}{\omega_n^2} \]

\[k_3 = \frac{a}{s} \bigg|_{s=\omega_n} = -\frac{a}{\omega_n} \]
For \(K_2 \):

\[
\frac{a}{s(1+sw_0)^2} = \frac{K_1}{s} + \frac{K_2}{s+sw_0} + \frac{K_3}{s(1+sw_0)^2}
\]

or

\[
a = K_1(s+sw_0)^2 + K_2(s+sw_0) + K_3 s
\]

\[= K_1(s^2+2sw_0s+w_0^2) + K_2(s^2+w_0s) + K_3 s \quad \text{Eq A}
\]

\[
\frac{dA}{ds} = 0 = K_1(2s+2w_0) + K_2(2s+w_0) + K_3 \quad \text{Eq B}
\]

\[
\frac{dB}{ds} = 0 = 2K_1 + 2K_2 + 0
\]

\[
; K_2 = -K_1 = -\frac{a}{w_0^2}
\]

\[
; B(s) = \frac{a}{w_0^2 s} - \frac{a}{w_0^2(s+sw_0)} - \frac{a}{w_0(s+sw_0)^2}
\]

Use Laplace Transform Tables:

\[
\frac{K}{s} \rightarrow K
\]

\[
\frac{1}{s-K} \rightarrow e^{kt}
\]

\[
\frac{1}{(s-K)^2} \rightarrow te^{kt}
\]

\[
\therefore \quad d(t) = \mathcal{L}^{-1}[B(s)] = \frac{a}{w_0^2} - \frac{a}{w_0^2} e^{-w_0t} - \frac{a}{w_0} + e^{-w_0t}
\]

\[\text{steady state term} \quad \text{transient term : time constant } t_c = \frac{1}{w_0} \]

\[
; d(t) \bigg|_{s.s.} = \frac{a}{w_0^2} = \frac{am}{K} = aS \rightarrow \text{same as before}
\]

\[
; \text{if you know } S \rightarrow \text{measure spring deflection to determine } a
\]

\[
\Rightarrow \text{plot on next page: } d(t) \text{ vs } t \text{ for } a=1m/s^2 \text{ and } w_0=1rad/s \text{ with } S=1
\]
\[d(t) \text{ Vs Time for } a=1\text{m/s}^2, \, \omega_n=1\text{rad/s} \]
1) Accelerometer Structures

\[\text{Steady State: } F_r = F_w \]
\[Kd = ma \]
\[d = a \frac{m \omega_n}{K} = a S \]
\[S = \text{Sensitivity, } S = \frac{m \omega_n}{K} = \frac{1}{\omega_n^2} \]
\[[S] = S^2 \]

Often, the proof mass is made as large as possible. Often, the springs are made to be stiff (K large, \(\omega_n\) small)

\[K \propto \frac{E_n t^3}{L^2} \]

result: for high \(S\) want small \(K\), big \(m\)

2) Bulk Micromachined Accelerometer Designs

- similar architecture to pressure sensors

a) single cantilever spring design

micromachined Si part:

Cross-section of whole device

- Motion of \(\mu\)
- Glass, anodically bonded to Si
- Hermetically sealed chamber
- Some gas at \(P_0\) (at \(T_0\)) \(\Rightarrow \beta T_0\)

piece resistor to measure spring strain
\[R = f(\mu \text{ deflection}) \]
b) Double-clamped beam-spring design

4 piezoresistors: 2 in tension, 2 in compression; same as bossed pressure sensor

\[R + \Delta R \quad \text{and} \quad R - \Delta R \quad \text{if PM moving up} \]
\[R - \Delta R \quad \text{and} \quad R + \Delta R \quad \text{if PM moving down} \]

→ use Wheatstone bridge

c) Capacitive Sensing → also similar to Pressure Sensors

\[\frac{A}{d} \quad C = \frac{\varepsilon_0 \varepsilon_r A}{d_0 + dd} \rightarrow \text{Single capacitance} \]

i) Differential Capacitance

\[2 \text{electrodes: } C_{\text{top}} = \frac{\varepsilon_0 \varepsilon_r A}{d_0 + dd} \]
\[2 \text{electrodes: } C_{\text{bot}} = \frac{\varepsilon_0 \varepsilon_r A}{d_0 + dd} \]

\[\text{Diagram: } V_{\text{in}} \rightarrow C_{\text{top}} \rightarrow V_{\text{out}} \rightarrow C_{\text{bot}} \]
1) Other spring designs are also used

\[
\text{Frame} \xrightarrow{4 \text{ springs}} \text{Frame} \xrightarrow{8 \text{ springs}} \text{a lot of wasted space}
\]

2) Consider this design:

\[
\text{proof mass} \quad \text{note: be cautious of bending modes}
\]

3) This design yields a larger mass and longer springs (smaller \(k \))

\[
S^2 = \frac{m}{K} \Rightarrow m \uparrow \quad \therefore S^\uparrow
\]

3. Surface Micromachined Accelerometer Designs

- can build out of polysi deposited on SiO\(_2\) [sacrificial layer]

Start with:

\[
\text{Si wafers} \quad \text{thin polysi layer} \quad \text{thin SiO}_2 \quad \text{layer}
\]

Similar to Si wafer, but SOI device layer may be much thicker than polysi layer
Example of a lateral motion accelerometer using interdigitated teeth to measure capacitance:

\[A_0 \quad 1 \quad C = \frac{\varepsilon_0 \varepsilon_r + f(t)}{d_0} \]

Overlap area = \(f \times \lambda(t) \)

- Holes allow SiO\(_2\) to be etched from under PM

Differential capacitance sensing

Could also be built using an SOI wafer

4) All these designs are "open loop" accelerometers

\[\text{Output signal} = f(\text{PM displacement}) \]