Other Types of MEMS Actuators

Definition: Actuator: A device that converts an electrical signal into a nonelectrical quantity.

1) Piezoelectric Actuators (review from earlier)
 - Applying a voltage across a piezoelectric crystal results in a small deformation proportional to the electric field strength and very small range of motion.

2) Thermal Actuators
 - Consider a MEMS electric heating element:

 ![Diagram](image)

 - Power in R: $P = I^2R$ → dissipated as heat → Joule heating
 - Electricity → Heat: an actuator

 a) Thermal Bimorph Actuator

 ![Diagram](image)
Let $\text{CTE}_2 > \text{CTE}_1$, CTE = Coefficient of Thermal Expansion.

\rightarrow heat the structure through the resistive heater

result:

\[\text{it bends up} \]

\rightarrow requires high power: $P > I^2$

\[6. \text{ Shape Memory Alloys (SMA)} \]

\rightarrow a material that has a rigid state above a certain temperature (T_c) called Austenite phase, and a pliable state (Martensite phase) below T_c.

\rightarrow Whatever the shape initially was in the Austenite phase, it will forcefully return to that shape when temperature rises above T_c.

Note: T_c is the phase transition temperature.

Nitinol is commonly used MEMS SMA material

- up to a 5% strain
- T_c tailorable between -100°C to +100°C

\rightarrow One macro SMA application is for replacing explosive bolts

\[3. \text{ Magnetic Actuators} \]

\rightarrow Fabricate movable MEMS structures with ferromagnetic materials such as Ni or Fe.

\rightarrow Use an external magnetic field to actuate the device.
A Comparison of MEMS Actuator Technologies

<table>
<thead>
<tr>
<th>Actuator:</th>
<th>Electrostatic</th>
<th>Piezoelectric</th>
<th>Shape Memory Alloy</th>
<th>Magnetic (External)</th>
<th>Thermal Bimorph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Requirements</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Fabrication</td>
<td>Easy</td>
<td>More Difficult</td>
<td>More Difficult</td>
<td>More Difficult</td>
<td>More Difficult</td>
</tr>
<tr>
<td>Speed</td>
<td>Fast</td>
<td>Fast</td>
<td>Slow to Fast</td>
<td>Slow</td>
<td></td>
</tr>
<tr>
<td>Bi-Directional Motion</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Maybe</td>
<td>Possibly</td>
</tr>
<tr>
<td>Ruggedness</td>
<td>Sensitive to Contamination</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Size</td>
<td>Small to Large</td>
<td>Small to Large</td>
<td>Small to Large</td>
<td>Large</td>
<td>Small to Large</td>
</tr>
<tr>
<td>Range of Motion</td>
<td>Large</td>
<td>Small</td>
<td>Small</td>
<td>Large</td>
<td>Large</td>
</tr>
</tbody>
</table>
Other types of MEMS actuators

1. Steam engines on a chip
2. Internal combustion engines on a chip
 ex: Wankel engine → show photo
3. Micro-fluidic MEMS
 → actuator or pump to move a liquid through micro-plumbing
 a. PCB-pump → show photo
 b. Flow FET
Fig. 7: Micropump in PCB technology

Lienhard Pagel, Univ. Rostock, Germany
4) **FlowFET** → a microfluidics actuator

Working principle:
Electro-osmotic flow in a channel

- Fluid flows through the channel.
- Opposite charge in fluid attracts to channel wall charge.

- Fluid motion

V → Voltage across 2 electrodes (V = 100V)
causes fluid to flow by attracting charged fluid particles.

Adding a 3rd electrode on the other wall allows the fluid flow to be controlled like current in a MOSFET.