
Cluster Comput (2010) 13: 373–383
DOI 10.1007/s10586-009-0119-6

Energy aware DAG scheduling on heterogeneous systems

Sanjeev Baskiyar · Rabab Abdel-Kader

Received: 10 March 2008 / Accepted: 28 December 2009 / Published online: 29 January 2010
© Springer Science+Business Media, LLC 2010

Abstract We address the problem of scheduling directed
a-cyclic task graph (DAG) on a heterogeneous distributed
processor system with the twin objectives of minimizing
finish time and energy consumption. Previous scheduling
heuristics have assigned DAGs to processors to minimize
overall run-time of the application. But applications on em-
bedded systems, such as high performance DSP in image
processing, multimedia, and wireless security, need sched-
ules which use low energy too.

We develop a new scheduling algorithm called En-
ergy Aware DAG Scheduling (EADAGS) on heterogeneous
processors that can run on discrete operating voltages. Such
processors can scale down their voltages and slow down to
reduce energy whenever they idle due to task dependencies.
EADAGS combines dynamic voltage scaling (DVS) with
Decisive Path Scheduling (DPS) to achieve the twin objec-
tives. Using simulations we show average energy consump-
tion reduction over DPS by 40%. Energy savings increased
with increasing number of nodes or increasing Communi-
cation to Computation Ratios and decreased with increasing
parallelism or increasing number of available processors.
These results were based on a software simulation study
over a large set of randomly generated graphs as well as
graphs for real-world problems with various characteristics.

Keywords DAG · Scheduling · Cluster · Energy aware ·
Makespan

S. Baskiyar (�)
Department of Computer Science and Software Engineering,
Auburn University, Auburn, AL 36849, USA
e-mail: baskiyar@auburn.edu

R. Abdel-Kader
Faculty of Engineering, Suez Canal University, Port Said, Egypt
e-mail: rababfarouk@gmail.com

1 Introduction

In the present work, scheduling on heterogeneous distrib-
uted computing systems interconnected by high-speed net-
works is considered. Such systems are promising for fast
processing of computationally intensive applications with
diverse computation needs. One of the challenges in hetero-
geneous computing is to develop scheduling algorithms that
assign the tasks of applications to processors [17]. There-
fore, researchers have proposed many static, dynamic and
even hybrid algorithms to minimize execution time of appli-
cations running on a heterogeneous system; we can mention
[6, 8, 16, 20, 22, 24]. As many applications require both
low finish time and low power consumption, the power con-
sumption is another challenge facing distributed comput-
ing [5]. Power consumption is a major issue in many real
time distributed embedded systems. Most applications run-
ning on a power limited system inherently constrain the fin-
ish time. The explosive interest in sensor networks is the
result of the development of low-cost, low-power multifunc-
tional sensor devices, such as the Smart Dust Mote [21].
The DAG structure is important as it occurs in many reg-
ular and irregular applications in forms of Cholesky fac-
torization, LU decomposition, Gaussian elimination, FFT,
Laplace transforms and instruction level parallelism. Such
low power schedules can also be useful in multi-hop sensor
radio networks.

Traditionally, priority has been on performance, and con-
sequently the supply voltage has been set at the maximum
allowable level based on device breakdown potentials to en-
able fast operation. However, processors do not require the
maximum achievable speed at all times. The top power-
consumers in a computer system are display (68%), disk
(20%), and CPU (12%) [9]. There seems little which can be
done to minimize screen power-consumption, beyond em-

mailto:baskiyar@auburn.edu
mailto:rababfarouk@gmail.com

374 Cluster Comput (2010) 13: 373–383

ploying a screen-saver and relying on hardware improve-
ments. Disk power consumption is minimized by spinning
down the disk when it has been inactive for several seconds.
In the future, we may well see ubiquitous computing de-
vices with neither disks nor conventional displays. For such
devices, minimizing power consumed by the CPU will be
particularly critical if the replacements of disks and displays
consume relatively smaller fractions of total power.

The remainder of this paper is organized as follows. In
Sect. 2, related work on different scheduling heuristics on
both homogenous and heterogeneous systems, power es-
timation and optimization techniques, and scheduling for
low energy consumption has been described. In Sect. 3, we
define the problem and terminology used to describe our
scheduling algorithm. In Sect. 4, we outline our scheduling
algorithm. In Sect. 5, results and analysis of the software
simulation which was conducted to validate the algorithm
has been given. Finally, conclusions and suggestions for fu-
ture work have been presented in Sect. 6.

2 Related work

Two main design aspects of scheduling are how to build the
scheduling queue and how to choose the optimal proces-
sor. Concerning scheduling, list and cluster scheduling are
primary techniques to schedule tasks on heterogeneous sys-
tems. In list scheduling tasks are ordered in a scheduling
queue based on the priority assigned to free tasks. List
scheduling algorithms have been shown to have good cost-
performance trade-offs. Cluster scheduling involves merg-
ing nodes/paths to form clusters that can be scheduled on the
same processor to get closer to the objectives of schedule
length, no. of processors etc. Several algorithms for static
scheduling on heterogeneous multiprocessors systems are
available: Dynamic Level Scheduling (DLS), Generalized
Dynamic Level Scheduling (GDLS), Best Imaginary Level
(BIL), Mapping Heuristics (MH), Heterogonous Earliest
Finish Time (HEFT), Task Duplication Scheduling (TDS),
Static Task Duplication Scheduling (STDS), Fast Critical
Path (FCP), and Fast Load Balancing (FLB). Among the
above TDS and STDS employ task duplication to suppress
communication whereas others do not. A brief description
of these algorithms is available in [23].

2.1 Run-time power reduction

There are two techniques that can reduce power consump-
tion on system level scheduling: Dynamic Power Manage-
ment (DPM) and Dynamic Voltage Scaling (DVS). DPM
dynamically reconfigures an electronic system by reducing
number of active components and/or load on such com-
ponents while providing services. DPM is used in various

forms usually in portable devices. However, the complex-
ity of interfacing heterogeneous components has limited de-
signers to simple solutions. An example of a simple pol-
icy, mostly applied to laptops and PDA, is a timeout pol-
icy, which turns off a component after a fixed inactivity
time, under the assumption that it is highly likely that a
component remains idle if it has been idle for the timeout
time. In DVS, computation and communication, tasks are
run at reduced voltages and clock frequencies to fill idle
periods and reduce energy dissipation, while providing re-
quired performance. The key idea of DVS is to dynamically
scale the supply voltage of CPU while meeting total com-
putation time and/or throughput. For example, reducing the
supply voltage from 5 V to 3.3 V in some cases has re-
duced power by 56% [15]. DVS essentially fills the slack
times by elongated computation or communication times.
There are two types of slack time: Worst Slack Time (WST)
and Workload-Variation Slack time (WVST). WST results
from low processor utilization. WVST occurs due to execu-
tion time variations caused by data-dependent computation.
WST can be roughly estimated from the scheduling results
before task execution whereas VST can be known only after
execution.

2.2 Scheduling to lower energy consumption

For uniprocessor real-time systems many schemes have
been proposed to manage energy consumption. Mosse [12]
proposed and analyzed several schemes to dynamically ad-
just processor speed for slack reclamation. They proved that
using a compiler to assist the operating system in chang-
ing the CPU operating levels can reduce energy consump-
tion. Chandrakasan [3] has shown that for periodic tasks,
a few voltage/frequency levels are sufficient to achieve al-
most the same energy savings as infinite voltage/speed lev-
els. Yang [26] proposed a two-phase scheduling scheme that
minimizes energy consumption while meeting timing con-
straints. By choosing different scheduling options at com-
pile time they achieved 20–40% average power savings.

Zhang, Hu and Chen [27] proposed a two phase process
for energy managed scheduling of fixed task graphs on mul-
tiprocessors. In the first phase, they use a priority based task
ordering and scheduling. Tasks after scheduling are mod-
eled as a DAG. In the second phase, the voltage scaling
problem is modeled as an integer programming (IP) prob-
lem. They show that the IP problem is solvable in polyno-
mial time for the continuous voltage and particular discrete
voltage cases. For tasks sets composed of 10–500 tasks and a
target of up to eight processors they showed that their frame-
work can slow down 8–98% of cycles. However, they do not
consider inter-task communication within the DAG. Also, in
addition to precedence they mandate deadlines for individ-
ual tasks. However, in this work, we consider communica-
tion between tasks in a DAG and consider up to 1,000 tasks.

Cluster Comput (2010) 13: 373–383 375

Furthermore, we test our schedules on synthetic as well as
particular DAGs.

Pruhs, Stee and Uthaisombut [14] consider the problem
of voltage scaling a set of tasks with precedence constraints
to satisfy the dual objectives of makespan and energy mini-
mization. They show that the search space can be restricted
to those with constant power schedules (i.e. the sum of pow-
ers at which machines run is constant over time). They then
show how to reduce this problem to obtain ln(m) approxi-
mation algorithms. However, they do not deal with the prob-
lem where there is inter-task communication in DAGs.

Shin et al. [19] proposed low-power priority-based
scheduling which consists of two parts: an off-line com-
ponent which determines minimum processor speed while
guaranteeing deadlines of all tasks and an online component
which dynamically varies processor speed in order to utilize
both WST and VST. Shang et al. [18] proposed a history-
based DVS for interconnected networks. Their technique
leverages network history to predict future network needs,
judiciously controlling the frequency (and voltage) of links
to track actual network utilization. Those mechanisms re-
sulted in 46% average power savings at the cost of 15.2%
increase in network latency and 2.5% decrease in network
throughput.

Lu, Benini and Micheli [10] presented a greedy on-line
scheduling algorithm to facilitate power management for
multiple devices. They ordered the execution of tasks so that
devices can have continuous long idle periods during which
they can be shut down. They achieved an average power sav-
ings of 33%. Mishra et al. [11] proposed two novel tech-
niques for power management in distributed systems. The
first is a static technique which uses a greedy algorithm to
manage power in presence of parallelism. The second tech-
nique uses task reallocation that enhances the first algorithm
by allowing out-of-order execution where preemption is al-
lowed. Their technique saved an average of 10–20% more
savings than a simple static power management technique.
Chaeseok and Ha [7] proposed an energy efficient real-time
multi-task scheduling by the use of buffers with DVS. They
saved an average of 44% with reasonable machine specifi-
cations. The buffers increase CPU utilization by averaging
the workload. Their technique was designed for multimedia
applications where a slight buffering delay is tolerable.

3 Problem definition

We consider the problem of scheduling a directed a-cyclic
task graph (DAG) on a heterogeneous distributed processor
system with the twin objectives of minimizing finish time
and energy consumption.

DAG is an a-cyclic graph with nodes representing tasks
and edges representing execution precedence between tasks.

A weight is associated with each node and edge. The node
weight represents the task execution time and the edge
weight represents the communication time between con-
nected tasks. Along the lines of [2] a DAG is represented
by the Tuple G = (V ,M,E,T ,C, and P); where, V is the
set of n nodes, M is a set of m machines or processors in the
system, E is the set of e edges between the nodes E(n, c)

represents the edge between nodes n and c, and T is the
set of costs T (n, k) which denotes the computation time of
task n on processor k. Furthermore, C(n, c) is the commu-
nication cost associated with E(n, c) and it is zero if n and
c are executed on the same processor. P is the set of costs
P(n, k), which represents the power consumed when task n

is executed on processor k.
The length of a path is defined as the sum of node and

edge weights in that path. EST(n) and EFT(n) represent the
earliest start time and the earliest finish time over all proces-
sors, respectively. The critical path (CP) is the longest path
from an entry node to an exit node. The top distance of a
given node is the longest distance from an entry node to that
node, excluding the computation cost of that node. The bot-
tom distance of a node is the longest distance from the node
to an exit node. Each task’s mean execution cost over all
processors is used to calculate CP, the top distance, and bot-
tom distance. The makespan is defined as the time at which
all nodes finished executing. In our case, the makespan will
be equal to EFT(y), where y is the exit node in the graph.

4 EADAGS algorithm

In this work a new algorithm for scheduling DAGs on dis-
tributed computing systems has been introduced. EADAGS
combines Decisive Path Scheduling (DPS) with DVS to
minimize both finish time and energy consumption.
DPS [13], since it is one of the most efficient algorithms,
was chosen. The new algorithm is called Energy Aware
DAG Scheduling (EADAGS). It consists of two phases. In
the first phase, after DPS is run on the DAG to provide a low
finish time, the energy consumed is estimated for all proces-
sors. In the second phase, voltage scaling is applied during
slack times to reduce energy while maintaining the schedule
length.

EADAGS transforms a DAG to one with a single entry
node and a single exit node, if not so already. This trans-
formation is accomplished by adding a dummy entry node
and/or exit node with zero costs. Next, the top and bottom
distances from each node are calculated. The top and bot-
tom distances are calculated using the mean computation
value for each node. After building the DP for each node,
EADAGS begins creating the scheduling queue, ScheduleQ,
in a top-down fashion starting with the DAGs entry node
and traversing down the CP (which is the DP of the exit

376 Cluster Comput (2010) 13: 373–383

node). Nodes are prioritized based on the lengths of their
DPs. The priorities are decided as follows: EADAGS puts
the CP nodes into the ScheduleQ in the ascending order of
their top-distances. A node is added to the queue only if
all its predecessors have been added. If not, EADAGS at-
tempts to schedule its predecessors first. The first predeces-
sors added to the queue are those included in the nodes’ DP
other are sorted and added to ScheduleQ in increasing top-
distance.

Next, EADAGS assign tasks in ScheduleQ to processors.
At each step of the assignment, the selected processor pro-
vides the earliest finish time for the task under consideration,
taking into account all the communications from the task’s
parents. If EFT of the exit node is larger than the sum of
all the computation costs of the nodes on the best processor,
EADAGS assigns all nodes to that processor and exits. The
time complexity of first phase of EADAGS is O(n2).

Next, EADAGS computes the consumed energy. The to-
tal energy consumed when no voltage scaling is used, E1 is
first calculated by the following equations:

E1 = T ×
∑

k∈M

P1(k)

P1(k) = f V 2
1

2

where:

• P1(k) is the amount of power consumed by processor k ∈
M ,

• f is the operating frequency of machine k,
• V1 is the operating voltage of machine k,
• T is the makespan.

In the second phase of EADAGS, voltage scaling is ap-
plied to all processors during their idle times by reducing
the execution rate to f2 by lowering the voltage to a pre-
determined level V2. Such voltage scaling is applied to a
task only if slowing its execution would not increase the
makespan. We also reduce the voltage level of processors
during all remaining slack times. The total energy consumed
after applying voltage scaling is E2 = ∑

E2(k) where:

• E2(k) = T1f1V
2
1 +T2f2V

2
2

2 represents the energy consumed
by processor k ∈ M when voltage scaling is used

• T1 = ∑
i T (i) + ∑

ij C(i, j) is the total task and commu-
nication time when operating at V1

• T (i) is the computation time of task i on the chosen
processor

• C(i, j) is the communication cost between tasks i and j

if i and j are not scheduled on the same processor.
• T2 is the total time processor k operates at V2 (includes

idle times during which the processor operates at V2)

A nonblocking send protocol has been assumed in which
only the sending processor has to process the communica-
tion while the receiving processor has a buffer to receive
all transmitted data without interrupting its job. The differ-
ence between E1 and E2 represents the energy that could be
saved. The percentage average energy savings = E1−E2

E1
×

100. A high level description of EADAGS appears in Ta-
ble 1 and a detailed description is given in Fig. 1.

5 Simulation and results

In the simulation, the first test suite uses random directed
a-cyclic graphs to evaluate EADAGS. The input parameters
used to generate the graphs were:

• Number of nodes (tasks) in the graph, n.
• Number of available processors in the system, m.
• Shape parameter of the graph, α. We assume that the

height of the DAG is randomly generated from a uniform
distribution with mean equal to α × √

n. The width of
the DAG is also randomly selected from a uniform dis-

tribution with mean equal to
√

n
α

. If α = 1, the graph is
balanced. A DAG with high parallelism can be generated
by selecting α � 1. Whereas α � 1 will generate a long
DAG with small degree of parallelism.

• Out-degree of a node, out-degree, represents the average
number of outgoing edges from each node. Each node’s
out-degree is randomly generated from a uniform distrib-
ution with mean equal to out-degree.

• Communication to Computation ratio, CCR, is the ratio of
the average communication to average computation cost.
If a DAG’s CCR is less than 1, it is computation-intensive;
if it is much greater than 1, it is communication-intensive.

• Computation Range, β , represents the range of computa-
tion costs on processors. A high β causes significant dif-
ference of node’s computation costs among processors,
whereas a low β means that the expected execution times
of a node on any processor are almost equal.

• Processor to node ratio, PNR, represents the availability
of processors with respect to number of nodes. A PNR
of 100% means the number of processors is equal to the
number of nodes.

In generating random DAGs, we get 10,800 DAGs when
the parameters were varied as follows:

n = {10,20,40,60,80,100,500,1000}
CCR = {0.1,0.5,1,5,10}
α = {0.5,1,2}
Out-degree = {1,2,3,4,5,100}
β = {0.1,0.25,0.5,0.75,1.0}
PNR = {25%,50%,100%}

Cluster Comput (2010) 13: 373–383 377

Table 1 EADAGS algorithm
Let G represent a DAG

Let M be the set of m processors in the system

EADAGS

Transform G to a DAG with a single entry node and a single exit node

Compute DP of each node n ∈ G

//DP of the exit node is the critical path, CP

Fill ScheduleQ with nodes

//Starting from the entry node traversing CP in increasing top-distance.

while ScheduleQ �= � do

i ← head (ScheduleQ)

Schedule i on processor p ∈ M that provides earliest finish time of i.

Remove i from ScheduleQ

end while

if scheduling all nodes on the fastest processor provides a shorter makespan,

do so and discard prior schedule

T ← makespan

Total energy consumed before voltage scaling E1 = f T V 2
1

2

Total energy consumed when employing voltage scaling, E2 = ScaledEnergy()

end EADAGS

ScaledEnergy()

// Returns the total amount of energy consumption on all processors when voltage scaling has been applied

for each processor p ∈ M do

for each node n ∈ G scheduled on p do //traverse first scheduled to last

if (executing n on scaled voltage fits within the next slack) then

Scale down the operating voltage during execution of n

end if

end for

Energy consumed by processor p = sum of energy consumed by all nodes scheduled on p

end for

E = Sum of energy consumed by all processors

return E

end ScaledEnergy

Processors were assumed to have three different operat-
ing voltage levels based on the Motorola CMOS 6805 mi-
crocontroller which is rated at 6 MHz at 5.0 Volts, 4.5 MHz
at 3.3 Volts, and 3 MHz at 2.2 Volts. First operating voltage
was 5 V; when using this voltage if the processor becomes
idle, it is shut down. We will refer to this operating voltage
as 5 V/off this level is used for reference only since it has
physical limitations. The other two operating voltages are
2 V and 3.3 V which slow the processor during task execu-
tion.

5.1 Results for random DAGs

The energy consumption was measured for EADAGS and
DPS for different random DAGs. Then, test sets were cre-
ated by combining results from DAGs with similar proper-
ties, such as the number of nodes or the CCR.

The first test set was achieved by combining DAGs with
respect to number of nodes. The energy savings were av-
eraged over DAGs with varying CCR, α, β , out-degree, and
PNR. Figure 6 shows the average energy saved by EADAGS
over DPS with respect to number of nodes. The energy sav-
ings increased with increasing number of nodes. Average en-
ergy savings is 28% for a DAG of 10 nodes which gradually
increased to 46% for 1,000 nodes DAG. As number of nodes
increase more dependencies between tasks come into play,
which provide greater opportunities to use slack time to save
energy. Average energy savings ranges between 30–46% for
the 5 V/off, 29–48% when 2 V is used, and 28–46% when
using 3.3 V.

The second test set combines DAGs with respect to CCR.
The energy savings were averaged over different DAGs
with varying n, α, β , out-degree, and PNR. In Fig. 7 the

378 Cluster Comput (2010) 13: 373–383

Fig. 1 Algorithm EADAGS EADAGS
Transform G to a DAG with a single entry node and a single exit node
Compute DP for each node n ∈ G // O(n2)

// DP of the exit node is the critical path, CP
// Fill ScheduleQ with nodes in CP in increasing top-distance.
ScheduleQ ← �

for each node n ∈ CP do // O(n2)

// Traverse in increasing top-distance.
ScheduleQ = addQ(n)

end for
//Schedule nodes in ScheduleQ to processors
while ScheduleQ �= � do //O(n)

Pick the head node i in ScheduleQ
for each processor k ∈ M do // O(m)

sik = StartTime(i, k)

EFT(i, k) = sik + T (i, k)

end for
EFT(i) = mink ∈M EFT(i, k)

Schedule i on processor p ∈ M that gave minimum earliest finish time
Remove i from ScheduleQ

end while
if EFT(y) ≥ mink∈M

∑
i∈G T (i, k)

Schedule all nodes on the processor p ∈ M , which provided the minimum
end if
T ← EFT(y) // makespan

E1 = f T V 2
1

2
E2 = ScaledEnergy()

end EADAGS

Table 2 Notations
Let

• G represent a DAG
• y ∈ G be the exit node of G

• M be the set of m processors in the system
• Rk represent the ready time of machine k

• rn represent the ready time of node n

• f be the frequency of operation
• sik represent the start time of node i on machine k

• Succ(n) represent the list of all successor nodes of node n ∈ G

• pred(n) is the list of all predecessors of node n ∈ G

• ScheduleQ is the queue of tasks in order of execution
• T (i, k) represent the execution time of node i ∈ G on machine k

• C(n, c) represent the communication cost from node n to node c

• EFT(i, k) represent the earliest finish time of node i ∈ G on machine k

• EFT(i) represent the scheduled finish time of node i ∈ G

• EFT2(i) represent the finish time for node i with the scaled down voltage
• EST(i) represent the scheduled start time of node i ∈ G

• T represent the makespan of G

• V1 be the voltage of operation
• V2 be the scaled down voltage of operation
• T1(n) and T2(n) represent the execution time for any node n ∈ G before and after voltage scaling

respectively
• E(k,n) represent the energy consumed by processor k to execute node n

• E1 represent the total energy consumption before voltage scaling
• E2 is the total energy consumption after scaling down voltage
• E1(k) and E2(k) represent energy consumed by processor k ∈ M before and after voltage scaling re-

spectively

average energy savings has been plotted with respect to

CCR. The average energy savings increased with increas-

ing CCR. When CCR increases, processors are idle longer

due to communication between tasks. EADAGS is able to

use such slack times to achieve power savings. The average
energy savings over DPS ranges from 35% for CCR = 0.1
to 41% when CCR = 10 for 5 V/off technique. Savings
are 28–44% when processors are scaled down to 2 V. Sav-

Cluster Comput (2010) 13: 373–383 379

Fig. 2 Procedure addQ addQ(n)
// Adds parents of node n ∈ G and n to ScheduleQ
// Returns ScheduleQ

for each parent b of n not visited // in increasing top-distance
addQ(b)

end for
Add to n to ScheduleQ and mark it visited
return ScheduleQ

end addQ

Fig. 3 Procedure StartTime StartTime (node n, machine k)
// Returns the earliest available start time of node n ∈ G on machine k ∈ M

snk ← Rk

for each parent b of n do // O(n)

snk = max(snk,EFT(b) + C(b,n)) // if b is scheduled on k, C(b,n) = 0
end for
return snk

end StartTime

Fig. 4 Procedure ScaledEnergy ScaledEnergy()
// Returns the total amount of energy consumption after applying voltage scaling

for each processor k ∈ M do // O(m)

for each node n ∈ G scheduled on k do // O(n) from first to last scheduled

T2(n) = V 2
1

V 2
2

× T1(n)

EFT2(n) = snk + T2(n)

if EFT2(n) + C(n, c) < min EST(c) for each c ∈ succ(n) then
// if c is scheduled on k, C(n, c) = 0
EFT(n) = EFT2(n) //update EFT(n)

Let i be the node scheduled immediately after n on k

// use scaled voltage, see Fig. 5
E(k,n) = T2(n) × V 2

2 + (EST(i) − EFT(n)) × V 2
2

else
//Use original voltage for execution and scaled voltage during idle time,
// see Fig. 5
E(k,n) = T1(n) × V 2

1 + (EST(i)−EFT(n)) × V 2
2

end if
end for
E2(k) = +E(k,n)

end for
E2 = ∑

k∈M E2(k)

return E2
end ScaledEnergy

Fig. 5 Timeline for machine k

380 Cluster Comput (2010) 13: 373–383

Fig. 6 Average energy savings vs. number of nodes

Fig. 7 Average energy savings vs. CCR

ings are between 22–40% when processors are scaled down
to 3.3 V.

The third test set combines DAGs with respect to proces-
sor to node ratio, PNR. The energy savings is averaged
over randomly generated DAGs with varying n, CCR, α,
β , and out-degree. Figure 8 shows average energy savings
with respect to PNR. It shows decrease in the average en-
ergy savings with increasing PNR. This is because increas-
ing number of processors allows several parallel task ex-
ecutions, thus minimizing the wait times. Average energy
savings measured were 43% for PNR = 25% in the 5 V/off
technique, 42% when processors operate at 2 V and 40% if
they operate at 3.3 V. For PNR = 100% the average energy
savings was 33%.

Figure 9 shows the average energy savings with respect
to different values for out-degree. The results indicate that
increase in out-degree results in smaller average energy sav-
ings. A larger out-degree implies higher parallelism which in
turn implies smaller slack time. The amount of energy that
could be saved ranged between 44% and 13% for 5 V/off,
36% to 10% when voltage is scaled to 2 V, and 29% to 6%
when 3.3 V scale is used.

Fig. 8 Average energy savings vs. PNR

Fig. 9 Average energy savings vs. out-degree

5.2 Results for specific problems

The second test suite used to evaluate the performance
of EADAGS used task graphs of two real world prob-
lems: Gaussian elimination [1] and Molecular dynamics
code [25].

5.2.1 Gaussian elimination

Gaussian elimination is used to determine the solution of
a system of linear equations, for determining the rank of a
matrix, and for calculating the inverse of an invertible square
matrix [4]. Gaussian elimination systematically applies ele-
mentary row operations on set of linear equations in order to
convert it to upper triangular form. Once the coefficient ma-
trix is in upper triangular form, back substitution is used to
find a solution. The computational complexity of Gaussian
elimination is O(n3) where n × n is the size of the matrix.
The total number of tasks in a graph is n2+n−2

2 . The DAG
for the Gaussian elimination algorithm for n = 5 is shown
in Fig. 10 where n is the matrix size.

Cluster Comput (2010) 13: 373–383 381

Fig. 10 Gaussian elimination task graph for a matrix of size 5

Fig. 11 Average energy savings for Gaussian elimination

In the simulation, a matrix of size 8 × 8 has been used to
evaluate EADAGS. Since the structure of the graph is fixed
only the number of processors and the CCR values were var-
ied. For a matrix of size 8 the total number of tasks in the
graph is 35 and largest number of tasks at a single level is
7 so the number of processors is bounded to 7. CCR values
were 0.1, 0.5, 1.0, 5.0, and 10. In this experiment since the
same operation is executed at every processor and the same
information is communicated from one processor to another,
a uniform computation cost for all tasks and equal commu-
nication cost for all communication links were assumed.

Fig. 12 Average energy savings for Gaussian elimination

Figures 11 and 12 show the average energy savings using
EADAGS over DPS with respect to number of processors
and CCR values. Figure 11 shows an increase in the aver-
age energy savings with increasing number of processors.
This is because at each level only a certain number of tasks
can be executed at the same time so increasing the available
processors number produces more idle time, thus increasing
the energy savings. The average energy savings measured
was 32% for 2 processors and 60% when 7 processors are
used.

Figure 12 plots the average energy savings with respect to
different CCR values. The average energy savings increase
with increasing CCR. When CCR increases, processors are
idle longer due to communication between tasks. EADAGS
is able to use such idle times to achieve energy savings. The
average energy savings of EADAGS over DPS ranges from
52% for CCR = 0.1 to 74% when CCR = 10 for 5 V/off
technique. Savings are smaller for 2 V scale; they range be-
tween 45% and 62%. Savings are even smaller for the 3.3 V
scale; they are 30% for CCR = 0.1 and 42% for CCR = 10.

5.2.2 Molecular dynamics code

Figure 13 represents the DAG of a molecular dynamics code
as given in [1]. Again, since the graph has a fixed structure
and fixed number of nodes, the only parameters that could
be varied were the number of processors and CCR values.

Since there are at most seven tasks at any level in Fig. 13,
the number of processors was bound to seven. We assumed
that the computation costs of all nodes are not equal and the
communication costs were also not equal for all links since
the task computed at each node and the data communicated
from one node to another is different. Five values for CCR
were used in our experiments: 0.25, 0.5, 1, 5, and 10.

Figures 14 and 15 show the average energy savings of
EADAGS over DPS with respect to number of processors
and CCR values respectively. Figure 14 shows increase in

382 Cluster Comput (2010) 13: 373–383

Fig. 13 Directed Acyclic graph (DAG) for a molecular dynamics code

Fig. 14 Average energy savings for molecular dynamics code

average energy savings with increasing number of proces-
sors. This is because at each level only a certain number
of tasks can be executed at the same time so increasing
the available number of processors means more idle time,
thus increasing the energy savings. The average energy sav-
ings over DPS ranges from 20% for 2 processors and in-
creases to 55% for 7 processors. Figure 15 plots the aver-
age energy savings with respect to different CCR values.
The average savings increase with increasing CCR. When

Fig. 15 Average energy savings for molecular dynamics code

CCR increases, processors are idle longer due to commu-
nication between tasks. EADAGS is able to use such idle
times to achieve energy savings. The average energy savings
over DPS ranges from 45% for CCR = 0.1 to 64% when
CCR = 10 for 5 V/off technique. Savings are smaller for 2 V
operating voltage they range between 39% and 54%. Sav-
ings are even smaller for the 3.3 V operating voltage they
are 26% for CCR = 0.1 and 36% for CCR = 10.

6 Conclusion

We proposed a new scheduling algorithm, EADAGS. The
algorithm tries to minimize finish time as well as energy
consumption by the use of dynamic voltage scaling. On av-
erage, it provides energy savings of 40% over DPS without
increasing the makespan. These results were based on a rig-
orous software simulation study over a large set of randomly
generated graphs as well as graphs for real-world problems
with various characteristics.

The amount of energy savings increased with increasing
the number of nodes due to the increase in idle time due to
task dependency. Also, increase of CCR resulted in an in-
crease in the average energy savings. When CCR increases,
processors incur longer idle times due to communication be-
tween tasks. EADAGS was able to use such idle times to
achieve energy savings. The results showed that the over-
all energy savings decreased with increasing PNR. This is
because increasing number of processors allows several par-
allel task executions, thus minimizing the wait times and the
average energy savings. An increase in out-degree resulted
in smaller average energy savings. A larger out-degree al-
lows many processors to run in parallel reducing the idle
times for all processors and so less power to save. Future
work can involve applying the voltage scaling technique to
other DAG scheduling algorithms.

Cluster Comput (2010) 13: 373–383 383

References

1. Baskiyar, S.: Scheduling DAGs on message passing m-processors
systems. IEICE Trans. Inf. Syst. E-83-D(7), 1497–1507 (2000)

2. Baskiyar, S., Dickinson, C.: Scheduling directed A-cyclic graphs
on a bounded set of heterogeneous processors using task duplica-
tion. In: Lecture Notes in Computer Science, vol. 2913, pp. 259–
267. Springer, Berlin (2003)

3. Chandrakasan, A., Gutnik, V., Xanthopoulos, T.: Data driven sig-
nal processing: an approach for energy efficient computing. In:
International Symposium on Low Power Electronics and Design,
pp. 347–352, Aug. 1996

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algo-
rithms. MIT, Cambridge (2001)

5. Dongarra, J.J., Walker, D.W.: The quest for petascale computing.
IEEE Trans. Comput. Sci. Eng. 3(3), 32–39 (2001)

6. Iverson, M.A., Ozguner, F.: Dynamic competitive scheduling of
multiple DAGS in a distributed heterogeneous environment. In:
Proc. of the Workshop on Heterogeneous Processing, pp. 70–78,
March 1998

7. Im, C., Ha, S.: Dynamic voltage scaling for real-time multi-
task scheduling using buffers. In: Proc. ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for Embedded
Systems, pp. 88–94 (2004)

8. Kwok, Y.K., Ishfaq, A.: Link contention-constrained scheduling
and mapping of tasks and messages to a network of heteroge-
neous processors. In: Proc. of International Conference on Parallel
Processing, pp. 551–558, September 1999

9. Li, K., Kumpf, R., Horton, P., Anderson, T.: A quantitative analy-
sis of disk drive power management in portable computers. In:
PTUC. Winter USENIX Conference, pp. 279–292, January 1994

10. Lu, Y.H., Benini, L., Di Micheli, G.: Low-power task schedul-
ing for multiple devices. In: International Workshop on Hard-
ware/Software Codesign, pp. 39–43, May 2000

11. Mishra, R., Rastogi, N., Zhu, D., Mossé, D., Melhem, R.: Energy
aware scheduling for distributed real-time systems. In: Proc. Int’l
Parallel and Distributed Processing Symposium, pp. 9–16, April
2003

12. Mossé, D., Aydin, H., Childers, B.R., Melhem, R.: Compiler-
assisted dynamic power-aware scheduling for real-time applica-
tions. In: Proc. Workshop Compiler and OS for Low Power, Octo-
ber 2000

13. Park, G., Shirazi, B., Marquis, J.: Decisive path scheduling: a new
list scheduling method. In: Proceedings of the International Con-
ference on Parallel Processing, pp. 472–480, August 1997

14. Pruhs, K., Stee, R.V., Uthaisombut, P.: Speed scaling of tasks with
precedence constraints. Theory Comput. Syst. 43, 67–80 (2008)

15. Pouwelse, J., Langendoen, K., Sips, H.: Dynamic voltage scal-
ing on a low-power microprocessor. In: Proc. of the 7th Annual
International Conference on Mobile Computing and Networking,
pp. 251–259, July 2001

16. Radulescu, A., Van Gemund, A.J.C.: Fast and effective task
scheduling in heterogeneous systems. In: 9th Heterogeneous
Computing Workshop, pp. 229–239, May 2000

17. Reuter, C., Schwiegershausen, M., Pirsch, P.: Heterogeneous
multiprocessor scheduling and allocation using evolutionary
algorithms. In: Proc. of the IEEE International Conference
on Application-Specific Systems Architecture and Processors,
pp. 294–303, July 1997

18. Shang, L., Peh, L.-S., Jha, N.K.: Dynamic voltage scaling with
links for power optimization of interconnection networks. In:
Proc. of the 9th International Symposium on High-Performance
Computer Architecture, pp. 91–102, February 2003

19. Shin, D., Lee, S., Kim, J.: Intra-task voltage scheduling for low-
energy hard real-time applications. IEEE Des. Test Comput. 18,
20–30 (2001)

20. Tin, M., Seigel, H.J., Antonio, J.K., Li, Y.A.: Minimizing the ap-
plication execution time through scheduling of subtasks and com-
munication traffic in a heterogeneous computing system. IEEE
Trans. Parallel Distrib. Syst. 8(8), 857–870 (1997)

21. http://www.bsac.eecs.berkeley.edu/archive/users/warneke-brett/
SmartDust, accessed on February 2006

22. Topcuoglu, H., Hariri, S., Wu, M.Y.: Task scheduling algorithms
for heterogeneous processors. In: Proc. of the 8th Heterogeneous
Computing Workshop, pp. 3–14, April 1999

23. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and
low complexity task scheduling for heterogonous computing par-
allel and distributed systems. IEEE Trans. Parallel Distrib. Syst.
13(3) (2002)

24. Wang, L., Siegel, H.J., Rowchowdhury, V.P., Maciejewski, A.A.:
Task matching and scheduling in heterogeneous computing en-
vironments using a genetic-algorithm-based approach. J. Parallel
Distrib. Comput. 47, 8–22 (1997)

25. Wu, M.Y., Gajski, D.D.: Hypertool: a programming aid for
message-passing systems. IEEE Trans. Parallel Distrib. Syst. 1(3),
330–343 (1990)

26. Yang, P., Wong, C., Marchal, P., Catthoor, F., Desmet, D., Verk-
est, D., Lauwereins, R.: Energy-aware runtime scheduling for
embedded-multiprocessor SOCs. IEEE Des. Test Comput. 18(5),
46–58 (2001)

27. Zhang, Y., Hu, X., Chen, D.: Task scheduling and voltage selec-
tion for energy minimization. In: Design Automation Conference,
pp. 183–188, New Orleans, June 2002

Sanjeev Baskiyar is an Associate
Professor in the Department of
Computer Science and Software
Engineering at Auburn University,
Auburn, Alabama. He received the
Ph.D. and M.S.E.E. degrees from
the University of Minnesota, Min-
neapolis, B.E. degree in Electronics
and Communications from the In-
dian Institute of Science, Bangalore
and a B.Sc. degree in Physics with
honors and distinction in Mathemat-
ics from St. Xaviers’s College, In-
dia. He has taught courses in Com-

puter Architecture, Real-time and Embedded Computing, Operating
Systems, Microprocessor Programming and Interfacing and VLSI De-
sign. His research interests are in the areas of Computer Architecture
and Grid Computing. His experience includes working as an Assistant
Professor at Western Michigan University, a Senior Software Engineer
in Unisys and a Computer Engineer in Tata Motors.

Rabab Abdel-Kader received the
Ph.D. degree from the department
of Computer Science and Software
Engineering at Auburn University,
Auburn, AL and the MS degree
in Electrical Engineering from
Tuskegee University with high hon-
ors. She is currently an Assistant
Professor in the Faculty of Engi-
neering at Suez Canal University,
Egypt.

http://www.bsac.eecs.berkeley.edu/archive/users/warneke-brett/SmartDust
http://www.bsac.eecs.berkeley.edu/archive/users/warneke-brett/SmartDust

	Energy aware DAG scheduling on heterogeneous systems
	Abstract
	Introduction
	Related work
	Run-time power reduction
	Scheduling to lower energy consumption

	Problem definition
	EADAGS algorithm
	Simulation and results
	Results for random DAGs
	Results for specific problems
	Gaussian elimination
	Molecular dynamics code

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

