the second cell either to 0 or 1. This is a more general case of the CFid, because a CFdyn can be sensitized by any read or write operation, where as a CFid can only be sensitized by writing a change (transition write operation) to the coupling (aggressor) cell. We denote a CFdyn as <r0|w0; 0 > where | denotes the or of the read and write operations, which must be done to the coupling (aggressor) cell [688]. There are four CFdyn faults: <r0|w0; 0 >, <r0|w0; 1 >, < r1|w1; 0 >, and < r1|w1; 1 >.

Bridging Faults. A bridging fault (BF) is a short circuit between two or more cells or lines. It is a bidirectional fault, so either cell/line can affect the other cell/line. A 0 or 1 state of the coupling cell causes the fault, rather than a coupling cell transition. With the AND bridging fault (ABF), the logical bridge value is the AND of the shorted cells/lines. The four possible ABFs are < 0, 0/0, 0 >, < 0, 1/0, 0 >, < 1, 0/0, 0 >, and < 1, 1/1, 1 >. The notation is the good machine values for cells i and j, followed (after the slash) by their bad machine values. With the OR bridging fault (OBF), the logical bridge value is the OR of the shorted cells/lines. The four possible OBFs are < 0, 0/0, 0 >, < 0, 0/1, 1 >, < 1, 0/1, 1 >, and < 1, 1/1, 1 >.

State Coupling Faults. The state coupling fault (SCF) [194] is where the coupling (aggressor) cell/line j is in a given state y that forces the coupled (victim) cell/line i into state x. The four SCFs are < 0; 0 >, < 0; 1 >, < 1; 0 >, and < 1; 1 >. Figure 9.9 [442] shows a Moore machine† model of the state coupling fault, along with a more complete model of the transition fault [106, 107, 169].

†incorrectly identified as a Mealy machine in the previous printings and in some references, as pointed out by Prof. J. Patel.