Mixed-Signal BIST - Organization

- Testing Analog Circuits
- BIST Architectures
 - TPGs
 - ORAs
- BIST Operation
- Analysis
 - Fault Simulations
- Benefits and Limitations
Testing Analog Circuits

Testing analog circuits very different from digital circuits

- Testing requires determination of output signal quality
 - not just a simple logic 0 or 1 value
- Variations are expected in output waveforms
 - due to acceptable component parameter variation
 - due to environmental variations (temperature, voltage, etc.)
- Analog fault models not well defined for DFT
 - Catastrophic (hard) faults
 - components missing or disconnected (open terminals)
 - components shorted out
 - Parametric (soft) faults
 - components out of acceptable tolerance range
Historical Aspects & Trends

- Analog DFT is about 20 years behind digital DFT
 - Similarly analog fault simulation is new as well
- First approaches applied digital DFT approaches to analog
 - Ad-hoc techniques have good applicability to analog
 - Scan design has no direct analogy in analog circuits
 - attempts have been made but produce inefficient results
 - BIST approaches have been successful in mixed-signal
- New analog DFT approaches are typically BIST based
 - Are usually specific to a given type of analog circuit
 - PLLs, ADC/DACs, filters, amplifiers
 - A few are generally applicable
Ad-hoc Techniques

Improving controllability & observability works for analog

- Good results in most cases
 - Additional I/O pins for test points
 - Multiplexing with existing I/O pins more difficult
- Same advantages/disadvantages as digital
 - Have to determine where is best places to incorporate
 - Minimum impact to performance of analog circuit
 - Extra capacitance/resistance for added DFT circuitry
- Analog fault simulation needed
 - To determine test quality
 - To determine where to put ad-hoc DFT circuitry
BIST for Analog & Mixed Signal Circuits

- LFSR sufficient for digital pseudorandom TPG
 - But analog circuits require different test signals
- Traditional signature and syndrome analysis work for digital BIST since results are exact
 - Analog circuit output response expected to vary which can prevent reproducible results
 - Quantization noise in DACs and ADCs
 - Tolerances in analog component parameters
 - Environmental variations (temp., voltage, noise)
 - Expect range of good circuit signature values for analog and mixed-signal test approaches
Mixed Signal BIST

- Bell Labs (Stroud - 1987)
 - Shared test resource used to test analog lines & circuits
 - Long test/diagnostic run time due to wait for test resources
 - Designed BIST in a mixed-signal ASIC cost reduction
 - BIST used in conjunction with shared test resource
 - BIST performed intended function but never analyzed
 - Accumulator used for ORA since output sequences will vary

- Ohletz – 1991
 - Similar architecture but used SAR/MISR for ORA
 - Theoretically possible but not practical to map all good circuit signaturees
Mixed Signal BIST (cont.)
Redesigned & improved at Univ. of KY and UNC-Charlotte (Stroud - 1996-2003)
- Better TPG & ORA capabilities
 - Achieved > 95% FC of hard & soft faults

Digital Circuitry

- System Function
- TPG
- Test Control
- ORA
- System Function

Analog Circuitry

- Analog Cktry
- DAC
- Analog Loop-back
- Analog System Outputs
- Analog System Inputs

Digital System Inputs
BIST Start
BIST Complete
BIST Results
Digital System Outputs
Mixed Signal BIST: Test Pattern Generation

TPG generates 16 test waveforms:

- Counter (up, down, & up/down)
 - ramp, sawtooth & triangle waveforms
- LFSR (pseudo-random patterns)
 - white-noise-like waveforms
- Magnitude register
 - programmable amplitude DC, impulse, & step response tests
- Frequency sweep
 - varying & programmable amplitudes
- Bit reversal (for most waveforms)
 - noise & random frequencies/amplitudes
Sample Test Waveforms

Freq. Sweep Varying Amplitude
Freq. Sweep w/ Bit Reversal

Triangular Wave & Bit Reversal
Pseudo-Random Patterns
Mixed Signal BIST: Output Response Analyzer

- Traditional signature and syndrome analysis
 - Good for digital circuit since results are exact
 - Quantization noise in DAC/ADC prevents reproducible results
 - also parameter & environmental variation

- Accumulators allow range of BIST results
 - Accounts for variation in analog output responses
 - Accumulators investigated include:
 - Single Precision - modulo 2^N addition
 - Residue - end-around carry addition
 - Double Precision - modulo 2^{2N} addition
 - double precision found to be best overall

- Two accumulator modes used:
 - Sum the magnitudes of the output response
 - TPG output tests BIST circuitry
 - Look for exact signature
 - Sum absolute value of difference in response & test waveform
 - detects faults causing noise and phase shifts
Absolute Value Difference

- Detects faults causing:
 - Noise riding on an otherwise good waveform
 - Phase shift
 - Overshoot/ringing
Analog Fault Detection with BIST

- Fault simulation very time consuming
 - Must simulate every fault multiple times with acceptable variation of fault-free components
 - Normal & uniform distributions have been used
 - Observation: all variations produce normal distribution of signatures
- Detected vs. undetected faults
 - Potentially detected faults
 - $P_{detect} = \#detects/#simulations$
 - Fault Coverage = $(\#detect + \sum P_{detect})/#faults$
Other Approaches in Analog BIST

Oscillator BIST

- During test mode, circuit is converted to oscillator
 - Measure frequency of oscillation to detect faults
- Works for most analog circuits
 - Automated synthesis for many analog circuits
 - Developed by OpMaxx (now part of Fluence)
- Has been attempted in digital circuits
 - Results have been promising
- Effect on system performance is not well known
 - Extra capacitive & resistive loading on original circuit

Histogram-based Analog BIST (HABIST) (Fluence)

- Known good & CUT histograms are normalized
- Adjustments made for offset & gain variations
- The two are subtracted to obtain difference histogram
 - Used to determine detection of faults