Non-Intrusive BIST - Organization

- Architecture Implementations
 - Board-level
 - Device-level
 - System-level
 - Vertical Testability
- Benefits and Limitations
Non-Intrusive BIST

- Architectures avoid manipulation of internal CUT circuitry
 - BIST circuitry is external to CUT
 - Low performance penalty
 - Good for high speed applications
Board-Level Implementations

- Programmable logic devices (FPGAs & CPLDs) are excellent devices for board-level BIST
 - Reprogram with BIST circuitry for testing
 - Reprogram for system function during operation
 - No area overhead or performance penalty
 - Must store configuration data to reprogram PLD
- Provide TPG, MISR, & BIST control for board-level STUMPS
Device-Level Implementations

- TPG & MISR can be shared
- Loopback mechanism needed
- Good for data path circuitry
 - Control circuitry tested via multiple test sessions

C. Stroud 11/06

(a) simplex data path
(b) duplex data path with loopback
Bit-Sliced BIST Circuit Design

- One bit-slice per bit in data path
- Additional XOR gates for LFSR polynomial
- Optional flip-flops for pipelining high speed applications

<table>
<thead>
<tr>
<th>B_0</th>
<th>B_1</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 0</td>
<td>Hold</td>
</tr>
<tr>
<td></td>
<td>0 1</td>
<td>LFSR</td>
</tr>
<tr>
<td></td>
<td>1 0</td>
<td>D flip-flop</td>
</tr>
<tr>
<td></td>
<td>1 1</td>
<td>MISR</td>
</tr>
</tbody>
</table>
System-Level Implementation & Testing

- PCB Inputs
 - ![Diagram showing system layout]

(a) **board-level testing**
C. Stroud 11/06
(b) **device-level testing**
Non-Intrusive BIST
(c) **interconnect testing**

denotes loopback activated
Non-Intrusive BIST Summary

Benefits
- Low area overhead
- Low performance penalty
 - Good for high speed applications
- Vertical testability for device through system-level testing

Limitations
- Low fault coverage for many applications
 - Fault simulation may be lengthy
 - But necessary to determine fault coverage