More Details on Faults - Organization

- Fault Modeling
 - Equivalent Faults & Collapsing
 - Gate Level Faults
 - Transistor Level Faults
 - Bridging Faults

- Fault Detection
 - Gate Level Faults
 - Transistor Level Faults
 - Bridging Faults
 - Fault Simulations
 - Undetectable & Potentially Detected
 - Fault Coverage
Fault Modeling

Recall:

- A good fault model has 2 requirements:
 1. accurately reflects the behavior of a physical defect
 2. is computationally efficient with respect to simulation
- Single fault models are used for requirement # 2
- The most commonly used current fault models include:
 - Gate level stuck-at faults
 - stuck-at-0 (sa0) & stuck-at-1 (sa1)
 - Transistor level stuck faults
 - stuck-on (stuck-closed) & stuck-off (stuck-open)
 - Bridging faults (shorts between wires)
 - wired-AND & wired-OR
 - dominant (one driving source dominates the other)
 - Note: opens in wires typically covered by stuck-faults
Gate Level Stuck-at Fault Model

- Gate inputs or outputs can be:
 - **Stuck-at-0 (sa0)**
 - as if input or output were disconnected and tied low to Vss
 - **Stuck-at-1 (sa1)**
 - as if input or output were disconnected and tied high to Vdd
 - fault site denoted by ‘X’ with sa0/sa1
 - Note: there is no feedback of fault value from fault site!
Gate Level Equivalent Faults and Fault Collapsing

- Equivalent faults are indistinguishable & can be collapsed
 ⇒ 1 fault in set of equivalent faults represents all in set
 ⇒ Fewer faults to simulation ⇒ faster fault simulations

- Gate level collapsing
 ⇒ **AND (NAND) gates**
 - any input sa0 = output sa0 (sa1)
 ⇒ # Collapsed Faults = $I + 2$ (where $I = \#$ inputs)
 ⇒ **OR (NOR) gates**
 - any input sa1 = output sa1 (sa0)
 ⇒ # Collapsed Faults = $I + 2$ (where $I = \#$ inputs)
 ⇒ **INVERTER**
 - input sa0 (sa1) = output sa1 (sa0)
 ⇒ # Collapsed Faults = 2
Gate Level Equivalent Faults and Fault Collapsing

AND

<table>
<thead>
<tr>
<th>AB</th>
<th>Z</th>
<th>Asa0</th>
<th>Asa1</th>
<th>Bsa0</th>
<th>Bsa1</th>
<th>Zsa0</th>
<th>Zsa1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0 1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1 1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

INVERTER

<table>
<thead>
<tr>
<th>AB</th>
<th>Z</th>
<th>Asa0</th>
<th>Asa1</th>
<th>Zsa0</th>
<th>Zsa1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0 1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1 0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1 1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

OR

<table>
<thead>
<tr>
<th>AB</th>
<th>Z</th>
<th>Asa0</th>
<th>Asa1</th>
<th>Bsa0</th>
<th>Bsa1</th>
<th>Zsa0</th>
<th>Zsa1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Structural Equivalent Faults and Fault Collapsing

Cannot collapse faults at fan-out stem since it would violate single stuck-at fault model

Fan-out stem sa1 = K sa1 & J sa1
Fan-out stem sa0 = K sa0 & j sa0

Only 2 collapsed faults for inverter chain (Z sa0 & Z sa1)

collapsed faults = 12
Collapsed vs. Uncollapsed Gate Level Fault Sets

- For a given circuit (assuming elementary logic gates)
 ⇒ # uncollapsed faults = \(2(G + G_I)\)
 - \(G\) = total # gates
 - \(G_I\) = total # gate inputs
 ⇒ # collapsed faults = \(2(O_P + F_S) + G_I - N_I\)
 - \(O_P\) = # primary outputs
 - \(F_S\) = # fan-out stems
 - \(N_I\) = # inverters
 ⇒ typically #collapsed flts \(\approx \frac{1}{2}\) # uncollapsed flts

- Should faults be collapsed?
 ⇒ YES: for TPG and fault simulation (more efficient)
 ⇒ NO: for computing fault coverage (more accurate)
 - but longer fault simulation times
Gate Level Fault Detection

AND

Collapsed fault set

\[Z_{sa0} = A_{sa0} = B_{sa0} \]

\[Z_{sa1} = A_{sa1} = B_{sa1} \]

<table>
<thead>
<tr>
<th>AB</th>
<th>Z</th>
<th>Asa0</th>
<th>Asa1</th>
<th>Bsa0</th>
<th>Bsa1</th>
<th>Zsa0</th>
<th>Zsa1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1 1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Minimum Set of Test Vectors

01
10
11

INVERTER

Collapsed fault set

\[Z_{sa1} = A_{sa1} \]

\[Z_{sa0} = A_{sa0} \]

<table>
<thead>
<tr>
<th>AB</th>
<th>Z</th>
<th>Asa0</th>
<th>Asa1</th>
<th>Zsa0</th>
<th>Zsa1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0 1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1 0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Minimum Set of Test Vectors

01
1

OR

Collapsed fault set

\[Z_{sa1} = A_{sa1} = B_{sa1} \]

\[Z_{sa0} = A_{sa0} \]

\[Z_{sa0} = A_{sa1} \]

<table>
<thead>
<tr>
<th>AB</th>
<th>Z</th>
<th>Asa0</th>
<th>Asa1</th>
<th>Bsa0</th>
<th>Bsa1</th>
<th>Zsa0</th>
<th>Zsa1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Minimum Set of Test Vectors

00
01
10
Minimum Set of Test Vectors for Gate Level Faults

- Inverter requires both input logic values (0 and 1)
 \[\Rightarrow \text{# vectors} = 2 \]

- \(N\)-input AND or NAND gate
 \[\Rightarrow \text{# vectors} = N + 1 \]
 - all 1s
 - walk 0 through a field of 1s

- \(N\)-input OR or NOR gate
 \[\Rightarrow \text{# vectors} = N + 1 \]
 - all 0s
 - walk 1 through a field of 0s

- XOR ≠ elementary logic gate (*made from multiple gates*)
 \[\Rightarrow \text{# faults depends on construction of gate} \]
 - 3 vectors required for pin faults
 - all 4 vectors required for internal faults
Transistor Level Fault Model

- Transistor can be:
 - Stuck-on (a.k.a. stuck-short)
 - can result in excessive I_{DDQ}
 - Stuck-off (a.k.a. stuck-open)
 - can result in “memory” node (logic gate \Rightarrow latch)

- Gate level fault accurate for NMOS but not for CMOS
 - gate input stuck-at = 2 transistors stuck-at in CMOS

<table>
<thead>
<tr>
<th>AB</th>
<th>A PFET s-on</th>
<th>A NFET s-on</th>
<th>B PFET s-on</th>
<th>B NFET s-on</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>1 mem</td>
<td>1 mem</td>
<td>1 mem</td>
<td>1 mem</td>
</tr>
<tr>
<td>01</td>
<td>1 mem</td>
<td>1 mem</td>
<td>1 mem</td>
<td>1 mem</td>
</tr>
<tr>
<td>10</td>
<td>1 mem</td>
<td>1 mem</td>
<td>1 mem</td>
<td>1 mem</td>
</tr>
<tr>
<td>11</td>
<td>0 mem</td>
<td>0 mem</td>
<td>0 mem</td>
<td>0 mem</td>
</tr>
</tbody>
</table>
Transistor Level Fault Equivalence & Collapsing

- Stuck-off faults in series transistors are equivalent
- Stuck-on faults in parallel transistors are equivalent
- \# collapsed transistor faults = \(2T - N_{ser} + G_{ser} - N_{par} + G_{par}\)
 \(\triangleright N_{ser} = \text{total \# series transistors}\)
 \(\triangleright G_{ser} = \text{total \# groups of series transistors}\)
 \(\triangleright N_{par} = \text{total \# parallel transistors}\)
 \(\triangleright G_{par} = \text{total \# groups of parallel transistors}\)

- # collapsed faults = 6
 A PFET s-on = B PFET s-on
 A NFET s-off = B NFET s-off
 A PFET s-off
 B PFET s-off
 A NFET s-on
 B NFET s-on
Transistor Level Fault Detection

- Transistor fault detection more difficult than gate level
 - **Stuck-on faults**
 - voltage divider may not produce incorrect logic values
 - monitoring I_{DDQ} is best approach
 - small currents may be lost in leakage of >2M transistors

- **Stuck-off can**
 - will produce wrong logic values
 - need ordered set of 2 vectors to detect

<table>
<thead>
<tr>
<th>A PFET</th>
<th>A NFET</th>
<th>B PFET</th>
<th>B NFET</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>s-on</td>
<td>s-off</td>
<td>s-on</td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>mem</td>
<td>I_{DDQ}</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>I_{DDQ}</td>
<td>0</td>
</tr>
</tbody>
</table>

Vectors to detect:
- A PFET stuck-off
 - 11 - to get $Z=0$
 - 01 - to detect $Z=0$
- B PFET stuck-off
 - 11 - to get $Z=0$
 - 10 - to detect $Z=0$
- A/B NFETs s-off
 - 0x or x0 - to get $Z=1$
 - 11 to detect $Z=1$

Min. #vectors = 4

detects s-on w/ I_{DDQ}
Bridging Fault Models

- Two current models for wires shorted together:
 - **Wired-AND/Wired-OR** fault model
 - Shorted wires perform logical AND or OR
 - **Dominant** fault model
 - Stronger driving gate dominates the short
- For N nets, \# pair-wise bridging faults = $N^2 - N$ (either model)
 - No fault equivalence \Rightarrow no fault collapsing
Bridging Fault Detection

- Wired-AND/Wired-OR faults
 - 1 vector (01 or 10) with 2 outputs (A’ and B’), or
 - 1 output (A’ or B’) with 2 vectors (01 and 10)
- Dominant faults
 - 1 vector (01 or 10) with 2 outputs (A’ and B’)
 - harder to detect than Wired-AND/OR (less observable)

Detecting all dominant BFs \(\Rightarrow\) detecting all Wired-AND/OR

Wired-AND fault model

Wired-OR fault model

<table>
<thead>
<tr>
<th>AB</th>
<th>A’B’</th>
<th>WAND</th>
<th>WOR</th>
<th>AdomB</th>
<th>BdomA</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

A dominates B model

B dominates A model
Fault Detection

Recall:

- Fault detection requires:
 - Observation of an error (from fault) at a primary output
 - Observability of the fault site
 - The ease at which we can observe the fault behavior
 - Input stimuli that creates an error as a result of fault
 - Controllability of the fault site
 - The ease at which we can control the fault behavior
 - Controllability of path from fault site to primary output
 - Typically considered part of observability

- Testability \propto controllability & observability

- Any given fault may be:
 - Detectable
 - Undetectable
 - Potentially detectable
Gate Level Fault Detection - Path Sensitization

1. At fault site, assign logic value opposite that of stuck-at fault
2. From fault site, choose a path to a PO assigning non-controlling values to all other inputs to gates in that path
 \[1 = \text{non-controlling value for AND/NAND gates} \]
 \[0 = \text{non-controlling value for OR/NOR gates} \]
3. For all assigned values, back-trace to PIs selecting input values that will produce the assigned values
4. If there is a conflict, repeat Steps 2 & 3 choosing new paths and/or values in Step 3
 If no path can be found without conflict, the fault *may be* undetectable, otherwise values at PIs form test vector
Undetectable Faults

- No test vector can detect the fault
 ⇒ usually difficult to prove a fault is undetectable
- Undetectable faults due to:
 ⇒ Re-convergent fan-out, and
 ⇒ Redundant logic

Hazard-free multiplexer has undetectable faults due to re-convergent fanout and redundancy
Undetectable Faults (cont.)

- Minimize circuit to remove redundancy & these faults
 \(\Rightarrow\) undetectable fault may not effect circuit operation
 - wasted area
 \(\Rightarrow\) undetectable fault slows down fault simulation
 - all test vectors are simulated (no trip on mismatch)

- Sometimes undetectable faults are unavoidable
 \(\Rightarrow\) hazard-free circuits
 - glitch-free clock multiplexing
 \(\Rightarrow\) initialization circuitry
 - power-up presets
 - global resets
 \(\Rightarrow\) use these cktts sparingly to minimize undetectable faults
Potentially Detected Faults

- Due to undefined logic values ($U,2,X$)
 - an artifact of logic simulation
 - can be a 0 or a 1 but simulator doesn’t know
 - used for un-initialized logic
 - faults preventing initialization produce $U,2,X$
- Potential detect fault if good ckt = 1/0 & faulty ckt = $U,2,X$
 - potential detect faults may be detected by other vectors
 - probability of detect of a fault \propto # potential detects
 - for high data activity, otherwise probability = 0.5
 - in real circuit, fault may/may not be detected
 - depends on power-up value
 - in simulation, PDFs also show up as undetected faults
Potentially Detected Faults (cont.)

Examples of potentially detected fault

- Select input to MUX stuck-at-0
 \[\Rightarrow\] flip-flop cannot be initialized
- Clock stuck-at-0 and stuck-at-1
 \[\Rightarrow\] flip-flop cannot be initialized
- 3 potentially detected faults
 \[\Rightarrow\] high detection probability for
 - high data activity on Sel & Din
 - high clock frequency
 \[\Rightarrow\] otherwise these may not be detected
Fault Simulation

- Fault simulator emulates faults and compares resultant response to known good circuit output responses
- Fault simulation long for large fault lists - speed-up:
 - simulation of a given faults ends on detection
 - parallel flt simulation emulates 1 flt/bit (computer word)
 - statistical fault sampling (>1000 samples = good estimate)
Fault Coverage/Grading

- Given a set of test vectors, each fault in fault set can be:
 - $D = $ detected faults
 - Targeted faults and faults “accidentally” detected
 - $X = $ undetectable faults
 - There are NO vectors that can detect these faults
 - $U = $ undetected faults
 - Could not find vector to detect fault (but there could be one)
 - $P = $ potentially detected faults (PDF)
 - Also included in U
 - $T = $ total faults = $D + X + U$

- Fault coverage = $(D+P/2) / T$
 - Detectable FC = $(D+P/2) / (T - X)$
 - Note: assumes PDF detection probability = 0.5
Need to Add

- Dominant-AND/OR BF model
- N-detectability