Design of Nailed Connections

• General
 • NDS provisions apply to
 • common wire nails and spikes
 • box nails
 • threaded, hardened-steel nails and spikes
 • Specifications should include minimum lengths (pennyweight) and diameters of nails or spikes
 • Nails and spikes conform to ASTM F1667

Design of Nailed Connections

• General
 • Nominal design values apply with or without pre-bored holes
 • Preboring helps prevent splitting
 • for $G > 0.6$, hole diameter $< 90\%D$
 • for $G \leq 0.6$, hole diameter $< 75\%D$
 • Toe-nails should be driven at 30 degree angle, distance of $L/3$ from member end
Design of Nailed Connections

• Design Values
 • Withdrawal, W:
 • from side grain
 • NOT from end grain
 • Lateral, Z
 • Single Shear Connections
 • wood-to-wood
 • wood-to-metal
 • Double Shear Wood-to-Wood
 • Combined Lateral and Withdrawal

Nail Withdrawal Design Values

• Withdrawal design values, W, (lb/in. of penetration) found by:

\[W = 1380 \frac{G^2}{D} \]

\[W' = W C_D C_M C_I C_{tn} \]

• Withdrawal load capacity of single nail found by multiplying \(W' \) by penetration depth

\[\text{No. Nails} = \frac{\text{Actual Withdrawal Force}}{W' \Delta} \]
Nominal Design Values, Z, for Single Shear Nailed Connections

- Based on minimum Z from 4 different yield mode equations

\[Z = \frac{D_t s F_{es}}{4K_\theta} \quad \text{(MODE I_s)} \]

\[Z = \frac{D^2}{3K_\theta} \sqrt{\frac{1.75F_{em} F_{yb}}{3(1+R_e)}} \quad \text{(MODE IV)} \]

Nominal Design Values, Z, for Single Shear Nailed Connections

- Based on minimum Z from 4 different yield mode equations

\[Z = \frac{k_1 D p F_{em}}{K_D (1 + 2R_e)} \quad \text{(MODE III_m)} \]

\[Z = \frac{k_2 D t s F_{em}}{K_D (2 + R_e)} \quad \text{(MODE III_s)} \]
Nominal Design Values, Z, for Single Shear Nailed Connections

- Nominal values of Z can be found in Tables 12.3A through 12.3H for common situations.
- Allowable values of Z' found by:

 \[Z' = Z C_D C_M C_t C_d C_{eg} C_{dl} C_{tn} \]

- For penetration depths between 6D and 12D:

 \[C_d = \frac{P}{12D} \leq 1.0 \]

- Determine number of nails needed by dividing actual load by allowable lateral design value, Z'.

 \[\text{Number of nails needed} = \frac{P}{Z'} \]
• NDS does not provide specific nail spacing guidelines

• Hoyle and Woeste recommended the following minimum nail spacings:

<table>
<thead>
<tr>
<th></th>
<th>Without Pre-bored Holes</th>
<th>With Pre-bored Holes</th>
</tr>
</thead>
<tbody>
<tr>
<td>End Distance</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Edge Distance</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Spacing Perpendicular-to-Grain</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Spacing Parallel-to-Grain</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

Nail Design Example

• Given:
 • 2x4 southern pine girt is nailed to southern pine 8x8 post
 • metal cladding is attached to girt
 • wind suction pressure = 25 psf
 • girts spaced 48 in. OC
 • posts spaced 96 in. OC
• **Find:**
 - How many 16d common wire nails are required to attach the girt to the post?

• **Assume:**
 - Dry fabrication and use conditions
 - Normal temperature conditions
 - No toe-nailing

• **Design Values:**
 - 16d common wire nail \(D = 0.162\) in.
 - length of nail = 3.5 in.
 - southern pine \(G = 0.55\)
 - Tabulated withdrawal design value:

\[
W = 1380 \frac{G^2}{D^5} = 1380 \frac{(0.55)^2}{(0.162)^5} = 50 \frac{lb}{in.}
\]
Adjustment Factors and final W':

- $C_D = 1.6$ for wind load
- $C_M = 1.0$ dry fabrication / service
- $C_t = 1.0$ normal temperatures
- $C_{tn} = 1.0$ no toe-nailing

$$W' = W C_D = \left(50 \frac{\text{lb}}{\text{in. nail}}\right)(1.6) = 80 \frac{\text{lb}}{\text{in. nail}}$$

Withdrawal capacity of each nail:

- Penetration depth, p: $p = 3.5 \text{ in.} - 1.5 \text{ in.} = 2.0 \text{ in.}$

- Withdrawal capacity of one nail:

 $$\text{Capacity} = \left(80 \frac{\text{lb}}{\text{in. nail}}\right)(2.0 \text{ in.}) = 160 \frac{\text{lb}}{\text{nail}}$$
• **Withdrawal force at each girt-to-post connection:**

\[P = \left(\frac{25 \text{ lb}}{\text{ft}^2} \right) (4 \text{ ft})(8 \text{ ft}) = 800 \text{ lb} \]

• **Number of nails required at connection:**

\[\text{No. Nails} = \frac{800 \text{ lb}}{160 \text{ lb/nail}} = 5 \text{ nails} \]