1. Magnetic field flux density in air is
\[\vec{B} = 15z\hat{a}_x + 3\cos(2t)\hat{a}_z \text{ Wb/m}^2. \]
 a. Calculate the induced electro-motive-force (emf) around the closed path placed on \(z = 0 \) shown in the figure below.
 b. Find the magnitude of the induced current if the resistor \(R = 10 \Omega \) in the figure below.

2. A current density of
\[\vec{J} = xe^{-0.1t}\hat{a}_x \text{ A/m}^2 \] is given. Find the charge density after 10 seconds if it has an initial value of \(\rho_0 = 0 \text{ C/m}^3. \)
3. A uniform plane wave oscillating with a frequency of 100 MHz in a lossless dielectric medium has the total phasor electric field component of
\[\vec{E} = 10\left(e^{-j2\pi z} + 0.7e^{j(2\pi z + \pi/6)}\right) \text{V/m}. \]
 a. Write the electric field expression in time domain.
 b. Find the period T of the wave.
 c. Find the wavelength \(\lambda \) of the wave.
 d. Find the relative permittivity \(\varepsilon_r \) of the medium.
 e. Find the phase velocity \(v_p \) of the wave.

4. The electric field component of a uniform plane wave (in time domain) in a lossy dielectric is
\[\vec{E} = 30e^{-z/3} \cos(4\pi \times 10^8 t - \beta z) \hat{a}_y \text{V/m}, \]
and the intrinsic impedance of this medium is \(\eta = 150\angle60^\circ \Omega \).
 a. Calculate the frequency \(f \).
 b. Determine the attenuation constant \(\alpha \).
 c. Find the corresponding magnetic field vector in time domain.
 d. Are the electric field and magnetic field in phase? Explain why.

5. A magnetic field \(\vec{H} = H_0 (e^{j(3t-2z)} \hat{a}_y + 3\hat{a}_z) \text{A/m} \) in free space is given, and the conduction current \(\vec{J} = 0 \) in this region. Calculate the electric field \(\vec{E} \) using Maxwell’s equations explicitly.

6. In air the magnetic field component of a plane wave is
\[\vec{H}(z, t) = 12\cos(\pi \times 10^6 t + \beta z + \pi / 6)\hat{a}_x \text{A/m}. \]
 a. Calculate the time-average power density.
 b. Calculate the total power across a 2 m\(^2\) surface area located at \(z = 3 \text{ m} \) plane.
 c. Total power across a 3 m\(^2\) surface area located at \(x = 1 \text{ m} \) plane.

7. Determine the electric potential difference between the points A(0, 2, 0) and B(0, 0, 4) if the electric field in this region is \(\vec{E} = (6x + 3y)\hat{a}_x + 5x\hat{a}_y - 3\hat{a}_z \text{ V/m}. \)
8. Several types of charges placed in free space has following coordinates:

A point charge Q_1 is located at $(1, 1, 1)$, another point charge Q_2 is located at $(-2, -2, 3)$. A uniform line charge, ρ_L is located parallel to z-axis and passing through at the point $x = 1$, and $y = -1$, and an infinitely large uniform surface charge ρ_S is located on $z = -1$ plane.

Calculate the total electric flux emanating from the closed surface shown below.

![Diagram of electric flux](image)

9. Calculate the magnetic flux density \vec{B} at $(0, 1, 5)$ due to a surface current density $\vec{K} = 5\hat{x}$ A/m flowing on infinitely large surface located at $z = -2$ plane in air, and an infinitely long line current $I = 3$A flowing in positive y direction on the y-axis.

(Note: Draw the coordinate system and show all the vectors necessary to work the problem first)

10. Suppose you have a surface current density $\vec{K} = 25\hat{x}$ A/m along the $z = 0$ plane. A 5nC point charge is moving along with velocity $\vec{v} = -10\hat{x}$ m/s at 1 m above this plane.

Calculate the magnetic force experienced by this point charge due to the magnetic filed generated by the surface current density.