Volume Reduction Technologies for Transporting Poultry Litter

John Fulton, Biosystems Engineering
Oladiran Fasina, Biosystems Engineering
Puneet Srivastava, Biosystems Engineering
Wes Wood, Auburn University
Frank Owsley, Auburn University

What is Poultry Litter...
- Combination of accumulated manure, feather, spilled food and bedding materials, which is typically wood shavings, sawdust, wheat straw, peanut hulls, or rice hulls
- Historically used as fertilizer on croplands near poultry farms - low density
- Environmental issues mostly due to high P levels in soils, ground water and surface water due to prolonged use

Motivation
- More economical and efficient way to transport large amounts of poultry litter.
- On- and Off-Site usage (or Storage).
- Energy production and land application
- Densification improves transportation costs (economics).
- Decrease soil N and P buildup in heavy poultry populated areas.

Why Volume Reduction??
- Economics - light density
- Dusty - biosecurity
- Close to 2 million tonnes produced in Alabama annually

Volume Reduction In Agroprocessing

<table>
<thead>
<tr>
<th>Raw Material</th>
<th>Bulk Density (lb/ft³)</th>
<th>Particle Density (lb/ft³)</th>
<th>Average Size</th>
<th>Examples of material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pelleting</td>
<td>> 1200 kg/m³ (75 lb/ft³)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cubing</td>
<td>870 kg/m³ (54 lb/ft³)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baling</td>
<td>161 kg/m³ (10 lb/ft³)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Objectives

- Determine the effect of moisture content and the minimum pressure required to compact poultry litter.
- Determine the energy requirement to compact poultry litter.

Materials And Methods

- Poultry litter (wood shavings as bedding) obtained from poultry farm
- Adjusted to MCs of 16.5%, 24.2%, 26.1% and 29.0%, Initial MC = 21.7%
- Texture analyzer used to produce compacts in a 1” die
- Pressure used varied from 5.1 to 8.5 MPa
- Density of compacts measured 1) directly after test and 2) after 2 months of storage.
- Experimentation in duplicate

Results

- Density values increased with the increase of pressure and moisture content.
 - Water acts as a binder
- Minimum of 5.1 MPa is required
- Minimum of 26% MC (prior to compaction) is required
- Specific Energy of producing compacts is less than pelleting
 - < 4.68 kJ/kg compared to 32 to 80 kJ/kg

<table>
<thead>
<tr>
<th>Applied pressure (MPa)</th>
<th>16.5%</th>
<th>24.2%</th>
<th>26.1%</th>
<th>29.0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>2.76</td>
<td>2.54</td>
<td>2.61</td>
<td>2.77</td>
</tr>
<tr>
<td>6.0</td>
<td>3.41</td>
<td>3.08</td>
<td>3.41</td>
<td>3.09</td>
</tr>
<tr>
<td>6.8</td>
<td>3.65</td>
<td>3.39</td>
<td>3.59</td>
<td>3.67</td>
</tr>
<tr>
<td>7.7</td>
<td>4.06</td>
<td>3.89</td>
<td>4.25</td>
<td>4.16</td>
</tr>
<tr>
<td>8.5</td>
<td>4.62</td>
<td>4.54</td>
<td>4.57</td>
<td>4.68</td>
</tr>
</tbody>
</table>

Note that specific energy to produce poultry litter pellets varies from 32 to 80 kJ/kg (Colley et al., 2005).

Compacts to Blocks

- 200,000 lb capacity hydraulic press
- Pressure: 1.4 MPa

| 12 X 12 X 8 inch |
What we are learning...

- Must compact to > 1000 kg/m³ (1.4 MPa)
- Must bring MC of litter to between 35-40%.
- Near 2:1 volume reduction
- Internal heating
 - 14 degree C difference during daytime
 - Start seeing differences within 15 minutes

Where we are heading...

- Attempt to increase size of compacted blocks
 - Energy requirements and economics
- Determine any chemical and biological changes in compacted litter
- Match results to possible commercial compaction equipment.

QUESTIONS

Biosystems Engineering, Auburn University
334.844.3541
fultojp@auburn.edu