Overview of Virtex 4 & Virtex 4 BIST Project
FPGA Testing Challenges

- Programmability
 - Must test all modes of operation

- Architectures designed for applications
 - Testability is after thought
 - Left to product/test engineers

- Constantly growing size
 - Reconfiguration dominates test time

- Constantly changing architectures

- Incorporation of new and different cores
Xilinx Virtex 4 FPGAs

- Array of 1,536 to 22,272 PLBs
 - 4 LUTs/RAMs (4-input)
 - 4 LUTs (4-input)
 - 8 FF/latches

- 48 to 552 18K-bit dual-port RAMs
 - Also operate as FIFOs
 - Also operate as 36K-bit RAMs with ECC (Hamming)

- 32 to 512 DSP cores 48-bits

- 0 to 2 PowerPC processor cores
Virtex 4 BIST Project

- BIST for CLBs = Sachin Dhingra
- BIST for I/O Buffers = Sudheer Vemula
- BIST for RAMs & DSPs = Daniel Milton
- Guard Band (w/BIST) = Lee Lerner
- BIST for Interconnect = Chuck Stroud
- Project scheduled for completion this year
Logic BIST for Virtex 4 FPGAs Using Embedded Microprocessor

VLSI Design & Test Seminar - January 2006
Outline

- Introduction
- Partial Configuration Readback
- Comparison
 - Virtex 2 Pro
 - Virtex 4
- Logic BIST Using Embedded Processor
 - PowerPC/Microblaze
 - New approach
- Circular Comparison BIST Architecture
Introduction

- **Built-In Self Test (BIST) for FPGAs**
 - Program some Programmable Logic Blocks (PLBs) as Test Pattern Generators (TPGs) and Output Response Analyzers (ORAs) to test the remaining resources of the FPGA
 - Diagnosis and Fault Tolerant Operation
 - No area overhead

- **Issues**
 - Large number of Configurations => High memory requirements
 - Slow Configuration Speeds => Long test times

- **Proposed Solutions**
 - Partial Reconfiguration
 - Partial Configuration Memory Readback
 - BIST using Embedded Processor
Partial Configuration Memory Readback

- Recent FPGAs allow configuration memory readback of only a section of FPGA
- Column based configuration memory using frames spanning entire columns
- Only the frames containing BIST results are read
 - Frames for FFs in ORA columns only
 - Time saved compared to Full Configuration Memory Readback
- Saves Logic & Routing resources
 - Scan Chain is absent

Diagram:
- Empty PLB
- Block Under Test (BUT)
- Output Response Analyzer (ORA)
- Test Pattern Generator (TPG)
- ORA Flip-Flop
Comparison of V2P and V4 for Logic BIST

<table>
<thead>
<tr>
<th></th>
<th>Virtex 2 Pro</th>
<th>Virtex 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLB</td>
<td>All four Identical slices</td>
<td>2 slices of 2 types</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SliceL (logic) & SliceM (memory)</td>
</tr>
<tr>
<td>XDL</td>
<td>Row-Column CLB co-ordinates</td>
<td>XY CLB co-ordinates</td>
</tr>
<tr>
<td></td>
<td>Minor changes from Virtex I</td>
<td>Similar to V2P w/ minor changes</td>
</tr>
<tr>
<td>Location of 2 PPCs</td>
<td>Left and Right Halves</td>
<td>Top and Bottom Halves</td>
</tr>
<tr>
<td>Slice Testability</td>
<td>Poor</td>
<td>Better</td>
</tr>
</tbody>
</table>
BIST Using Embedded Processor

- Embedded Processor runs BIST and diagnosis
 - PowerPC
 - Microblaze

- No dedicated resources for embedded processor
 - FPGA resources are required for interface to
 - Program memory (block RAMs)
 - Internal Configuration Access Port (ICAP)
 - UART (hyper-terminal interface to PC)

- Read-Modify-Write using ICAP module
 - Fast partial reconfiguration
 - Verification and debug procedure for development
 - Fault injection emulation

- FPGA is divided in two sections for testing:
 - Embedded Processor
 - BIST circuitry
Embedded Processors in V2P

- Microblaze - Soft Core
 (Can be placed anywhere on the device)

- PowerPC - Hard Core
 (Fixed position in a device)
Comparing Embedded Processors

<table>
<thead>
<tr>
<th></th>
<th>Microblaze</th>
<th>PowerPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Variable – can be located anywhere in FPGA</td>
<td>Fixed - hard core has fixed location in FPGA</td>
</tr>
<tr>
<td>Availability</td>
<td>all Virtex 2, Virtex 2 Pro, Virtex 4 devices</td>
<td>Selected Virtex 2 Pro and Virtex 4 FX only</td>
</tr>
<tr>
<td>Speed</td>
<td>200 MHz (max)</td>
<td>450 MHz (max)</td>
</tr>
<tr>
<td>Compiler</td>
<td>EDK</td>
<td>EDK</td>
</tr>
<tr>
<td>Slice count</td>
<td>1000</td>
<td>1035</td>
</tr>
<tr>
<td>Slice count</td>
<td>900</td>
<td>820</td>
</tr>
<tr>
<td>BRAM count</td>
<td>40</td>
<td>36</td>
</tr>
<tr>
<td>BRAM count</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

* Processor type is EDK compiler option - same code works for both Microblaze and PowerPC without any modifications

** Compacted Design
BIST Architecture

- BIST in part of the FPGA
- Embedded Processor occupies rest
 - Hard core or
 - Soft core (easier to move)
- Embedded processor also consists of peripheral devices:
 - UART
 - Memory interface
 - BUS arbiter
 - ICAP Module
- BIST and processor swap places for next test session
Logic BIST Architecture

- **Four Test Sessions**
 - Right Half – East
 - Right Half – West
 - Left Half – East
 - Left Half – West

- **Two Test Slice sets for V2P**
 - Only 2 of 4 slices can be tested in one configuration

- **Single Test Slice set for V4**
 - More testable slice architecture

- **Diagnostic Resolution**
 - Depends on ORA design and connections to BUTs

1/18/06 VLSI Design & Test Seminar

ELECTRICAL AND COMPUTER ENGINEERING
AUBURN UNIVERSITY SAMUEL GINN COLLEGE OF ENGINEERING
Circular Comparison Logic BIST

- **Architecture**
 - TPG moved to processor portion of FPGA
 - Can be performed by processor
 - ORA column instead of TPGs
 - Circular comparison of BUTs

- **Higher diagnostic resolution**
 - BUTs on the edges are now compared by two ORAs

- **Needs sufficient routing resources**
Virtex 2 Pro (XC2VP30)
Circular Comparison Logic BIST

- Microblaze
- Block RAMs
- Circular Comparison BIST Circuitry
- TPGs (inside the processor half)
Defining Area Constraints

Area constraints defined using XDL

BIST Circuitry

Microblaze

Block RAMs

Area Constraints defined using PACE
Virtex 4 FX12 with Logic BIST
Logic BIST for V4 SliceL

Fault Coverage (FC)

Faults Detected

Configuration #

Faults Detected

Configuration #

Individual FC

Cumulative FC

FC (%)

Individual FC

Cumulative FC
Summary & Conclusions

- Processor of choice: Microblaze
 - Reconfiguration
 - Results retrieval
 - Diagnostics

- Better testability of PLBs in V4 architecture
 - Higher diagnostic resolution
 - Fewer Configurations

- Circular Comparison Logic BIST possible due to abundance of routing resources

- Lesser details about the architecture
 - Increased development time
Built-In Self-Test for Programmable I/O Buffers in FPGAs and SoCs

Sudheer Vemula
FPGAs consist of
- Programmable Logic Blocks (PLBs)
- Routing Resources
- Interconnect points
- I/O Buffers

BIST configurations have been developed to test logic and routing resources in the core of an FPGA.

BIST configurations were not developed to test the I/O (Input/Output) buffers in an FPGA.
Types of I/O Buffers

- Every I/O Buffer can be:
 - Input
 - Output
 - Bi-directional

- Connections
 - Bonded I/O
 - Unbonded I/O

- Types (in some FPGAs)
 - Primary I/O Buffer
 - Secondary I/O Buffer
 - Clock Buffer

- Connections (in some FPGAs)
 - Bonded I/O
 - Unbonded I/O

- Types (in some FPGAs)
 - Primary I/O Buffer
 - Secondary I/O Buffer
 - Clock Buffer

- Connections (in some FPGAs)
 - Bonded I/O
 - Unbonded I/O

- Types (in some FPGAs)
 - Primary I/O Buffer
 - Secondary I/O Buffer
 - Clock Buffer
Architecture of Atmel I/O Buffer
Resources in I/O Buffer

- I/O buffers have several programmable features
 - Multiplexers
 - Flip-flops or Latches
 - Pull-up, Pull-down capabilities
 - Delays, Slew rate, I/O Standards
 - Drive capabilities, Tri-state enable
 - Transmission Gates
 - Global Reset Connection
Basic Testing Approach

from TPG to ORA

from TPG to ORA

1/18/06
General I/O Buffer BIST Architecture

- TPG may be a counter or an LFSR
- ORA is comparison-based to latch mismatches due to faults
- Output of each I/O buffer is compared by two ORAs with the outputs of two other buffers
- Circular comparison improves diagnostic resolution
Manufacturing vs. In-System Test

- In Manufacturing test all the bonded and unbonded IOBs can be tested
 - Independent of package
 - Routing associated with the IOBs can also be tested

- In system level testing only the output buffers are tested
 - Testing the input buffers will back drive them
Atmel Implementation

- 3 BIST configurations developed using MGL
 - Configurations test
 - primary I/O
 - secondary I/O
 - global reset in primary and secondary I/O
 - Subsequent BIST configurations via dynamic partial reconfiguration from AVR
 - 12 for primary I/O
 - 9 for secondary I/O
 - Approximately 2x3N for global reset
 - N = # PLBs in one dimension of NxN array
 - N=24 for AT94K10
 - N=48 for AT94K40

- AVR dynamic partial reconfiguration reduces test time
 - Particularly when testing global reset
Fault Simulation Results for AT94K

100% fault coverage is obtained with additional configuration for global reset.

BIST Configurations

Fault Coverage (FC)
Atmel Summary

- Number of BIST configurations for I/O buffers is high
 - Compared to 16 for logic BIST and 48 for routing BIST
- Can achieve 100% gate level stuck-at fault coverage
- Major defects in analog circuitry of IOB are detected in both the approaches
 - Parametric faults like V_{OL}, V_{OH}, delay defects, current sink and source capabilities may not be detected
I/O Buffers in Virtex 4

- Every I/O Buffer consists of:
 - ILOGIC (Input Logic)
 - OLOGIC (Output Logic)
 - PAD

- IOBs are paired to be able to operate as a differential pair.
 - Each can be accessed individually in Single Data Rate (SDR) mode.
ILOGIC Block

- Gets input from the pad
- Consists of
 - 64 tap delay element (variable or fixed)
 - Flip-Flops (registered outputs and Double Data Rate (DDR) registers)
 - 3 different outputs
 - Unregistered direct connection
 - Different modes of operation of DDR registers
- Only upper register can be configured as either Flip-Flop or latch
IDDR Modes and ISERDES

- IDDR registers can be operated in 3 modes
 - Opposite Edge Mode (2 registers)
 - Same Edge Mode (3 registers)
 - Same Edge Pipelined mode (4 registers)

- ILOGIC block can also be operated in input serial-to-parallel mode

- ISERDES can be operated in either Single Data Rate (SDR) or DDR mode
 - SDR Mode – Creates 2-8 bit parallel word
 - DDR Mode – Creates 4, 6, 8, or 10-bit parallel word
OLOGIC Block

- Sources output to the pad
- 6 storage elements
 - 3 for tri-state control
 - 3 for output data
 - Both sets of registers have same functionality
 - Only upper register can be configured as either Flip-Flop or latch

OLOGIC Block in the FPGA Editor
ODDR Modes and OSERDES

- ODDR registers operate in 3 modes
 - Opposite Edge Mode (2 registers)
 - Same Edge Mode (3 registers)
- OLOGIC block can be operated in output parallel to serial converter mode
- OSERDES can be operated in either Single Data Rate (SDR) or DDR mode
 - SDR Mode – Converts 2-8 bit parallel word to serial
 - DDR Mode – Converts 4, 6, 8 or 10-bit parallel word to serial
Summary

- A BIST approach to test the programmable IOBs of any FPGA or FPGA core in an SoC
- Implementation results for the Atmel IOBs
- Architecture of the IOBs in Xilinx Virtex-4 FPGAs
 - BIST configurations are being developed for Virtex-4
- Publications
 - Vemula & Stroud, “BIST of I/O Buffers in Atmel FPGAs”, IEEE North Atlantic Test Workshop, 2005
 - Vemula & Stroud, “BIST for Programmable I/O Buffers in FPGAs and SoCs”, IEEE Southeastern Symp. on System Theory, 2006