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Abstract 
 

High performance clusters have been widely used to 
provide amazing computing capability for both 
commercial and scientific applications. However, huge 
power consumption has prevented the further 
application of large-scale clusters. Designing energy-
efficient scheduling algorithms for parallel 
applications running on clusters, especially on the 
high performance heterogeneous clusters, is highly 
desirable. In this regard, we propose a novel 
scheduling strategy called energy efficient task 
duplication schedule (EETDS for short), which can 
significantly conserve power by judiciously shrinking 
communication energy cost when allocating parallel 
tasks to heterogeneous computing nodes. We present 
the preliminary simulation results for Gaussian and 
FFT parallel task models to prove the efficiency of our 
algorithm.     
 

1. Introduction 
 

The combination of modern clusters and parallel 
computing technology exhibits powerful computing 
capabilities. Over the last decade, the rapid 
advancement of high performance microprocessors, 
high-speed networks, and standard middleware tools 
makes cluster computing platforms more powerful and 

convenient to use. Therefore, cluster computing 
technology has been extensively deployed and widely 
used to solve challenging and rigorous engineering 
problems in industry and scientific areas like molecular 
design, weather modeling, universe dark matter 
observations, and complex image rendering. However, 
the rapid growth of cluster computing centers 
introduces a serious problem: huge energy 
consumption. According to EUN (Energy User News) 
[1], the power requirements of today’s cluster 
computing centers range from 75 W/ft2 to 150-200 
W/ft2 and will increase to 200-300 W/ft2 in the nearest 
future. The new data center capacity projected for 2005 
would require approximately 40TWh ($4B at $100 per 
MWh) per year to run 24x7 unless they become more 
efficient [2]. New data centers in the Seattle area are 
forecast to increase the city's power demands by 25% 
[3]. Therefore, it is highly desirable to design energy-
aware scheduling algorithms for cluster systems.  

However, designing energy-aware scheduling 
algorithms for heterogeneous clusters, is technically 
challenging because we have to take into account 
multiple design objectives, including performance 
(measured by throughput and schedule length), energy 
efficiency, and heterogeneities. Basically, processors, 
networks, disks, and cooling system are four major 
power consumers in a cluster computing system. Our 
approach aims to conserve network transmission 
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energy by judiciously duplicating communication-
intensive tasks. More specifically, we first assume the 
execution and communication times of tasks are 
already known in priori and apply a heuristic (a similar 
approach can be found in [5]) way to minimize 
schedule lengths by grouping the most related parallel 
tasks together. Next, we make use of a dynamic 
allocation method to obtain a suboptimal power 
consumption of a cluster computing system by 
comparing total energy consumption when grouped 
tasks are allocated to different computational nodes in 
the cluster. 

The rest of the paper is organized as follows. In 
section 2, we will talk about the related work. Next, 
Section 3 defines mathematical models including a 
system model, a task model, and an energy 
consumption model for heterogeneous clusters. In 
Section 4 we present the detailed two-phases EETDS 
algorithm. Section 5 qualitatively compares EETDS 
with three existing approaches through extensive 
simulation results. Finally, section 6 provides the 
concluding remarks and future research directions. 

 

2. Related Work 
 

The issue of conserving energy consumption in high 
performance clusters has not attracted enough attention 
for a long period because researchers mainly 
concentrate on the performance, reliability, and 
security issues of clusters [5]. Recently, people start to 
realize that the energy consumption issue is also critical 
since energy demands of modern data centers have 
been steadily growing in a noticeable speed.  

A handful of previous studies investigated energy-
aware processor and memory design techniques to 
reduce energy consumption in processors and memory 
resources [6][7][8]. IBM researchers Elnozahy, Kistler, 
and Rajamony proposed the Request Batching Policy 
(RBP), in which servicing of incoming requests is 
delayed while a web server is kept in a low power state. 
Incoming requests are accumulated in memory until a 
request has been kept pending for longer than a 
specified batching timeout. RBP can save energy 
because while requests are being accumulated, the 
processor is placed in a lower power state such as deep 
sleep [9]. Dynamic power management is designed to 
achieve requested performance with minimum number 
of active components or a minimum load on such 
components [9][10]. Dynamic power management 
consists of a collection of energy-efficient techniques, 
which adaptively turn off system components or reduce 
their performance when the components are idle or 
partially unexploited. For example, based on the 

observation of past idle and busy periods, predictive 
shutdown policies can make power management 
decisions when a new idle period starts [12][13]. Shin 
and Choi proposed a scheme to slow down a processor 
when there is a single task eligible for execution [14]. 
Yao et al. developed a static off-line scheduling 
algorithm [15], whereas Hong et al. proposed on-line 
heuristics scheduling for aperiodic tasks [16]. Very 
recently, we developed a task allocation strategy 
aiming to minimize overall energy consumption while 
confining schedule lengths to an ideal range [17].  

However, most of these prior works regarding 
energy-aware scheduling were mainly focused on 
energy consumed by processors and memories, which 
are not appropriate for parallel applications with 
intensive communication because the communication 
energy consumption was completely ignored. Many 
literatures have shown that energy dissipation caused 
by communication between is huge in large-scale 
distributed computing systems. For instance, network 
consumes 33 percent of the total energy in an Avici 
switch [18][19], and routers and links consume 37 
percent of the total power budget in a Mellanox server 
blade [20]. The energy consumption in interconnects 
becomes even more critical for communication-
intensive parallel applications, in which large number 
of data will be transferred among parallel tasks. 
Enlightened by duplication strategy, which has been 
proved to be a good solution to reduce communication 
overhead, we proposed two algorithms for 
homogeneous distributed system [21]. In this paper, we 
designed a two-phase energy-aware scheduling 
algorithm specifically for heterogeneous distributed 
parallel system. The algorithm, called EETDS, 
combines group-based scheduling with duplication-
based scheduling strategies together and makes good 
tradeoffs between performance and energy savings. 

 

3. System Architecture & Energy Model  
 
3.1. System Architecture 
 

Generally, a high performance heterogeneous cluster 
system can be divided into three main components, 
which are hardware components, network protocols 
and software components. More specifically, hardware 
components include PCs, workstations, high 
performance computers and underneath network 
equipments (e.g. routers, switches and network 
interface cards). High-quality network protocols are 
critical for heterogeneous system since the computing 
nodes communicate with each other by different type of 
networks. Therefore, the communication protocol 
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should provide support for various networks. In 
addition, a standard message passing protocol (provide 
message passing scheme and manage messages) is 
definitely necessary. In order to support parallel 
applications, a special parallel computing layer should 
be designed to support parallel computing. Fig.1 shows 
the architecture of a heterogeneous cluster system.  

If we define the heterogeneous cluster in a 
mathematical way, it consists of a set P = {p1, 
sp2,...,pm} of heterogeneous computing nodes 
(hereinafter referred to as nodes) connected by a high-
speed interconnect like fast Ethernet, gigabit Ethernet, 
SCI, FDDI or Myrinet. All these loosely coupled nodes 
communicate with each other by passing messages. The 
whole platform can be represented by a graph, where 
computing nodes are vertices. There exists a weighted 
edge if a pair of corresponding nodes can communicate 
with each other. An n×m binary allocation matrix X is 
used to reflect a mapping of n tasks to m heterogeneous 
nodes. Thus, element xij in X is “1” if task ti is assigned 
to node pj and is “0”, otherwise. Since our scheduling 
algorithm will be verified in a heterogeneous 
environment, it is imperative to define the following 
constraints for our heterogeneous distributed system. 
First, different nodes have different preference with 
respect to tasks, meaning that a node offering task ti a 
shorter execution time does not necessarily run faster 
for another task tj. Second, execution times of tasks on 
different nodes may various because the nodes may 
have various clock speed and processing capabilities. 
Third, the transmission rates of interconnections 
depend on underlying network types. Last, energy 
consumption rates of the nodes and interconnections 
may not necessarily be identical. 
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Fig.1 Architecture of Heterogeneous Clusters 

3.2 Energy Consumption Model 
If we do not consider the disk subsystem and cooling 

system, the energy consumption model of a 

heterogeneous cluster can be expressed as: 
ELENE +=                                  (1) 

 
Where EN is the energy consumption of computing 

nodes, and EL is the energy consumption of 
communication. The energy consumption EN of 
computing node in Eq. (1) can be written as: 
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where eni is the energy consumption caused by node i, 
PN is the power consumption rate of the node, and ti is 
the total execution time of tasks running on node i. The 
energy consumed by the interconnections is expressed 
as 
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where ELab is the energy consumption of the link 
between nodes pa and pb. PL in Eq. (2) is the power 
consumption rate of the link. Element xia is “1” if the 
ith task is assigned to node pa and is “0”, otherwise. cij 
is the communication cost.  

 
4. EETDS Algorithm 
 

In this section, we present the two-phases EETDS 
algorithm in detail. Basically, given parallel 
applications in form of DAGs, the objective of our 
scheduling algorithm is to allocate and schedule 
parallel tasks to computing nodes in a way to shorten 
schedule lengths while reducing energy consumption of 
heterogeneous clusters. The scheduling algorithm 
studied in this paper has been shown to be NP-hard 
problem by mapping it to a scheduling problem proven 
to be an NP-complete [22]. Therefore, the proposed 
scheduling algorithm is heuristic in the sense that it can 
produce suboptimal solutions in polynomial-times. 

 
4.1 Grouping Phase 
 

The grouping phase of EETDS is to associate the 
most relevant tasks (i.e. tasks in the same critical paths) 
into groups. Given a parallel application modeled as a 
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task graph or DAG, the grouping phase yields a group-
based graph of the DAG. Since all tasks in a group are 
allocated to the same computing node where there are 
no waiting times among the tasks within the group, we 
can significantly reduce communication overheads of 
highly dependent tasks with intensive communications. 
Additionally, a task-duplication strategy is applied in 
the process of grouping to further improve system 
performance by replicating tasks into multiple 
computing nodes if schedule lengths can be shortened. 
More specifically, the grouping phase can be finely 
divided into three sub-steps, namely, original task 
sequence generating, parameters calculating, and 
duplication task sequence generating. These sub-steps 
are detailed as follows. 

 
4.1.1 Original task sequence generating 

The first step in the grouping phase is to construct 
an original ordered task sequence using the concept of 
levels, which define how far it is from current task to 
the completion time of the exit task. Note that a similar 
approach proposed by Srinivasan can be found in [5]. 
We define the level L(ti) of task ti as below 
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The level of an exit task is equal to its execution 

time. The levels of other tasks can be obtained in a 
bottom-up fashion by specifying the level of the exit 
task as its execution time and then recursively applying 
the second term on the right-hand side of Eq. (4) to 
calculate the levels of all the other tasks. Initially, all 
ungrouped tasks are marked NOT_GROUPED. The 
list of groups is initialized to an empty set. Next, all the 
tasks are sorted in an increasing order of the levels and 
then considered for grouping in that order. 

  
Table 1. Important Notation and Parameters 

EST(vi) Earliest start time of task vi 
ECT(vi) Earliest completion time of task vi 
FP(vi) Favorite predecessor of task vi 
LACT(vi) Latest allowable completion time of task vi 
LAST(vi) Latest allowable start time of task vi 

 
4.1.2 Parameters calculating 

The second step in the grouping phase is to calculate 
some important parameters, which will be used in the 
third step (see Section 4.1.3) to generate duplication-
based task sequences. The important notation and 

parameters are summarized in Table 1. Similar 
notations were first proposed by Darbha and Agrawal 
in 1997 [23]. 

The earliest start times of all the other tasks can be 
calculated in a top-down manner by recursively 
applying the second term on the right side as follows. 
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The earliest completion time of task vi is expressed 

as the summation of its earliest start time and execution 
time. Thus, we have 
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The favorite predecessor FP(vi), LACT(vi), LAST(vi) 

are defined as below respectively 
 

.)()(,, where,)( kikjijkijiji cvECTcvECTkjEeEevvFP +≥+≠∈∈∀=

 

( ) ( )⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −

Φ=
=

=∈≠∈
otherwise ,)(min,)(minmin

 i)successor( if                    ),(
)(

)(,)(,
j

vFPvEe
ijj

vFPvEe

i

i vLASTcvLAST

vECT
vLACT

jiijjiij

 
.)()( iii tvLACTvLAST −=  

 

 
 

4.1.3 Duplication task sequence generating 

Once the original task sequence and important 
parameters are available, we are ready to apply the 
duplication strategy to complete the last step of the 
grouping phase. Fig. 2 illustrates the main idea of the 
duplication strategy using a simple example. The left 
part of Fig. 2 shows a DAG for four tasks with 
precedence constraints.  The execution times of task 
T1, T2, T3, T4 are 8s, 10s, 15s, and 6s. The 
communication times among the tasks are 6s, 5s, 2s, 
and 4s, respectively. The right part of Fig. 2 provides 
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three schedules made by the linear scheduling strategy, 
the non-duplication strategy, and the duplication 
strategy, respectively. The linear schedule has the 
longest schedule length because all the tasks allocated 
to one computing nodes have to be executed in a 
sequential order. The non-duplication schedule reduces 
the schedule length by allowing T2 and T3 running in 
parallel on two computing nodes. The duplication 
schedule further improves the performance by 
redundantly executing T1 on the second node. Thus, 
the duplication strategy trades CPU times for 
communication overheads. 

At the very beginning of duplication process, no task 
is marked as “grouped” and the list of clusters is 
initialized to be empty. Next, EETDS will consider the 
first task and add it to a newly formed group called G1. 
Then in the following iterations, the algorithm goes 
through all the tasks along the favorite predecessor 
chain and attempts to add all the tasks in the critical 
path to the same group. Once a task is added to a 
group, it will be immediately marked as “grouped”. If 
the task being processed is the entry task, the current 
iteration will end and a new iteration will start in the 
next loop by choosing the first ungrouped task from the 
original task sequence generated in step 1. During the 
process of walking through multiple critical paths, we 
may find some tasks have been added to a group. At 
this point, the duplication strategy is responsible to 
make the decision whether or not duplicate this task to 
multiple groups by calculating the schedule length. If 
duplicating a task can reduce schedule length, EETDS 
will go further step to check energy consumption 
caused by duplication. If the extra power cost is more 
than the energy threshold we have set, duplication 
process will be forbidden automatically. Therefore, any 
task will not be duplicated in either of the two cases: 
increase schedule length or consume too much power. 
At the end of the process, the task graph has been 
divided into groups. Finally, the group graph is 
generated by creating edges among all the groups 
communicating with each other. The algorithm then 
sets a weight for each edge to represent corresponding 
communication cost. 
 
4.2 Energy-Efficient Group Allocation  

 
After the grouping stage, the DAG has been 

partitioned into a number of groups, which will be 
allocated to heterogeneous computing nodes by the 
next step in an energy-efficient way. The main 
objective for this phase is to generate an allocation list 
with minimized energy dissipation. More specifically, 
the algorithm calculates energy consumption caused by 

the group running on the node. The estimation of the 
energy consumption can be carried out using the energy 
consumption model described in Section 3.2. The value 
of this energy consumption is saved in an energy cost 
array. The algorithm applies the same procedure to the 
next type of node. This procedure is repeatedly 
performed until all candidate nodes with respect to the 
group have been considered. Finally, the algorithm 
updates the allocation list with a node that leads to the 
minimized energy dissipation. After the group 
allocation phase is accomplished, the allocation list 
provides an allocation solution with minimized energy 
consumption of the heterogeneous cluster.  

 
5. Performance Evaluation 
 

Now we are positioned to evaluate the effectiveness 
of the proposed EETDS scheduling algorithm. To 
demonstratively show the strength of our novel 
scheduling scheme, we conducted extensive 
experiments using real-world applications including 
Gaussian Elimination and Fast Fourier Transform 
applications. In this section, we compare EETDS with 
two existing scheduling algorithms: the Non-
Duplication Scheduling algorithm (NDS) [24] and the 
Task Duplication Scheduling algorithm (TDS) [25]. In 
addition, we compare EETDSS with a baseline 
algorithm: Energy-Efficient Non-Duplication 
Scheduling (EENDS). In order to reflect different 
applications, Communication-to-Computation Ratio (or 
CCR for short), is defined as the ratio between the 
average communication cost of |E| messages and the 
average computation cost of n parallel tasks with m 
heterogeneous computing nodes. Formally, the CCR of 
an application (T, E) is expressed by equation as 
below. 
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Generally speaking, communication-intensive 
applications have high CCRs, whereas CCRs of 
computation-intensive applications are low. 

 
5.1 Simulation Setup 

 
To simulate a heterogeneous distributed system 

running parallel tasks, we set three different 
environments using four different types of processors 
as follows. 
AMD Athlon 64 X2 4600+ with 85W TDP (Type 1) 
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Energy Consumption Rate: Busy: 104w Idle: 15w 
AMD Athlon 64 X2 4600+ with 65W TDP (Type 2) 
Energy Consumption Rate: Busy: 75w Idle: 14w 
AMD Athlon 64 X2 3800+ with 35W TDP (Type 3) 
Energy Consumption Rate:  Busy: 47w Idle: 11w 
Intel Core 2 Duo E6300 processor (Type 4)  
Energy Consumption Rate:  Busy: 44w Idle: 26w 
Environment1 Environment2 Environment3 
# of Type 1: 4 # of Type 1: 6 # of Type 1: 6 
# of Type 2: 4 # of Type 2: 2 # of Type 2: 3 
# of Type 3: 4 # of Type 3: 2 # of Type 3: 3 
# of Type 4: 4 # of Type 4: 6 # of Type 4: 5 
Also, we simulate three networks with different energy 
consumption rate of (20W, 33.6W, 60W).  
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Fig.5 CCR Sensitivity of FFT (E2) 

 
5.2 CCR Sensitivity 

 
    Figs. 4 and 5 show the impacts of CCR on energy 
dissipation of Gaussian Elimination application and 

FFT respectively. Four observations are evident from 
this group of experiments. First, the energy 
consumption of Gaussian Elimination under all the four 
algorithms is very sensitive to CCR. Second, NDS 
outperforms TDS with respect to energy conservation 
when the CCR values are small. However, TDS is 
superior to NDS when CCR becomes large (e.g., CCR 
is greater than or equal to 4). Third, EETDS works well 
for both Gaussian and FFT and it has overall better 
performance compared with the other three algorithms. 
Last, the energy savings exhibited by EETDS become 
more pronounced with the increasing values of CCR, 
which indicates that EETDS is more appropriate for 
communication-intensive applications as opposed to 
computation-intensive applications. 

 

Energy Consumption under Different 
Environments

0

10000

20000

30000

40000

50000

TDS NDS EENDS EETDS

E
n

er
g

y(
Jo

u
l)

E1 E2 E3 E4

 
Fig.6 Energy consumption for Gaussian when 

Net_Energy=60 and CCR=0.1 
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5.3 Computing Nodes Heterogeneity 

 
    Figs. 6 and 7 illustrate the impacts of the computing 
heterogeneity. First, we observe that EETDS can 
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conserve more energy in E1 and E3 compared with E2, 
from which we can draw the conclusion that less 
energy is consumed with more energy-efficient 
computing nodes. Second, the computing heterogeneity 
has significant impacts on the energy efficiency of 
EETDS. For example, when CCR equals to 0.1 in three 
different environments, EETDS reduces energy 
consumption (compared with TDS) by 36.4%, 47.1%, 
and 45.6%, respectively. These experimental results 
indicate that EETDS can conserve even more energy 
for heterogeneous clusters that are comprised of 
energy-consuming computing nodes. Third, Fig. 6&7 
show a similar performance trend that EETDS 
significantly conserve energy in overall because TDS 
consumes huge energy when CCR is small and NDS 
consumes more energy when CCR is large due to the 
huge energy dissipation in the network 
interconnections. 
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Fig.9 Energy consumption of Gaussian  

(Net = 33.6W) 
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5.4 Network Heterogeneity 

 
    After comparing Figs. 8, 9, and 10, we can quantify 
the impacts of network heterogeneity. For instance, 
given environment 1 for Gaussian application, EETDS 
can improve energy efficiency over TDS by 27.9%, 
27.9%, 27.8% when network energy consumption rate 
is 20W, 33.6W, and 60W, respectively (CCR is set to 
0.1). However, when CCR is large (e.g., 10), these 
improvements in energy efficiency are scaled down to 
15.6%, 13.3% and 10.2%, respectively. In this set of 
experiments we confirm that the network energy 
consumption contributes a whole lot to total energy 
consumption when CCR is large. Last, we conclude 
that NDS is not suitable for communication-intensive 
parallel applications because NDS has schedule lengths 
significantly increased when communication overheads 
are high. 
 

6. Conclusions 
 

In this paper, we proposed a two-phase energy-
efficient scheduling algorithm called EETDS, which 
aims to make the best tradeoffs between energy savings 
and performance for parallel applications running on 
heterogeneous clusters. EETDS is designed and 
implemented based on the duplication-based algorithm 
used to minimize communication overheads of parallel 
tasks with precedence constraints. The EETDS 
algorithm consists of two major phases. In the first 
phase, a grouping method is employed to minimize 
schedule lengths of parallel applications. The goal of 
phase two is to leverage power-consumption 
parameters to conserve energy. The experimental 
results show that compared with three existing 
algorithms, EETDS can significantly reduce energy 
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dissipation for heterogeneous cluster system with only 
a marginal degradation in performance. 
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