
 1

Energy-Efficient Scheduling for Parallel Applications Running on
Heterogeneous Clusters

Ziliang Zong†, Xiao Qin†*, Xiaojun Ruan†, Kiranmai Bellam†,
Mais Nijim‡, and Mohamed Alghamdi§

†Department of Computer Science and Software Engineering
Auburn University, Auburn, AL 36849

{ zzong, xqin, xruan, kbellam}@ eng.auburn.edu
‡Department of Computer Science

University of Southern Mississippi, Hattiesburg, MS 39406

mnijim@usm.edu

§Department of Computer Science
New Mexico Institute of Mining and Technology, Socorro, NM 87801

* Corresponding author. http://www.eng.auburn.edu/~xqin

Abstract

High performance clusters have been widely used to
provide amazing computing capability for both
commercial and scientific applications. However, huge
power consumption has prevented the further
application of large-scale clusters. Designing energy-
efficient scheduling algorithms for parallel
applications running on clusters, especially on the
high performance heterogeneous clusters, is highly
desirable. In this regard, we propose a novel
scheduling strategy called energy efficient task
duplication schedule (EETDS for short), which can
significantly conserve power by judiciously shrinking
communication energy cost when allocating parallel
tasks to heterogeneous computing nodes. We present
the preliminary simulation results for Gaussian and
FFT parallel task models to prove the efficiency of our
algorithm.

1. Introduction

The combination of modern clusters and parallel
computing technology exhibits powerful computing
capabilities. Over the last decade, the rapid
advancement of high performance microprocessors,
high-speed networks, and standard middleware tools
makes cluster computing platforms more powerful and

convenient to use. Therefore, cluster computing
technology has been extensively deployed and widely
used to solve challenging and rigorous engineering
problems in industry and scientific areas like molecular
design, weather modeling, universe dark matter
observations, and complex image rendering. However,
the rapid growth of cluster computing centers
introduces a serious problem: huge energy
consumption. According to EUN (Energy User News)
[1], the power requirements of today’s cluster
computing centers range from 75 W/ft2 to 150-200
W/ft2 and will increase to 200-300 W/ft2 in the nearest
future. The new data center capacity projected for 2005
would require approximately 40TWh ($4B at $100 per
MWh) per year to run 24x7 unless they become more
efficient [2]. New data centers in the Seattle area are
forecast to increase the city's power demands by 25%
[3]. Therefore, it is highly desirable to design energy-
aware scheduling algorithms for cluster systems.

However, designing energy-aware scheduling
algorithms for heterogeneous clusters, is technically
challenging because we have to take into account
multiple design objectives, including performance
(measured by throughput and schedule length), energy
efficiency, and heterogeneities. Basically, processors,
networks, disks, and cooling system are four major
power consumers in a cluster computing system. Our
approach aims to conserve network transmission

This paper appeared in the Proceedings of the 36th International Conference on
Parallel Processing (ICPP), Sept. 2007.

 2

energy by judiciously duplicating communication-
intensive tasks. More specifically, we first assume the
execution and communication times of tasks are
already known in priori and apply a heuristic (a similar
approach can be found in [5]) way to minimize
schedule lengths by grouping the most related parallel
tasks together. Next, we make use of a dynamic
allocation method to obtain a suboptimal power
consumption of a cluster computing system by
comparing total energy consumption when grouped
tasks are allocated to different computational nodes in
the cluster.

The rest of the paper is organized as follows. In
section 2, we will talk about the related work. Next,
Section 3 defines mathematical models including a
system model, a task model, and an energy
consumption model for heterogeneous clusters. In
Section 4 we present the detailed two-phases EETDS
algorithm. Section 5 qualitatively compares EETDS
with three existing approaches through extensive
simulation results. Finally, section 6 provides the
concluding remarks and future research directions.

2. Related Work

The issue of conserving energy consumption in high
performance clusters has not attracted enough attention
for a long period because researchers mainly
concentrate on the performance, reliability, and
security issues of clusters [5]. Recently, people start to
realize that the energy consumption issue is also critical
since energy demands of modern data centers have
been steadily growing in a noticeable speed.

A handful of previous studies investigated energy-
aware processor and memory design techniques to
reduce energy consumption in processors and memory
resources [6][7][8]. IBM researchers Elnozahy, Kistler,
and Rajamony proposed the Request Batching Policy
(RBP), in which servicing of incoming requests is
delayed while a web server is kept in a low power state.
Incoming requests are accumulated in memory until a
request has been kept pending for longer than a
specified batching timeout. RBP can save energy
because while requests are being accumulated, the
processor is placed in a lower power state such as deep
sleep [9]. Dynamic power management is designed to
achieve requested performance with minimum number
of active components or a minimum load on such
components [9][10]. Dynamic power management
consists of a collection of energy-efficient techniques,
which adaptively turn off system components or reduce
their performance when the components are idle or
partially unexploited. For example, based on the

observation of past idle and busy periods, predictive
shutdown policies can make power management
decisions when a new idle period starts [12][13]. Shin
and Choi proposed a scheme to slow down a processor
when there is a single task eligible for execution [14].
Yao et al. developed a static off-line scheduling
algorithm [15], whereas Hong et al. proposed on-line
heuristics scheduling for aperiodic tasks [16]. Very
recently, we developed a task allocation strategy
aiming to minimize overall energy consumption while
confining schedule lengths to an ideal range [17].

However, most of these prior works regarding
energy-aware scheduling were mainly focused on
energy consumed by processors and memories, which
are not appropriate for parallel applications with
intensive communication because the communication
energy consumption was completely ignored. Many
literatures have shown that energy dissipation caused
by communication between is huge in large-scale
distributed computing systems. For instance, network
consumes 33 percent of the total energy in an Avici
switch [18][19], and routers and links consume 37
percent of the total power budget in a Mellanox server
blade [20]. The energy consumption in interconnects
becomes even more critical for communication-
intensive parallel applications, in which large number
of data will be transferred among parallel tasks.
Enlightened by duplication strategy, which has been
proved to be a good solution to reduce communication
overhead, we proposed two algorithms for
homogeneous distributed system [21]. In this paper, we
designed a two-phase energy-aware scheduling
algorithm specifically for heterogeneous distributed
parallel system. The algorithm, called EETDS,
combines group-based scheduling with duplication-
based scheduling strategies together and makes good
tradeoffs between performance and energy savings.

3. System Architecture & Energy Model

3.1. System Architecture

Generally, a high performance heterogeneous cluster
system can be divided into three main components,
which are hardware components, network protocols
and software components. More specifically, hardware
components include PCs, workstations, high
performance computers and underneath network
equipments (e.g. routers, switches and network
interface cards). High-quality network protocols are
critical for heterogeneous system since the computing
nodes communicate with each other by different type of
networks. Therefore, the communication protocol

 3

should provide support for various networks. In
addition, a standard message passing protocol (provide
message passing scheme and manage messages) is
definitely necessary. In order to support parallel
applications, a special parallel computing layer should
be designed to support parallel computing. Fig.1 shows
the architecture of a heterogeneous cluster system.

If we define the heterogeneous cluster in a
mathematical way, it consists of a set P = {p1,
sp2,...,pm} of heterogeneous computing nodes
(hereinafter referred to as nodes) connected by a high-
speed interconnect like fast Ethernet, gigabit Ethernet,
SCI, FDDI or Myrinet. All these loosely coupled nodes
communicate with each other by passing messages. The
whole platform can be represented by a graph, where
computing nodes are vertices. There exists a weighted
edge if a pair of corresponding nodes can communicate
with each other. An n×m binary allocation matrix X is
used to reflect a mapping of n tasks to m heterogeneous
nodes. Thus, element xij in X is “1” if task ti is assigned
to node pj and is “0”, otherwise. Since our scheduling
algorithm will be verified in a heterogeneous
environment, it is imperative to define the following
constraints for our heterogeneous distributed system.
First, different nodes have different preference with
respect to tasks, meaning that a node offering task ti a
shorter execution time does not necessarily run faster
for another task tj. Second, execution times of tasks on
different nodes may various because the nodes may
have various clock speed and processing capabilities.
Third, the transmission rates of interconnections
depend on underlying network types. Last, energy
consumption rates of the nodes and interconnections
may not necessarily be identical.

Super Computer

High Speed Wired Network

PC

WorkStations

Sequential Applications Parallel Applications

Middle layer supporting
parallel computing

 Cluster Middleware

PCPC

Windows ClusterLinux Cluster

Fig.1 Architecture of Heterogeneous Clusters

3.2 Energy Consumption Model
If we do not consider the disk subsystem and cooling

system, the energy consumption model of a

heterogeneous cluster can be expressed as:
ELENE += (1)

Where EN is the energy consumption of computing

nodes, and EL is the energy consumption of
communication. The energy consumption EN of
computing node in Eq. (1) can be written as:

()

.

1

1

||

1

∑

∑∑

=

==

=

⋅==

n

i
i

n

i
i

V

i
i

tPN

tPNenEN
 (2)

where eni is the energy consumption caused by node i,
PN is the power consumption rate of the node, and ti is
the total execution time of tasks running on node i. The
energy consumed by the interconnections is expressed
as

 ∑ ∑
= ≠=

=
m

a

m

abb

abELEL
1 ,1

()∑ ∑ ∑ ∑
= ≠= = ≠=

⋅⋅⋅=
n

i

n

ijj

m

a

m

abb
ijjbia cPLxx

1 ,1 1 ,1

. (3)

where ELab is the energy consumption of the link
between nodes pa and pb. PL in Eq. (2) is the power
consumption rate of the link. Element xia is “1” if the
ith task is assigned to node pa and is “0”, otherwise. cij
is the communication cost.

4. EETDS Algorithm

In this section, we present the two-phases EETDS
algorithm in detail. Basically, given parallel
applications in form of DAGs, the objective of our
scheduling algorithm is to allocate and schedule
parallel tasks to computing nodes in a way to shorten
schedule lengths while reducing energy consumption of
heterogeneous clusters. The scheduling algorithm
studied in this paper has been shown to be NP-hard
problem by mapping it to a scheduling problem proven
to be an NP-complete [22]. Therefore, the proposed
scheduling algorithm is heuristic in the sense that it can
produce suboptimal solutions in polynomial-times.

4.1 Grouping Phase

The grouping phase of EETDS is to associate the
most relevant tasks (i.e. tasks in the same critical paths)
into groups. Given a parallel application modeled as a

 4

task graph or DAG, the grouping phase yields a group-
based graph of the DAG. Since all tasks in a group are
allocated to the same computing node where there are
no waiting times among the tasks within the group, we
can significantly reduce communication overheads of
highly dependent tasks with intensive communications.
Additionally, a task-duplication strategy is applied in
the process of grouping to further improve system
performance by replicating tasks into multiple
computing nodes if schedule lengths can be shortened.
More specifically, the grouping phase can be finely
divided into three sub-steps, namely, original task
sequence generating, parameters calculating, and
duplication task sequence generating. These sub-steps
are detailed as follows.

4.1.1 Original task sequence generating

The first step in the grouping phase is to construct
an original ordered task sequence using the concept of
levels, which define how far it is from current task to
the completion time of the exit task. Note that a similar
approach proposed by Srinivasan can be found in [5].
We define the level L(ti) of task ti as below

()
⎪⎩

⎪
⎨
⎧

+
Φ=

=
∈

 . otherwise ,)(max

)(successor if ,
)(

)(

i

isucck

ii

i cklevel

tc
tL

43421
 (4)

The level of an exit task is equal to its execution

time. The levels of other tasks can be obtained in a
bottom-up fashion by specifying the level of the exit
task as its execution time and then recursively applying
the second term on the right-hand side of Eq. (4) to
calculate the levels of all the other tasks. Initially, all
ungrouped tasks are marked NOT_GROUPED. The
list of groups is initialized to an empty set. Next, all the
tasks are sorted in an increasing order of the levels and
then considered for grouping in that order.

Table 1. Important Notation and Parameters

EST(vi) Earliest start time of task vi
ECT(vi) Earliest completion time of task vi
FP(vi) Favorite predecessor of task vi
LACT(vi) Latest allowable completion time of task vi
LAST(vi) Latest allowable start time of task vi

4.1.2 Parameters calculating

The second step in the grouping phase is to calculate
some important parameters, which will be used in the
third step (see Section 4.1.3) to generate duplication-
based task sequences. The important notation and

parameters are summarized in Table 1. Similar
notations were first proposed by Darbha and Agrawal
in 1997 [23].

The earliest start times of all the other tasks can be
calculated in a top-down manner by recursively
applying the second term on the right side as follows.

()⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ +

Φ=
=

≠∈∈
otherwise ,)(),(maxmin

 r(i)predecesso if ,0
)(

,
kikj

vvEeEe

i cvECTvECT
vEST

jkkiji

The earliest completion time of task vi is expressed

as the summation of its earliest start time and execution
time. Thus, we have

.)()(iii tvESTvECT +=

The favorite predecessor FP(vi), LACT(vi), LAST(vi)

are defined as below respectively

.)()(,, where,)(kikjijkijiji cvECTcvECTkjEeEevvFP +≥+≠∈∈∀=

() ()⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −

Φ=
=

=∈≠∈
otherwise ,)(min,)(minmin

 i)successor(if),(
)(

)(,)(,
j

vFPvEe
ijj

vFPvEe

i

i vLASTcvLAST

vECT
vLACT

jiijjiij

.)()(iii tvLACTvLAST −=

4.1.3 Duplication task sequence generating

Once the original task sequence and important
parameters are available, we are ready to apply the
duplication strategy to complete the last step of the
grouping phase. Fig. 2 illustrates the main idea of the
duplication strategy using a simple example. The left
part of Fig. 2 shows a DAG for four tasks with
precedence constraints. The execution times of task
T1, T2, T3, T4 are 8s, 10s, 15s, and 6s. The
communication times among the tasks are 6s, 5s, 2s,
and 4s, respectively. The right part of Fig. 2 provides

 5

three schedules made by the linear scheduling strategy,
the non-duplication strategy, and the duplication
strategy, respectively. The linear schedule has the
longest schedule length because all the tasks allocated
to one computing nodes have to be executed in a
sequential order. The non-duplication schedule reduces
the schedule length by allowing T2 and T3 running in
parallel on two computing nodes. The duplication
schedule further improves the performance by
redundantly executing T1 on the second node. Thus,
the duplication strategy trades CPU times for
communication overheads.

At the very beginning of duplication process, no task
is marked as “grouped” and the list of clusters is
initialized to be empty. Next, EETDS will consider the
first task and add it to a newly formed group called G1.
Then in the following iterations, the algorithm goes
through all the tasks along the favorite predecessor
chain and attempts to add all the tasks in the critical
path to the same group. Once a task is added to a
group, it will be immediately marked as “grouped”. If
the task being processed is the entry task, the current
iteration will end and a new iteration will start in the
next loop by choosing the first ungrouped task from the
original task sequence generated in step 1. During the
process of walking through multiple critical paths, we
may find some tasks have been added to a group. At
this point, the duplication strategy is responsible to
make the decision whether or not duplicate this task to
multiple groups by calculating the schedule length. If
duplicating a task can reduce schedule length, EETDS
will go further step to check energy consumption
caused by duplication. If the extra power cost is more
than the energy threshold we have set, duplication
process will be forbidden automatically. Therefore, any
task will not be duplicated in either of the two cases:
increase schedule length or consume too much power.
At the end of the process, the task graph has been
divided into groups. Finally, the group graph is
generated by creating edges among all the groups
communicating with each other. The algorithm then
sets a weight for each edge to represent corresponding
communication cost.

4.2 Energy-Efficient Group Allocation

After the grouping stage, the DAG has been

partitioned into a number of groups, which will be
allocated to heterogeneous computing nodes by the
next step in an energy-efficient way. The main
objective for this phase is to generate an allocation list
with minimized energy dissipation. More specifically,
the algorithm calculates energy consumption caused by

the group running on the node. The estimation of the
energy consumption can be carried out using the energy
consumption model described in Section 3.2. The value
of this energy consumption is saved in an energy cost
array. The algorithm applies the same procedure to the
next type of node. This procedure is repeatedly
performed until all candidate nodes with respect to the
group have been considered. Finally, the algorithm
updates the allocation list with a node that leads to the
minimized energy dissipation. After the group
allocation phase is accomplished, the allocation list
provides an allocation solution with minimized energy
consumption of the heterogeneous cluster.

5. Performance Evaluation

Now we are positioned to evaluate the effectiveness
of the proposed EETDS scheduling algorithm. To
demonstratively show the strength of our novel
scheduling scheme, we conducted extensive
experiments using real-world applications including
Gaussian Elimination and Fast Fourier Transform
applications. In this section, we compare EETDS with
two existing scheduling algorithms: the Non-
Duplication Scheduling algorithm (NDS) [24] and the
Task Duplication Scheduling algorithm (TDS) [25]. In
addition, we compare EETDSS with a baseline
algorithm: Energy-Efficient Non-Duplication
Scheduling (EENDS). In order to reflect different
applications, Communication-to-Computation Ratio (or
CCR for short), is defined as the ratio between the
average communication cost of |E| messages and the
average computation cost of n parallel tasks with m
heterogeneous computing nodes. Formally, the CCR of
an application (T, E) is expressed by equation as
below.

∑ ∑

∑∑ ∑ ∑

∑ ∑

∑∑ ∑ ∑

= =

= = = ≠=

= =

= = = ≠=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
n

i

m

j

j
i

n

i

n

j

m

u

m

uvv uv

ij

n

i

m

j

j
i

n

i

n

j

m

u

m

uvv uv

ij

c
n

b

s

mE

c
mn

b

s

mmE
ETCCR

1 1

1 1 1 ,1

1 1

1 1 1 ,1

1

)1(||

1

11

)1(

1

||

1

),(

Generally speaking, communication-intensive
applications have high CCRs, whereas CCRs of
computation-intensive applications are low.

5.1 Simulation Setup

To simulate a heterogeneous distributed system

running parallel tasks, we set three different
environments using four different types of processors
as follows.
AMD Athlon 64 X2 4600+ with 85W TDP (Type 1)

 6

Energy Consumption Rate: Busy: 104w Idle: 15w
AMD Athlon 64 X2 4600+ with 65W TDP (Type 2)
Energy Consumption Rate: Busy: 75w Idle: 14w
AMD Athlon 64 X2 3800+ with 35W TDP (Type 3)
Energy Consumption Rate: Busy: 47w Idle: 11w
Intel Core 2 Duo E6300 processor (Type 4)
Energy Consumption Rate: Busy: 44w Idle: 26w
Environment1 Environment2 Environment3
of Type 1: 4 # of Type 1: 6 # of Type 1: 6
of Type 2: 4 # of Type 2: 2 # of Type 2: 3
of Type 3: 4 # of Type 3: 2 # of Type 3: 3
of Type 4: 4 # of Type 4: 6 # of Type 4: 5
Also, we simulate three networks with different energy
consumption rate of (20W, 33.6W, 60W).

Energy Consumption under Different CCR

0

10000

20000

30000

40000

50000

60000

70000

0.1 0.3 0.5 0.7 0.9 2 4 6 8 10

CCR

E
n

er
g

y
(J

o
u

l)

TDS
NDS
EENDS
EETDS

Fig.4 CCR Sensitivity of Gaussian Elimination
(E1)

Energy Consumption under Different CCR

0

10000

20000

30000

40000

50000

60000

70000

80000

0.1 0.3 0.5 0.7 0.9 2 4 6 8 10

CCR

E
n

er
g

y
(J

o
u

l)

TDS
NDS
EENDS
EETDS

Fig.5 CCR Sensitivity of FFT (E2)

5.2 CCR Sensitivity

 Figs. 4 and 5 show the impacts of CCR on energy
dissipation of Gaussian Elimination application and

FFT respectively. Four observations are evident from
this group of experiments. First, the energy
consumption of Gaussian Elimination under all the four
algorithms is very sensitive to CCR. Second, NDS
outperforms TDS with respect to energy conservation
when the CCR values are small. However, TDS is
superior to NDS when CCR becomes large (e.g., CCR
is greater than or equal to 4). Third, EETDS works well
for both Gaussian and FFT and it has overall better
performance compared with the other three algorithms.
Last, the energy savings exhibited by EETDS become
more pronounced with the increasing values of CCR,
which indicates that EETDS is more appropriate for
communication-intensive applications as opposed to
computation-intensive applications.

Energy Consumption under Different
Environments

0

10000

20000

30000

40000

50000

TDS NDS EENDS EETDS

E
n

er
g

y(
Jo

u
l)

E1 E2 E3 E4

Fig.6 Energy consumption for Gaussian when

Net_Energy=60 and CCR=0.1

Energy Consumption under Different
Environments

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

TDS NDS EENDS EETDS

E
n

er
g

y(
Jo

u
l)

E1 E2 E3

Fig.7 Energy consumption for Gaussian when
Net_Energy=60 and CCR=8

5.3 Computing Nodes Heterogeneity

 Figs. 6 and 7 illustrate the impacts of the computing
heterogeneity. First, we observe that EETDS can

 7

conserve more energy in E1 and E3 compared with E2,
from which we can draw the conclusion that less
energy is consumed with more energy-efficient
computing nodes. Second, the computing heterogeneity
has significant impacts on the energy efficiency of
EETDS. For example, when CCR equals to 0.1 in three
different environments, EETDS reduces energy
consumption (compared with TDS) by 36.4%, 47.1%,
and 45.6%, respectively. These experimental results
indicate that EETDS can conserve even more energy
for heterogeneous clusters that are comprised of
energy-consuming computing nodes. Third, Fig. 6&7
show a similar performance trend that EETDS
significantly conserve energy in overall because TDS
consumes huge energy when CCR is small and NDS
consumes more energy when CCR is large due to the
huge energy dissipation in the network
interconnections.

Energy Consumption under Different CCR

0

10000

20000

30000

40000

50000

60000

0.1 0.3 0.5 0.7 0.9 2 4 6 8 10

CCR

E
n

er
g

y
(J

o
u

l)

TDS NDS

EENDS EETDS

 Fig.8 Energy consumption of Gaussian
(Net = 20W)

Energy Consumption under Different CCR

0

10000

20000

30000

40000

50000

60000

70000

0.1 0.3 0.5 0.7 0.9 2 4 6 8 10

CCR

E
n

er
g

y
(J

o
u

l)

TDS NDS

EENDS EETDS

Fig.9 Energy consumption of Gaussian

(Net = 33.6W)

Energy Consumption under Different CCR

0

20000

40000

60000

80000

100000

0.1 0.3 0.5 0.7 0.9 2 4 6 8 10

CCR

E
n

er
g

y
(J

o
u

l)

TDS NDS

EENDS EETDS

Fig.10 Energy consumption of Gaussian
(Net = 60W)

5.4 Network Heterogeneity

 After comparing Figs. 8, 9, and 10, we can quantify
the impacts of network heterogeneity. For instance,
given environment 1 for Gaussian application, EETDS
can improve energy efficiency over TDS by 27.9%,
27.9%, 27.8% when network energy consumption rate
is 20W, 33.6W, and 60W, respectively (CCR is set to
0.1). However, when CCR is large (e.g., 10), these
improvements in energy efficiency are scaled down to
15.6%, 13.3% and 10.2%, respectively. In this set of
experiments we confirm that the network energy
consumption contributes a whole lot to total energy
consumption when CCR is large. Last, we conclude
that NDS is not suitable for communication-intensive
parallel applications because NDS has schedule lengths
significantly increased when communication overheads
are high.

6. Conclusions

In this paper, we proposed a two-phase energy-
efficient scheduling algorithm called EETDS, which
aims to make the best tradeoffs between energy savings
and performance for parallel applications running on
heterogeneous clusters. EETDS is designed and
implemented based on the duplication-based algorithm
used to minimize communication overheads of parallel
tasks with precedence constraints. The EETDS
algorithm consists of two major phases. In the first
phase, a grouping method is employed to minimize
schedule lengths of parallel applications. The goal of
phase two is to leverage power-consumption
parameters to conserve energy. The experimental
results show that compared with three existing
algorithms, EETDS can significantly reduce energy

 8

dissipation for heterogeneous cluster system with only
a marginal degradation in performance.

Acknowledgment

The work reported in this paper was supported by the
US National Science Foundation under Grant No.
CCF-0702781, Auburn University under a startup
grant, New Mexico Institute of Mining and Technology
under Grant No. 103295, the Intel Corporation under
Grant No. 2005-04-070, and the Altera Corporation
under an equipment grant.

References

[1] B. Moore. Taking the data centre power and

cooling challenge. Energy User News, Aug. 2002.
[2] J. Chase and Ron Doyle, “Energy Management for

Server Clusters,” Proc. the 8th Workshop Hot
Topics in Operating Systems, pp. 165, May 2001.

[3] Robert Bryce. Power struggle. Interactive Week,
December 2000. http://www.zdnet.com/intweek/,
found under stories/news/0,4164,2666038,00.html.

[4] S. Darbha and D. P. Agrawal, “A Task Duplication
Based Scalable Scheduling Algorithm for
Distributed Memory Systems”, J. Parallel and
Distr. Comp., vol. 46, no. 1, pp. 15-27, Oct. 1997.

[5] S. Srinivasan and N.K. Jha, “Safety and Reliability
Driven Task Allocation in Distributed Systems,”
IEEE Trans. Parallel and Distributed Systems, Vol.
10, No. 3, pp. 238-251, March 1999.

[6] L. Benini and G. Micheli, Dynamic Power Manage-
ment: Design Techniques and CAD Tools, Kluwer,
1998.

[7] J. Rabaey and M. Pedram (Editors), Lower Power
Design Methodologies, Kluwer Academic
Publisher, Norwell, MA, 1998.

[8] A. Raghunathan, N. K. Jha, and S. Dey, High-Level
Power Analysis and Optimization, Kluwer
Academic Publisher, Norwell, MA, 1998.

[9] E. Elnozahy, M. Kistler, and R. Rajamony,
“Energy-efficient server clusters,” Proc. Workshop
Power-Aware Computing Systems, Feb. 2002.

[10] L. Benini, A. Bogliolo, G. D. Micheli, “A Survey
of Design Techniques for System-Level Dynamic
Power Management,” IEEE Trans. Very Large
Scale Integration Systems, vol. 8, no. 3, pp.299-
316, June 2000.

[11] L. Benini and G. De Micheli, Dynamic Power
Management: Design Techniques and CAD Tools,
Kluwer, 1998.

[12] F. Douglis, P. Krishnan, B. Bershad, “Adaptive
Disk Spin-down Policies for Mobile Computers,”

USENIX Symp. Mobile and Location-Independent
Computing, pp. 121-137, 1995.

[13] M. Srivastava, A. Chandrakasan. R. Brodersen,
“Predictive System Shutdown and Other
Architectural Techniques for Energy Efficient
Programmable Computation,” IEEE Trans. VLSI
Systems, vol. 4, no. 1, pp. 42-55, March 1996.

[14] Y. Shin and K. Choi, “Power Conscious Fixed
Priority Scheduling for Hard Real-Time Systems,”
Proc. Design Automation Conf., 1999.

[15] F. Yao, A. Demers, and S. Shenker, “A Scheduling
Model for Reduced CPU Energy,” Proc. IEEE
Annual Found. Computer Sci., pp. 374-382, 1995.

[16] I. Hong, M. Potkonjak, and M. Srivastava, “On-
line Scheduling of Hard Real-Time Tasks on
Variable Voltage Processor,” Proc. Computer
Aided Design, pp. 653-656, 1998.

[17] T. Xie, X. Qin, and M. Nijim, “Solving Energy-
Latency Dilemma: Task Allocation for Parallel
Applications in Heterogeneous Embedded
Systems,” Proc. 35th Int’l Conf. Parallel
Processing, Columbus, Ohio, Aug. 2006.

[18] W. Dally, P. Carvey, and L. Dennison, “The Avici
Terabit Switch/Rounter,” Proc. Hot Interconnects
6, pp. 41-50, Aug. 1998.

[19] E.N. M. Elnozahy, M. Kistler, and R. Rajamony,
“Energy-Efficient Server Clusters,” Proc. Int’l
Workshop Power-Aware Computer Systems, 2002.

[20] Mellanox Technologies Inc., “Mellanox
Performance, Price, Power, Volumn Metric
(PPPV),” http://www.mellanox.co/products/shared/
PPPV.pdf, 2004.

[21] Z.-L. Zong, A. Manzanares, B. Stinar, and X. Qin,
“Energy-Efficient Duplication Strategies for
Scheduling Precedence Constrained Parallel Tasks
on Clusters,” Proc. Int’l Conf. Cluster Computing
(Cluster'06), Sept. 2006.

[22] R.L. Graham, L.E. Lawler, J.K. Lenstra, and A.H.
Kan, “Optimizing and Approximation in
Deterministic Sequencing and Scheduling: A
Survey,” Annals of Disc. Math, pp.287-326, 1979.

[23] S. Darbha and D. P. Agrawal, “A Task Duplication
Based Scalable Scheduling Algorithm for
Distributed Memory Systems”, J. Parallel and
Distr. Comp., vol. 46, no. 1, pp. 15-27, Oct. 1997.

[24] M.Y. Wu and D.D. Gajski, “Hypertool: A
Performance Aid for Message-Passing Systems,”
IEEE Trans. Parallel and Distributed Systems, vol.
1, no. 3, pp. 330-343, July 1990.

[25] S. Ranaweera, and D.P. Agrawal, “A Task
Duplication Based Scheduling Algorithm for
Heterogeneous Systems,” Proc. Parallel and Distr.
Processing Symp., pp.445-450, May 2000.

