
 1

 
An Energy-Efficient Scheduling Algorithm Using Dynamic Voltage Scaling  

for Parallel Applications on Clusters  
 
 

Xiaojun Ruan†, Xiao Qin†*, Ziliang Zong†, Kiranmai Bellam†, Mais Nijim‡  
Department of Computer Science and Software Engineering 

Auburn University, Auburn, AL 36849† 

{xruan, xqin, zzong, kbellam}@ eng.auburn.edu 
Department of Computer Science 

University of Southern Mississippi, Hattiesburg, MS 39406‡ 
 
 

                                                           
* Corresponding author. http://www.eng.auburn.edu/~xqin 

Abstract 
 

In the past decade cluster computing platforms have 
been widely applied to support a variety of scientific and 
commercial applications, many of which are parallel in 
nature. However, scheduling parallel applications on 
large scale clusters is technically challenging due to 
significant communication latencies and high energy 
consumption. As such, shortening schedule length and 
conserving energy consumption are two major concerns 
in designing economical and environmentally friendly 
clusters. In this paper, we propose an energy-efficient 
scheduling algorithm (TDVAS) using the dynamic voltage 
scaling technique to provide significant energy savings 
for clusters. The TDVAS algorithm aims at judiciously 
leveraging processor idle times to lower processor 
voltages (i.e., the dynamic voltage scaling  technique or 
DVS), thereby reducing energy consumption experienced 
by parallel applications running on clusters. Reducing 
processor voltages, however, can inevitably lead to 
increased execution times of parallel task. The salient 
feature of the TDVAS algorithm is to tackle this problem 
by exploiting tasks precedence constraints. Thus, TDVAS 
applies the DVS technique to parallel tasks followed by 
idle processor times to conserve energy consumption 
without increasing schedule lengths of parallel 
applications. Experimental results clearly show that the 
TDVAS algorithm is conducive to reducing energy 
dissipation in large-scale clusters without adversely 
affecting system performance. 
 

1. Introduction 

With advancement of computers and networks, large-

scale clusters have been widely applied to support 
scientific and commercial applications, many of which are 
parallel applications. One effective approach to saving 
energy consumption in clusters is to make use of cutting-
edge energy-efficient processors. This is because 
processors in computing nodes of clusters are main 
components that consumers a whole lot of energy. Among 
an array of energy conservation techniques for processors, 
the dynamic voltage scaling scheme or DVS is one of the 
most attractive ways to provide significant energy savings 
[13]. The basic idea behind the DVS technique is to 
dynamically reduce processors’ supply voltages while 
guaranteeing proper operations. The energy consumption 
rate P can be expressed as below:  

 

                           ,2 fvcP ⋅⋅=                            (1) 

 
where c is the capacity of the circuit, v is the supply 
voltage, and f is the frequency. Note that the capacity c is 
a constant parameter when processor is working. Energy 
consumption W of a processor is written as a product of 
energy consumption rate P and active time interval t. 
Thus, we have 
 

                            tPE ⋅= .                                (2) 
  

The goal of this study is to design an energy-efficient 
scheduling algorithm or TDVAS using dynamic voltage 
scaling for parallel applications with precedence 
constraints on large-scale clusters. We also quantitatively 
evaluate energy savings provided by the TDVAS 
algorithm.  
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The rest of the paper is organized as follows. We 
present a brief description of related work in section 2. 
Section 3 describes a way to measure energy dissipation in 
a cluster running parallel applications. Section 4 presents 
the TDVAS scheduling algorithm using the DVS 
technique. In Section 5, we evaluate the performance of 
the proposed scheduling algorithm by comparing it with a 
baseline scheduling algorithm where the DVS technique is 
not employed. Finally, Section 6 concludes that the paper 
with future research directions.  

 

2. Related Work 
 
       In the last decade, energy saving techniques have 
made it possible to develop energy-efficient cluster 
computing platforms. The issue of energy conservation for 
parallel application running on large-scale clusters has 
attracted little attention. Recently, researchers started to 
pay attention to energy conservation techniques for 
clusters. For example, Kim et al. investigated the dynamic 
voltage scaling scheme (DVS) and developed a novel 
algorithm called dynamic link shutdown (DLS), which 
makes use of an appropriate adaptive routing algorithm to 
shut down links in a judicious way [7]. Kim et al. 
proposed an optimized buffer design to reduce energy 
consumption in cluster interconnects [8]. Juan et al. 
designed a protocol called cluster-based Energy–Saving 
Routing Algorithm (CERA), which allows mobile 
computing nodes to autonomously create clusters to 
minimize energy dissipation in mobile nodes based on the 
clusters in wired or wireless network [9].   
    Very recently, we developed an array of duplication-
based scheduling algorithms to reduce energy dissipation 
in cluster interconnects. Our scheduling approaches are 
especially beneficial for communication-intensive parallel 
applications [5].  

The communication-to-computation ratio or CCR plays 
an important role in achieving high performance of 
parallel applications on clusters. CCR shows the 
relationship between communication cost and computing 
time in a parallel application. Without loss of generality, 
in this study we use the highest processor frequency to 
determine the computing times of parallel tasks. Once the 
computing times are measured, we can quantify the CCR 
values of parallel applications.  
                 

3. Energy-Efficient TADVS Scheduling  
 

Now we present the energy-efficient TADVS 
scheduling algorithm. Due to precedence constraints, 
parallel tasks are unable to start their execution unless 
their corresponding parents tasks have been completed. 
As such, in each computing node of a cluster, there is a 
strong likelihood to exist some idle time intervals among 

tasks allocated to the computing node. In other words, 
after having finished executing a task, a computing node 
may not immediately start the execution of the next task 
due to precedence constraints and; therefore, the 
computing node will have to be sitting idle for a period of 
time. The basic idea behind the TADVS scheduling 
algorithm is to exploit idle processor time intervals in 
each computing node of a cluster, thereby making it 
possible to leverage idle time intervals to dynamically 
reduce the supply voltage of the computing node to 
substantially conserve energy consumption. More 
specifically, computing nodes are not supposed to be 
running with the highest frequency when the nodes are 
sitting idle. Given a set of idle processor time intervals, it 
is unnecessary for the computing nodes to accomplish all 
allocated parallel task as soon as possible using the 
highest frequency. Rather, processor frequencies can be 
judiciously lowered down, provided that the overall 
schedule lengths of parallel applications are not adversely 
affected.  

Let us first introduce three important parameters to be 
used in TADVS. The first parameter for each parallel task 
is the earliest start time or EST for short. EST of an entry 
task is 0.  The EST of all the other tasks can be calculated 
in a top-down manner by recursively applying the second 
term on the right side of Eq. (3).  

         

( )⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ +

∉≤≤∀
=

≠∈∈
otherwise ,)(),(maxmin

),(1 if                    ,0
)(

,),(),( kikj
vvEvvEvv

ij

i wvECTvECT

Evvn:j
vEST

jkikij

(3) 
 

where ECT(vi) is the second important parameter, which 
quantifies the earliest completion time of task vi. ECT(vi) 
can be derived from Eq. (4) as the summation of its 
earliest start time and execution time. 

 
            .)()( iii tvESTvECT +=                     (4) 

 
The third parameter LACT(vi) is the latest allowable 

completion times of all the other tasks. LACT(vi) can be 
calculated in a top-down manner by recursively applying 
the second term on the right side of Eq. (5). 

 
 
 
 

   (5) 
 

We can make use of these three parameters to 
dynamically choose the most appropriate processor 
frequency and supply voltage for each computing node. 
Note that the execution time of a task lies in its 
complexity and the corresponding processor frequency. 
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The processor frequency determined on the fly can be 
derived from the aforementioned three parameters. Given 

a task vi, its shortest execution time min
it is the time 

interval between ECT(vi) and EST(vi). Task vi will 
experience the shortest execution time if its computing 
node is processing the task with the highest frequency. In 
contrast, the execution time of task vi can be increased up 

to max
it  = LACT(vi) – EST(vi) if the processor frequency is 

dynamically reduced with respect to task vi. Now our 
concern is how to choose the most appropriate processor 
frequency that can lead to the maximum execution time 

max
it  without negatively affecting system performance. 

Choosing the best frequency is challenging because 
frequencies of processors are not continuous tunable. Task 
vi must be accomplished before LACT(vi) and; therefore, 
the frequency fi be higher than or equal to fbest. As such, 
the most appropriate frequency can be determined by Eq. 
(6).  

 

           
ESTLACT

ESTECTf
f Highest

best −
−

=
)(

.            (6) 

 
Eq. (7) below measures energy savings gained by 

TADVS for a given parallel application.  
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Given processor power Pi at different supply voltages, 
we can substitute Pi and PHighest for cvi

2fi and 
c(vHighest)

2fHighest in Eq. (7) to further simply Eq. (7). Thus, 
we have 
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Given the maximum power, the highest frequency and 

volatage of processors in computing nodes, we can readily 
derive the constant c (i.e., the capacity) using Eq. (1).  
Provided supply voltages and processor frequencies, we 
can use the constant c and Eq. (1) compute energy 
consumption rate Pi.  

Now we calculate processing time of the computing 
nodes using Eq. (9) as follows.  
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It is insufficient to demonstrate energy savings in 

processors. As such, we also consider energy dissipation 
in network interconnects. Eq. (10) below quantifies the 
overall energy savings achieved by our TADVS compared 
with a non-TADVS-based scheme.  
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4. Performance Evaluation 
 
To evaluate the performance of TADVS, we conduct 

extensive experiments using various parallel applications. 
Further, we compare TADVS with an existing algorithm - 
NDS [5]. The system parameters are shown in Table 1. 

Table1. Characteristics of system Parameter 

The performance metrics by which we evaluate system 
performance include: (1) Processor energy: Energy 
consumption incurred by computing nodes. (2) Total 
Energy: Energy caused by a set of parallel tasks. 

Figs. 1 and 2 show the DFA and the Gaussian 
applications, which used to evaluate the performance of 
TADVS algorithm.  

 
     
        Fig. 1. The task graph of DFA 

CPU Pentium 4, 1.4GH 
Idle power 5w-22w 
Frequency 1400Hz,1200Hz,1000Hz, 

800Hz, 600Hz 
Voltage 1.484V,1.463V,1.308V,1.180V

, 0.956V 
 Execution time for tree {3, 3, 4, 2, 1, 10, 20, 7, 5, 8} 
Execution time for Guassian tree {5, 4, 1, 1, 1, 1, 10, 2, 3, 3, 3, 

7, 8, 6, 6, 20, 30, 30} 

Network busy 33.6w 
Network Idle 5w 
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Fig. 2. The task graph of the Gaussian application.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3a. P4M, energy saving rates for DFA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this section, we varied CCR from 0.1 to 1 to 

examine the performance impacts of CCR on TADVS. 
Figs. 3a and 3b show that when CCR increases from 0.1 to 
1, TADVS consumes less energy the least energy 
compared with NDS. As CCR increases, the power 
consumption gradually increases. This can be explained 
by the fact that a high CCR results in high communication 
cost, which in turn leads to an increased total energy 

consumption.  
 
 
 
 
 
 
 

   
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figs. 3c and 3d show performance of TADVS with 

respect to the Gaussian application (see Fig. 2). The 
experimental results reveal that TADVS can save energy 
consumption for the Gaussian application by up to 15%.  

Figs 3f-3i plot experimental results for both the DFA 
and Gaussian applications running on a cluster, where 
XScale processors are used in each computing node. The 

Fig. 3a. P4M Example Tree Saving Rate 
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Fig. 3b. P4M, energy consumption for DFA 
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Fig. 3c. P4M, energy saving rates for Gaussian  
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Fig. 3d. P4M, energy consumption for Gaussian 
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goal of this set of experiment is to evaluate performance 
of TADVS using embedded processors. The empirical 
results show that TADVS is able to provide significant 
energy savings when it comes to embedded processors 
like Intel’s XScale. Again, when the value of CCR 
increases, the energy saving rate decrease gradually. From 
Fig.3g and Fig.3i, the number of energy consuming is not 
so large, however, since the saving rate is significant, if 
TADVS is used widely, the power saving result will be 
great. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

In this set of experiments, we evaluate the processor 
frequency levels of each parallel task in the Gaussian 
application. For comparison purpose, Fig. 4 shows the 
results of NDS, where the highest frequency level is 
chosen to finish the tasks as soon as possible. We also 
show the optimal frequency levels in which energy saving 
rate can be maximized. Since processor frequencies are 
not continuous tunable, TADVS can not achieve the 
optimal energy savings. However, Fig. 4 demonstratively 
show that energy savings provided by TADVS is very 
close to the optimal solution. These results reveal that 
TADVS can result in sub-optimal energy savings for 
parallel applications running on both regular clusters and 
mobile clusters using embedded processors.  
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6. Conclusion 
 
In the past decade clusters have been widely applied to 

support a variety of parallel applications. Scheduling 
parallel applications on clusters, especially on large-scale 
clusters, is challenging due to significant communication 
latencies and high energy consumption. Therefore, 
reducing schedule lengths and conserving energy 
consumption are two major concerns in the design of 
environmentally and economical friendly clusters. In this 
paper, we proposed an scheduling algorithm call TDVAS, 
which makes use of the dynamic voltage scaling technique 
(DVS) to provide significant energy savings for clusters. 
Our TDVAS scheme aims at judiciously leveraging 
processor idle times to lower processor voltages, thereby 
reducing energy consumption experienced by parallel 
applications running on clusters. However, decreasing 
supply voltages can inevitably lead to increased execution 
times of task in parallel applications. The salient feature 
of TDVAS is to tackle this problem by employing DVS to 
parallel tasks followed by idle processor times to conserve 
energy consumption without increasing schedule lengths 
of parallel applications. Experimental results 
demonstratively show that TDVAS is conducive to 
conserving energy consumption incurred by parallel 
application running on large-scale clusters without 
adversely affecting clusters’ performance. 
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