
 1

An Energy-Efficient Scheduling Algorithm Using Dynamic Voltage Scaling

for Parallel Applications on Clusters

Xiaojun Ruan†, Xiao Qin†*, Ziliang Zong†, Kiranmai Bellam†, Mais Nijim‡
Department of Computer Science and Software Engineering

Auburn University, Auburn, AL 36849†

{xruan, xqin, zzong, kbellam}@ eng.auburn.edu
Department of Computer Science

University of Southern Mississippi, Hattiesburg, MS 39406‡

* Corresponding author. http://www.eng.auburn.edu/~xqin

Abstract

In the past decade cluster computing platforms have
been widely applied to support a variety of scientific and
commercial applications, many of which are parallel in
nature. However, scheduling parallel applications on
large scale clusters is technically challenging due to
significant communication latencies and high energy
consumption. As such, shortening schedule length and
conserving energy consumption are two major concerns
in designing economical and environmentally friendly
clusters. In this paper, we propose an energy-efficient
scheduling algorithm (TDVAS) using the dynamic voltage
scaling technique to provide significant energy savings
for clusters. The TDVAS algorithm aims at judiciously
leveraging processor idle times to lower processor
voltages (i.e., the dynamic voltage scaling technique or
DVS), thereby reducing energy consumption experienced
by parallel applications running on clusters. Reducing
processor voltages, however, can inevitably lead to
increased execution times of parallel task. The salient
feature of the TDVAS algorithm is to tackle this problem
by exploiting tasks precedence constraints. Thus, TDVAS
applies the DVS technique to parallel tasks followed by
idle processor times to conserve energy consumption
without increasing schedule lengths of parallel
applications. Experimental results clearly show that the
TDVAS algorithm is conducive to reducing energy
dissipation in large-scale clusters without adversely
affecting system performance.

1. Introduction

With advancement of computers and networks, large-

scale clusters have been widely applied to support
scientific and commercial applications, many of which are
parallel applications. One effective approach to saving
energy consumption in clusters is to make use of cutting-
edge energy-efficient processors. This is because
processors in computing nodes of clusters are main
components that consumers a whole lot of energy. Among
an array of energy conservation techniques for processors,
the dynamic voltage scaling scheme or DVS is one of the
most attractive ways to provide significant energy savings
[13]. The basic idea behind the DVS technique is to
dynamically reduce processors’ supply voltages while
guaranteeing proper operations. The energy consumption
rate P can be expressed as below:

 ,2 fvcP ⋅⋅= (1)

where c is the capacity of the circuit, v is the supply
voltage, and f is the frequency. Note that the capacity c is
a constant parameter when processor is working. Energy
consumption W of a processor is written as a product of
energy consumption rate P and active time interval t.
Thus, we have

 tPE ⋅= . (2)

The goal of this study is to design an energy-efficient
scheduling algorithm or TDVAS using dynamic voltage
scaling for parallel applications with precedence
constraints on large-scale clusters. We also quantitatively
evaluate energy savings provided by the TDVAS
algorithm.

This paper appeared in the Proceedings of the 16th IEEE International Conference on
Computer Communications and Networks (ICCCN), Honolulu, Hawaii, Aug. 2007.

 2

The rest of the paper is organized as follows. We
present a brief description of related work in section 2.
Section 3 describes a way to measure energy dissipation in
a cluster running parallel applications. Section 4 presents
the TDVAS scheduling algorithm using the DVS
technique. In Section 5, we evaluate the performance of
the proposed scheduling algorithm by comparing it with a
baseline scheduling algorithm where the DVS technique is
not employed. Finally, Section 6 concludes that the paper
with future research directions.

2. Related Work

 In the last decade, energy saving techniques have
made it possible to develop energy-efficient cluster
computing platforms. The issue of energy conservation for
parallel application running on large-scale clusters has
attracted little attention. Recently, researchers started to
pay attention to energy conservation techniques for
clusters. For example, Kim et al. investigated the dynamic
voltage scaling scheme (DVS) and developed a novel
algorithm called dynamic link shutdown (DLS), which
makes use of an appropriate adaptive routing algorithm to
shut down links in a judicious way [7]. Kim et al.
proposed an optimized buffer design to reduce energy
consumption in cluster interconnects [8]. Juan et al.
designed a protocol called cluster-based Energy–Saving
Routing Algorithm (CERA), which allows mobile
computing nodes to autonomously create clusters to
minimize energy dissipation in mobile nodes based on the
clusters in wired or wireless network [9].
 Very recently, we developed an array of duplication-
based scheduling algorithms to reduce energy dissipation
in cluster interconnects. Our scheduling approaches are
especially beneficial for communication-intensive parallel
applications [5].

The communication-to-computation ratio or CCR plays
an important role in achieving high performance of
parallel applications on clusters. CCR shows the
relationship between communication cost and computing
time in a parallel application. Without loss of generality,
in this study we use the highest processor frequency to
determine the computing times of parallel tasks. Once the
computing times are measured, we can quantify the CCR
values of parallel applications.

3. Energy-Efficient TADVS Scheduling

Now we present the energy-efficient TADVS
scheduling algorithm. Due to precedence constraints,
parallel tasks are unable to start their execution unless
their corresponding parents tasks have been completed.
As such, in each computing node of a cluster, there is a
strong likelihood to exist some idle time intervals among

tasks allocated to the computing node. In other words,
after having finished executing a task, a computing node
may not immediately start the execution of the next task
due to precedence constraints and; therefore, the
computing node will have to be sitting idle for a period of
time. The basic idea behind the TADVS scheduling
algorithm is to exploit idle processor time intervals in
each computing node of a cluster, thereby making it
possible to leverage idle time intervals to dynamically
reduce the supply voltage of the computing node to
substantially conserve energy consumption. More
specifically, computing nodes are not supposed to be
running with the highest frequency when the nodes are
sitting idle. Given a set of idle processor time intervals, it
is unnecessary for the computing nodes to accomplish all
allocated parallel task as soon as possible using the
highest frequency. Rather, processor frequencies can be
judiciously lowered down, provided that the overall
schedule lengths of parallel applications are not adversely
affected.

Let us first introduce three important parameters to be
used in TADVS. The first parameter for each parallel task
is the earliest start time or EST for short. EST of an entry
task is 0. The EST of all the other tasks can be calculated
in a top-down manner by recursively applying the second
term on the right side of Eq. (3).

()⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ +

∉≤≤∀
=

≠∈∈
otherwise ,)(),(maxmin

),(1 if ,0
)(

,),(),(kikj
vvEvvEvv

ij

i wvECTvECT

Evvn:j
vEST

jkikij

(3)

where ECT(vi) is the second important parameter, which
quantifies the earliest completion time of task vi. ECT(vi)
can be derived from Eq. (4) as the summation of its
earliest start time and execution time.

 .)()(iii tvESTvECT += (4)

The third parameter LACT(vi) is the latest allowable

completion times of all the other tasks. LACT(vi) can be
calculated in a top-down manner by recursively applying
the second term on the right side of Eq. (5).

 (5)

We can make use of these three parameters to
dynamically choose the most appropriate processor
frequency and supply voltage for each computing node.
Note that the execution time of a task lies in its
complexity and the corresponding processor frequency.

() ()⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −

∉≤≤∀
=

=∈≠∈
otherwise ,)(min,)(minmin

),(1 if),(
)(

)(,),()(,),(
j

vFPvEvv
ijj

vFPvEvv

jii

i vLASTwvLAST

Evvn:jvECT
vLACT

jijijiji

 3

The processor frequency determined on the fly can be
derived from the aforementioned three parameters. Given

a task vi, its shortest execution time min
it is the time

interval between ECT(vi) and EST(vi). Task vi will
experience the shortest execution time if its computing
node is processing the task with the highest frequency. In
contrast, the execution time of task vi can be increased up

to max
it = LACT(vi) – EST(vi) if the processor frequency is

dynamically reduced with respect to task vi. Now our
concern is how to choose the most appropriate processor
frequency that can lead to the maximum execution time

max
it without negatively affecting system performance.

Choosing the best frequency is challenging because
frequencies of processors are not continuous tunable. Task
vi must be accomplished before LACT(vi) and; therefore,
the frequency fi be higher than or equal to fbest. As such,
the most appropriate frequency can be determined by Eq.
(6).

ESTLACT

ESTECTf
f Highest

best −
−

=
)(

. (6)

Eq. (7) below measures energy savings gained by

TADVS for a given parallel application.

∑

∑

=

=

−

−
=

n

i iiHighestHighest

i

ibestn

i iiii

ESTECTfvc

f

f
ESTLACTfcv

PowerRate
1

2

_

1

2

)()(

)(

(7).

Given processor power Pi at different supply voltages,
we can substitute Pi and PHighest for cvi

2fi and
c(vHighest)

2fHighest in Eq. (7) to further simply Eq. (7). Thus,
we have

∑

∑

=

=

−

−
= n

i iiHighest

n

i
i

ibest
iii

ESTECTP

f

f
ESTLACTP

PowerRate
1

1

_

)(

)(
. (8)

Given the maximum power, the highest frequency and

volatage of processors in computing nodes, we can readily
derive the constant c (i.e., the capacity) using Eq. (1).
Provided supply voltages and processor frequencies, we
can use the constant c and Eq. (1) compute energy
consumption rate Pi.

Now we calculate processing time of the computing
nodes using Eq. (9) as follows.

 ∑
=

−=
n

i i

ibest
TADVS f

f
ESTLACT

1

_)(Proc (9).

It is insufficient to demonstrate energy savings in

processors. As such, we also consider energy dissipation
in network interconnects. Eq. (10) below quantifies the
overall energy savings achieved by our TADVS compared
with a non-TADVS-based scheme.

∑

∑

=

= −

−++−

−++−

n

i TADVSallidleiiHighest

n

i TADVSNonallidle
i

ibest
iii

timeCPUcomESTECTP

timeCPUcom
f

f
ESTLACTP

1

1

_

)Proc(*)(

)Proc(*)(

(10)

4. Performance Evaluation

To evaluate the performance of TADVS, we conduct

extensive experiments using various parallel applications.
Further, we compare TADVS with an existing algorithm -
NDS [5]. The system parameters are shown in Table 1.

Table1. Characteristics of system Parameter

The performance metrics by which we evaluate system
performance include: (1) Processor energy: Energy
consumption incurred by computing nodes. (2) Total
Energy: Energy caused by a set of parallel tasks.

Figs. 1 and 2 show the DFA and the Gaussian
applications, which used to evaluate the performance of
TADVS algorithm.

 Fig. 1. The task graph of DFA

CPU Pentium 4, 1.4GH
Idle power 5w-22w
Frequency 1400Hz,1200Hz,1000Hz,

800Hz, 600Hz
Voltage 1.484V,1.463V,1.308V,1.180V

, 0.956V
 Execution time for tree {3, 3, 4, 2, 1, 10, 20, 7, 5, 8}
Execution time for Guassian tree {5, 4, 1, 1, 1, 1, 10, 2, 3, 3, 3,

7, 8, 6, 6, 20, 30, 30}

Network busy 33.6w
Network Idle 5w

 4

Fig. 2. The task graph of the Gaussian application.

Fig. 3a. P4M, energy saving rates for DFA

In this section, we varied CCR from 0.1 to 1 to

examine the performance impacts of CCR on TADVS.
Figs. 3a and 3b show that when CCR increases from 0.1 to
1, TADVS consumes less energy the least energy
compared with NDS. As CCR increases, the power
consumption gradually increases. This can be explained
by the fact that a high CCR results in high communication
cost, which in turn leads to an increased total energy

consumption.

Figs. 3c and 3d show performance of TADVS with

respect to the Gaussian application (see Fig. 2). The
experimental results reveal that TADVS can save energy
consumption for the Gaussian application by up to 15%.

Figs 3f-3i plot experimental results for both the DFA
and Gaussian applications running on a cluster, where
XScale processors are used in each computing node. The

Fig. 3a. P4M Example Tree Saving Rate

P4M Example Tree Saving Rate

0

2

4

6

8

10

12

14

16

18

0.1 0.2 0.3 0.5 0.8 1

CCR

Saving Rate
(Percentage)

Fig. 3b. P4M, energy consumption for DFA

Real Power Consumption Compare

0

500

1000

1500

2000

2500

3000

3500

0.1 0.2 0.3 0.5 0.8 1

CCR

Power Consumption
TADVS(JOULE)

Power Consumption
NDS(JOULE)

P4M Gaussian Tree Saving Rate

0

2

4

6

8

10

12

14

16

0.1 0.2 0.3 0.5 0.8 1

CCR

Saving
Rate(Percentage)

Fig. 3c. P4M, energy saving rates for Gaussian

Real Power Consumption Compare

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.1 0.2 0.3 0.5 0.8 1

CCR

Power Consumption
TADVS(JOULE)

Power Consumption
NDS(JOULE)

Fig. 3d. P4M, energy consumption for Gaussian

CPU Saving Rate without Communication Cost

0

2

4

6

8

10

12

14

16

18

0.1 0.2 0.3 0.5 0.8 1

CCR

Saving Rate

Fig. 3e. P4M, energy saving rates for Gaussian

 5

goal of this set of experiment is to evaluate performance
of TADVS using embedded processors. The empirical
results show that TADVS is able to provide significant
energy savings when it comes to embedded processors
like Intel’s XScale. Again, when the value of CCR
increases, the energy saving rate decrease gradually. From
Fig.3g and Fig.3i, the number of energy consuming is not
so large, however, since the saving rate is significant, if
TADVS is used widely, the power saving result will be
great.

In this set of experiments, we evaluate the processor
frequency levels of each parallel task in the Gaussian
application. For comparison purpose, Fig. 4 shows the
results of NDS, where the highest frequency level is
chosen to finish the tasks as soon as possible. We also
show the optimal frequency levels in which energy saving
rate can be maximized. Since processor frequencies are
not continuous tunable, TADVS can not achieve the
optimal energy savings. However, Fig. 4 demonstratively
show that energy savings provided by TADVS is very
close to the optimal solution. These results reveal that
TADVS can result in sub-optimal energy savings for
parallel applications running on both regular clusters and
mobile clusters using embedded processors.

XScale Example Tree Saving Rate

0

5

10

15

20

25

0.1 0.2 0.3 0.5 0.6 0.8 1

CCR

Saving
Rate(Percentage)

Fig. 3f. XScale, energy saving rates for DFA

Real Power Consumption Compare

0

20

40

60

80

100

120

140

0.1 0.2 0.3 0.5 0.6 0.8 1

CCR

Power Consumption
TADVS(JOULE)

Power Consumption
DVS(JOULE)

Fig. 3g. XScale, energy consumption for DFA

XScale Gaussian Tree Saving Rate

0

5

10

15

20

25

0.1 0.2 0.3 0.5 0.6 0.8 1

CCR

Saving
Rate(Percentage)

Fig. 3h. XScale, energy saving rates for Gaussian

Real Power Consumption Compare

0

50

100

150

200

250

300

350

0.1 0.2 0.3 0.5 0.6 0.8 1

CCR

Power Consumption
TADVS(JOULE)

Power Consumption
NDS(JOULE)

Fig. 3i. XScale, energy consumption for DFA

Compare frequency levels

Xscale, Gaussian Tree, CCR = 0.5

0

200

400

600

800

1000

1200

1 3 5 7 9 11 13 15 17

Task No.

Level Swtiching

The perfect frequency level

Highest Frequency

Fig. 4. Processor frequencies when CCR is set to 0.5

 6

6. Conclusion

In the past decade clusters have been widely applied to

support a variety of parallel applications. Scheduling
parallel applications on clusters, especially on large-scale
clusters, is challenging due to significant communication
latencies and high energy consumption. Therefore,
reducing schedule lengths and conserving energy
consumption are two major concerns in the design of
environmentally and economical friendly clusters. In this
paper, we proposed an scheduling algorithm call TDVAS,
which makes use of the dynamic voltage scaling technique
(DVS) to provide significant energy savings for clusters.
Our TDVAS scheme aims at judiciously leveraging
processor idle times to lower processor voltages, thereby
reducing energy consumption experienced by parallel
applications running on clusters. However, decreasing
supply voltages can inevitably lead to increased execution
times of task in parallel applications. The salient feature
of TDVAS is to tackle this problem by employing DVS to
parallel tasks followed by idle processor times to conserve
energy consumption without increasing schedule lengths
of parallel applications. Experimental results
demonstratively show that TDVAS is conducive to
conserving energy consumption incurred by parallel
application running on large-scale clusters without
adversely affecting clusters’ performance.

Acknowledgment

 The work reported in this paper was supported by the
US National Science Foundation under Grant No. CCF-
0702781, Auburn University under a startup grant, New
Mexico Institute of Mining and Technology under Grant
No. 103295, the Intel Corporation under Grant No. 2005-
04-070, and the Altera Corporation under an equipment
grant.

References

[1] T.A. AlEnawy, H. Aydin, “On Energy-Constrained

Real-Time Scheduling,” Proc. Euromicro Conf. Real-
Time Systems, pp. 165- 174, 2004.

[2] R. Ge, X. Feng, K.W. Cameron, “Performance-
constrained Distributed Dvs Scheduling for Scientific
applications on Power-aware Clusters,” Proc.
ACM/IEEE Conf. Supercomputing, 2005.

[3] Y.-K. Kwok and I. Ahmad, “Dynamic Critical-Path
Scheduling: An Effective Technique for Allocating
Task Graphs to Multiprocessors,” IEEE Trans.
Parallel and Distributed Sys., vol. 7, no. 5, pp. 506-
521, May 1996.

[4] Y.-H. Lee, Y. Doh, and C.M. Krishna, “EDF
Scheduling Using Two-Mode Voltage-Clock-Scaling

for Hard Real-Time System,” Proc. Int’l Conf.
Compilers, Architecture, and Synthesis for Embedded
Sys., pp. 221– 228, 2001

[5] Z. L. Zong, A. Manzanares, B. Stinar, and X. Qin,
“Energy-Efficient Duplication Strategies for
Scheduling Precedence Constrained Parallel Tasks on
Clusters”, Proc. Int’l Conf. Cluster Computing, 2006.

[6] Y. Huang, ”Developing reliable applications on cluster
systems,” Proc. Int’l Symposium on Reliable
Distributed Systems, 1996.

[7] Kim, E.J.; Link, G.M.; Yum, K.H.; Vijaykrishnan, N.;
Kandemir, M.; Irwin, M.J.; Das, C.R., “A holistic
approach to designing energy-efficient cluster
interconnects,” IEEE Trans. Computers, vol. 54, no.
6, 2005.

[8] Juan-Carlos Cano, Dongkyun Kim, Pietro Manzoni,
“CERA: Cluster-Based Energy Saving Algorithm to
Coordinate Routing in Short-Range Wireless
Networks,” Proc. ICOIN, pp. 306-315, 2003.

[9] S. Bansal, P. Kumar, and K. Singh, “An Improved
Duplication Strategy for Scheduling Precedence
Constrained Graph in Multiprocessor Systems,” IEEE
Trans. Parallel and Distributed Sys., vol. 14, no. 6,
pp. 533-544, 2003.

[10] S. Ranaweera, and D.P. Agrawal, “A Task
Duplication Based Scheduling Algorithm for
Heterogeneous Systems,” Proc. Int’l Symp. Parallel
and Distributed Processing, pp. 445-450, 2000.

 [11] S.S. Pande, D.P. Agrawal and J. Mauney, “A
Scalable Scheduling Method for Functional
Parallelism on Distributed Memory Multiprocessors”,
IEEE Trans. Parallel and Distributed Sys., vol. 6, no.
4, pp. 388-399, 1995.

[12] C.-H. Liu, C.-F. Li, K.-C. Lai, and C.-C. Wu; “A
dynamic critical path duplication task scheduling
algorithm for distributed heterogeneous computing
systems,” Proc. Int’l Conf. Parallel and Distributed
Systems, pp. 365-374, 2006

[13] T. Burd, T. Pering, A. Stratakos, and R. Brodersen,
“A Dynamic Voltage Scaled Microprocessor
System,” Proc. IEEE Int’l Solid-State Circuits Conf.,
pp. 294–295, 2000.

[14] AMD Inc., “AMD PowerNow Technology,” 2000.
[15]Intel, Inc., “The Intel(R) XScale(TM)

Microarchitecture Technical Summary,” 2000.
[16] P. Pillai and K. G. Shin, “Real-Time Dynamic

Voltage Scaling for Low-Power Embedded Operating
Systems,” Proc. ACM Symp. Operating Systems
Principles, 2001.

[17] H. Aydin, R. Melhem, D. Mosse, and P. M. Alvarez,
“Dynamic and Aggressive Scheduling Techniques for
Power-Aware Real-Time Systems,” Proc. IEEE Real-
Time Systems Symp., 2001.

