
 
 
IEEE Transactions on Computers, vol. 57, no. 2, pp. 188-199, 2008. 

1 
 
 
 

 
An Availability-Aware Task Scheduling Strategy for Heterogeneous Systems 

 

                                   Xiao Qin                                                           Tao Xie 
                    Department of Computer Science                Department of Computer Science 
                        and Software Engineering                          San Diego State University 
         Auburn University, Auburn, Alabama 36849            San Diego, California 92182 
                          xqin@auburn.edu                                                 xie@cs.sdsu.edu 

Abstract 

High availability is a key requirement in the design and development of heterogeneous 

systems, where processors operate at different speeds and are not continuously available for 

computation. Most existing scheduling algorithms designed for heterogeneous systems do not 

factor in availability requirements imposed by multiclass applications. To remedy this 

shortcoming, we investigate in this paper the scheduling problem for multiclass applications 

running in heterogeneous systems with availability constraints. In an effort to explore this issue, 

we model each node in a heterogeneous system using the node’s computing capability and 

availability. Multiple classes of tasks are characterized by their execution times and availability 

requirements. To incorporate availability and heterogeneity into scheduling, we define new 

metrics to quantify system availability and heterogeneity for multi-class tasks. We then propose a 

scheduling algorithm to improve availability of heterogeneous systems while maintaining good 

performance in response time of tasks. Experimental results show that our algorithm achieves a 

good trade-off between availability and responsiveness. 

Index Terms – Availability constraints, heterogeneous systems, multiclass applications, 

scheduling, resource allocation. 

1. Introduction 

Over the last decade, heterogenous systems have been widely used for scientific and 
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commercial applications [9]. To improve performance of applications running in heterogenous 

systems, past research has developed a wide variety of scheduling algorithms for heterogeneous 

computing systems [8][30]. Dogan and F. Özgüner developed reliable matching and scheduling 

algorithms for tasks with precedence constraints in heterogeneous distributed systems [8]. 

Srinivasan and Jha incorporated reliability cost, defined to be the product of processor failure 

rate and task execution time, into scheduling algorithms for tasks with precedence constraints 

[29]. Ranaweera and Agrawal proposed a scalable scheduling scheme called STDP for 

heterogeneous systems [20]. The objective of scheduling algorithms is to map tasks onto nodes 

and order their execution in a way to optimize overall performance. 

In scheduling theory the basic assumption is that all machines are always available for 

processing [23]. This assumption might be reasonable in some cases but it is not valid in 

scenarios where there exist certain maintenance requirements, breakdowns or other constraints, 

which make the machines not to be available for processing [23]. Examples of such constraints 

can be found in many application areas. For instance, computational nodes in heterogeneous 

systems need to be maintained periodically to prevent malfunctions [14]. In this study 

availability is defined as the ratio of the total time a computing node is functional during a given 

interval. The performance of a heterogeneous system will be degraded if one or multiple nodes 

are out of order due to random breakdown or preventive maintenance. On the other hand, 

however, nowadays many high-performance applications require computing platforms with high 

availability [2][21][22][26][24]. Military applications, 24×7 healthcare applications,  

international business applications and the like demand extremely high availability services since 

severe damages or fatal errors could occur when even only one computing node becomes 

unavailable [2]. As such, a scheduling strategy for heterogeneous systems has to factor in 
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availability to deal with maintenance activities and unexpected failures.  

A multiclass application consists of tasks of multiple classes, which are characterized by their 

distinctive arrival rates, execution time distributions and availability requirements. The issue of 

scheduling multiple classes of tasks with availability constraints was raised by a wide range of 

real-world distributed applications such as scalable web server systems [10], distributed 

heterogeneous servers [24], and general multiclass systems built on high speed networks [11]. In 

many multiclass applications, incoming requests are immediately dispatched to one of a set of 

computing nodes, each of which independently executes a process running a local sequencing 

algorithm [10][24]. Unfortunately, conventional scheduling algorithms [3][4][7][10] for multi-

class applications running in heterogeneous systems only concentrated on high throughput with 

the goal of reducing response times, completely ignoring availability requirements of multiclass 

tasks. It is challenging, however, to achieve high throughput and high availability simultaneously 

because they are two conflict objectives [2]. For example, it is unacceptable to assign a critical 

task with high availability requirement to a computing node that provides with high speed and 

low availability. We argue that an ideal scheduling scheme has to guarantee tasks’ availability 

requirements while efficiently reducing response times. 

Some work has been done to investigate resource allocation schemes for tasks with 

availability constraints [22]. Smith introduced a mathematical model for resource availability, 

and then proposed a method to maintain availability information as new reservations or 

assignments are made [26]. Adiri et al. addressed the scheduling issue in a single machine with 

availability constraints [1]. Qi et al. developed three heuristic algorithms to tackle the problem of 

scheduling jobs while maintaining machines [18] simultaneously. Very recently, Kacem et al. 

investigated a branch and bound method to solve the single machine scheduling problem with 
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availability constraints [13]. Lee studied the two-machine scheduling problem in which an 

availability constraint is imposed on one machine as well as on both machines [15]. The problem 

was optimally solved by Lee using pseudo-polynomial dynamic programming algorithms. 

Mosheiov addressed the scheduling issue in the context of identical parallel machines with 

availability constraints [16]. Sadfi and Ouarda studied a dynamic programming approach to 

solving the parallel machine scheduling problem with availability constraints [21]. More 

scheduling problems where machines are not continuously available for processing can be found 

in [22]. Although the above schemes considered scheduling problems with availability 

constraints, they are inadequate for multiclass applications running in heterogeneous systems 

because they either focused on a single machine [1] [13] [18], two machines [15], or a 

homogeneous system [16] [21] [22]. Besides, all of them only considered applications with one 

single-class tasks. To remedy this issue, in this paper we address the problem of scheduling 

multiple classes of tasks with availability constraints in heterogeneous systems. Specifically, we 

aim to develop a novel scheduling strategy used to enhance the availability of heterogeneous 

systems while maintaining a good performance in average response time of multi-class tasks. In 

this study we consider Poisson arrivals, in which case we design an availability-aware scheduling 

algorithm applied to heterogeneous systems where computing capacity and availability 

constraints are known a priori. 

 In our previous work, we studied security-aware scheduling for embedded systems [32], 

clusters [31][33], and Grids [34]. However, these scheduling algorithms are designed for 

homogeneous systems. Further, our previous scheduling algorithms are not suitable for multi-

class tasks with availability requirements. In contrast, the algorithm proposed in this paper makes 

a good trade-off between availability and responsiveness. The rest of the paper is organized as 
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Fig. 1. System model of the SSAC strategy. 
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follows. Section 2 describes a system model of heterogeneous systems with availability 

constraints. Section 3 presents a scheduling algorithm focused on improving availability of 

applications in heterogenous computing environments. Section 4 is devoted to evaluating the 

performance of the proposed scheduling algorithm. We conclude the paper with future work in 

Section 5. 

2. Model Description and Problem Formulation 

2.1 Architecture model 

We consider a queuing architecture of a heterogeneous system in which n nodes are 

connected via a network to process independent m classes of non-preemptive tasks submitted by 

m users. Both m and n are finite integers that are greater than or equal to 1. Let N = {n1, n2, …, 

nj, …, nn} denote the set of heterogeneous nodes. We assume that the nodes differ only in their 

speeds and availability levels (hereinafter, the terms “availability level of a node” and 

“availability of a node” are used interchangeably). The system architecture model, depicted in 

Fig. 1, is composed of a task schedule queue, SSAC task scheduler, and n local task queues. The 

goal of SSAC is to make a good task allocation decision for each class of tasks to satisfy their 

availability requirements and maintain an ideal performance in response time. 
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    Fig. 2. Example node list sorted by availability level. 
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A schedule queue is used to accommodate incoming tasks. SSAC scheduler then processes all 

arrival tasks in a First-Come First-Served (FCFS) manner. After being handled by SSAC, the 

tasks are dispatched to one of the designated node nj ∈ N for execution. The nodes, each of 

which maintains a local queue, can execute tasks in parallel. The centrepiece of the system 

architecture model is SSAC, which is composed of three modules: (1) Availability Provider 

Locator (APL); (2) Availability Cost Calculator (ACC); and (3) Load Imbalance Detector (LID). 

For tasks of each class, the APL is used to find all nodes that can meet tasks’ availability 

requirements and put these nodes in the set Ni.  If Ni is non-empty, the APL will choose a node in 

Ni that can offer tasks of the class with the minimal expected response time as a candidate node. 

An empty Ni indicates that no node in the system can meet the availability constraints of the 

current task class. In this case, SSAC will employ the ACC to calculate the availability cost of 

each node in N for the current class. The node with the least availability cost will be selected as a 

candidate node. The function of LID is to detect whether or not the candidate node is overloaded. 

If it is overloaded, the current task class will be assigned to the node with the lightest load. The 

task class will be allocated to the candidate node, otherwise. Detailed description of the SSAC 

strategy can be found in Section 3. To illustrate how APL works, we give an example as below. 

 

 

 

 

 

In Fig. 2 we assume that there are eight nodes in a system. The first row shows the availability 

levels that the eight nodes exhibit. The second row displays the expected finish times for task 
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class i on the nodes. The third row is a node list sorted by the node’s availability level in a non-

decrease order. We suppose that the task’s availability requirement is 0.85. Therefore, the first 4 

nodes (3, 8, 4, 1) will be put into set Ni as all of them can fully satisfy the task’s availability 

requirement.  SSAC will eventually choose node 8 (the black node) as the candidate node 

because it can minimize the expected response time of the task class.  

2.2 Modeling multiclass tasks with availability requirements 

For future reference, we summarize the notation that is used throughout this paper in Table 1. 

Table 1. Definitions of Notation 

Notation                                         Definition 

n Number of nodes in a heterogeneous system. (1 ≤  n < ∞) 
m Number of task classes submitted to the system. (1 ≤  m < ∞) 

iλ  Arrival rate of tasks in the ith class. 

jΛ  Aggregate task arrival rate of the jth node. (see Eq. 1) 

ijp  Probability that tasks of the ith class are dispatched to node j. 

ijµ  Service rate of tasks in class i allocated on node j. 

iρ  Service utilization of class i. (see Eq. 2) 

jφ  Service utilization for all tasks allocated to node j. (see Eq. 3) 

φ  Summation of the service utilizations of all the nodes. (see Eq. 4) 

jTN  Average response time of node j. (see Eq. 5) 

iTC  Expected response time of class i tasks. (see Eq. 8) 

T  Mean response time of jobs averaged over all the classes. (see Eq. 9) 

jξ  Availability of node j. ( 10 ≤≤ jξ ) 

ia  Availability requirement of class i. ( 1a0 ≤≤ i
) 

jδ  Availability shortage of node j. (see Eq. 11) 

ijd  Availability shortage factor of class i on node j. (see Eq. 12) 

ACij Availability cost of class i on node j. (see Eq. 14) 

jθ  Unavailable rate of node j. (see Eq. 15) 

ACi Availability cost of class i. (see Eq. 16) 

iA  Availability of class i. (see Eq. 17) 

A Availability exhibited by the system. (see Eq. 18) 
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There are m classes of tasks submitted to a heterogeneous system by users. Tasks are 

independent of one another. Each class of tasks requires a common availability specified by a 

user. Values of availability levels are normalized in the range from 0 to 1.0. For example, users 

may set availability levels of critical task classes to 1.0, which means that critical tasks should be 

assigned to a node which ensures that that the task can be successfully completed.  

Since arrival patterns and service rates can be estimated by code profiling and statistical 

prediction [5], it is assumed in this study that the arrival patterns and service rate is known a 

priori. Without loss of generality, we assume that tasks of the ith (1 ≤ i ≤ m) class arrive 

according to a Poisson process with rate iλ . All classes of tasks arrive at the system at an 

aggregate rate of ∑ =
= m

i i1
λλ . Let pij be the probability that tasks of the ith class are dispatched 

to node j, where 1 ≤ j ≤ n. Hence, the aggregate task arrival rate of the jth node is expressed as  

                                                             ∑
=

=Λ
m

i
iijj p

1

λ .                                                             (1) 

Let ijµ  denote the service rate of tasks in class i allocated on node j, and the corresponding 

expected service time is computed by ijµ1 . It should be noted that the service time of the ith 

task class on node j has a general distribution, which is independent of the arrival processes. 

Thus, the service utilization of class i can be written as 

                                                         ( )∑
=

=
n

j
ijiiji p

1

µλρ .                                                        (2) 

Similarly, we can obtain the service utilization for all tasks allocated to node j as below 

                                                           ( )∑
=

=
m

i
ijiijj p

1

µλφ .                                                       (3) 

The total service utilization of a heterogeneous system, which can be derived from Eq. (3), is 
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the summation of the service utilizations of all the nodes. Thus, we have  

                                                     ( )∑∑∑
= ==

==
n

j

m

i
ijiij

n

j
j p

1 11

µλφφ .                                             (4) 

In this study each node in the system is modelled as a single M/G/1 queue. Thus, the average 

response time of node j can be computed as 

                                                    
)1(2

)(
)(

2

j

jj
jj

sE
sETN

φ−
Λ

+= ,                                                     (5) 

where E(sj) and )( 2
jsE is the mean and mean-square service times. E(sj) and )( 2

jsE are given as 

                                             ∑∑
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⎟
⎟
⎠

⎞
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⎝

⎛
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⎟
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⎜
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⎛
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Λ
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m
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sE
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µ
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µ
λ

,                                      (6) 

                                             ( )∑∑
== Λ
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⎟
⎠
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⎜
⎜
⎝

⎛
⋅

Λ
=

m

i
ijiij

j

m

i
ij

j

iij
j sps

p
sE

1

2

1

22 1
)( λ

λ
,                                       (7) 

where js  is the service time of multiple task classes on node j, 2
js  is the second moments of the 

service time, and 2
ijs  is the second moment of the service time experienced by tasks of class ith 

on node j. 

 The expected response time TCi of class i tasks can be readily derived from the average 

response times of nodes (see Eq. 5). Hence, we obtain TCi as given by Eq. (8) 

                                                           ( )∑
=

⋅=
n

j
jiji TNpTC

1

.                                                           (8) 

Now we derive the mean response time of jobs averaged over all the classes from Eq. (8) as  

                                                          

( ) .    
1 1

1

∑ ∑

∑

= =

=

⎟⎟
⎠
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⎛
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                                                  (9) 
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To minimize the average response time without taking availability constraints into account, 

we have to balance the load of nodes by evenly distributing the service utilization. In other 

words, making all the node service utilization equal leads to a perfect load balance. Therefore, 

we have 

                                                    ( )∑
=

==
m

i
ijiijj p

1
0φµλφ .                                                     (10) 

Now we are positioned to consider availability constraints in the context of heterogeneous 

computing environments. Formally, instantaneous availability of a system is the probability that 

the system is not only performing properly without failures but also satisfying specified 

performance requirements [12]. Steady-state availability is the probability that a system is 

running during any period the system is required to be operational [12]. For simplicity and 

without loss of generality, we refer to steady-state availability as availability throughout this 

paper. Thus, the availability of node j is characterized by the probability jξ  that the node is 

continuously operational for computation during any random period. The availability of a node is 

modeled as a function determined by a variety of factors including the node’s maintenance 

status, the number of spare devices dedicated for the node, and the presence or absence of anti-

virus software. To determine the value of jθ of node j, we used the fuzzy-logic-based trust model 

proposed in [28] to aggregate the multiple factors into a normalized scalar value. Detailed 

information regarding the trust model can be found in [28]. 

Although the availability of a node could be a dynamically changed value in a long term due 

to periodic maintenances, regular upgrades, and sudden invasions of malicious codes, it can be 

approximated to a constant value during a short period of time like a complete execution cycle of 

a multi-class application. In other words, the availability of a node is independent of allocations 
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of task classes, meaning that allocating class i to node j has no impact on the availability of node 

j for other classes.  

We denote ai as the availability requirement of task class i.  Specifically, ai is the probability 

that tasks of class i must be successfully executed. Different classes of tasks have distinct 

availability requirements determined by the consequences of failures of their executions. Failures 

of critical tasks are catastrophic, whereas failures of non-critical tasks are relatively less 

damaging. As a result, a critical task requires to be assigned to a node with high availability, 

because failures of the task could be catastrophic. A non-critical task may be assigned to a node 

with a medium availability level because failures of the task will not lead to severe 

consequences. For example, the availability requirement of a critical task might be 0.95, meaning 

that the possibility that the task fails must not be higher than 0.05. It should be noted that ai and 

iλ  are mutually independent of each other. We quantify the availability of a heterogeneous 

system by introducing concepts of availability shortage factor and availability shortage, which 

characterize the discrepancy between availability demands and actual offered availability. The 

availability shortage factor dij of task class i on node j is modeled as a step function. Thus, we 

have  

                                         1a0,
otherwise,a

a if,0
≤≤≤

⎪⎩

⎪
⎨
⎧

−

≤
= ji

ji

ji

ijd ξ
ξ

ξ
.                                            (11) 

The availability shortage of node j is calculated based on the availability factor as 

                                        ∑∑
== Λ

=
Λ

=
m

i
ijiij

j

m

i
ij

j

iij
j dpd

p

11

1 λ
λ

δ , where ∑
=

=Λ
m

i
iijj p

1

λ .                 (12) 

    The availability shortage of the system is written as the accumulative sum of availability 

shortages of all the nodes. Thus, we have 
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                                           ∑ ∑∑ ∑∑
= == = = Λ

=
Λ

==
n

j

m

i
ijiij

j

n

j

n

j

m

i
ij

j

iij
j dpd

p

1 11 1 1

1 λ
λ

δδ .                             (13) 

Eq. (13) measures the discrepancy between the system availability and the availability 

requirements imposed by tasks. We can make use of the concept of availability shortage to 

measure satisfaction degrees in terms of availability. However, it is inadequate to leverage the 

availability shortage to quantitatively evaluate system availability for all the classes of tasks 

during their executions on the system. To remedy this situation, we model the availability of the 

system for all the classes as below. Our availability model is motivated by the reliability models 

found in the literature [25][29]. Since the availability model relies on the concept of availability 

cost, let us first introduce the availability cost of class i on node j using Eq. (14) as below 

                              
ij

j
ijij pAC

µ
θ

= , where jθ is the unavailable rate of node j.                      (14) 

Eq. (14) shows that the availability cost of class i on node j is directly proportional to two 

parameters: (1) the probability that tasks of the ith class are dispatched to node j and (2) the 

unavailable rate of node j.  Note that the unavailable rate used in this study is expressed as Eq. 

(15), where α is a system parameter. The value of α used in our experiments is 0.1. Eq. (15) 

indicates that the unavailable rate of node j is inversely proportional to the availability of node j. 

System parameter α must agree with measurements taken from real systems, whereas availability 

ξj can be estimated and provided by hardware vendors. It is worth noting that the way of 

calculating unavailable rates is only for illustration purpose, and it is flexible to substitute any 

unavailable rate model for Eq. (15).  

                                                        )1(exp(1 jj ξαθ −−−= .                                                 (15) 

The availability cost Ai of class i is derived from Eqs. (14) and (15) as follows 
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                                                ∑∑
==

==
n

j ij

j
ij

n

j
iji pACAC

11 µ
θ

.                                                    (16) 

Based on Eq. (16), we can express the availability Ai experienced by class i as Eq. (17). Note 

that this availability model is very similar to some reliability models proposed in the literature 

[25][29].  

                                          [ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=−= ∑

=

n

j ij

j
ijii pACA

1

expexp
µ
θ

,                                         (17) 

Now we calculate the availability A exhibited by the system. The system’s availability 

expressed by Eq. (18) is the probability that the system is continuously performing at any 

random period of time. Alternatively, the system’s availability can be computed by the expected 

fraction of time the system is performing during the period it is required to be operational [12]. 
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1 1

1

.exp   
µ
θ

λ
λ
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                                         (18) 

Eq. (18) indicates that to enhance the system availability, we must substantially reduce 

availability cost expressed by Eq. (16). 

2.3 Problem formulation 

Now we formulate the scheduling problem as a trade-off problem between availability and 

mean response time. Thus, the proposed scheduling algorithm aims at improving system 

availability (see Eq. 18) and maintaining an ideal response time of submitted tasks (see Eq. 9). 

More formally, the problem of maximizing the availability of a heterogeneous system can be 

formulated as follows: 
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         Subject to response time constraints:  

                                                :,1,1 jianjmi ξ≤≤≤≤≤∀ Minimize iTC . 

The above constrain is the response time constraints, each of which means that among nodes 

whose availability shortage factor for class i equals to zero, a node is chosen for the ith class in a 

way to minimize the mean response time of class i. Notice that the response time constraints can 

be satisfied by estimating the mean response times of class i on all candidate nodes whose 

availability shortage factor for class i is zero.  

2.4 Heterogeneity model  

Each node in the architecture model (Fig. 1) is inherently heterogeneous in both 

computational speed and availability level. Computational heterogeneity captures the nature of 

heterogenous computing platforms where the execution times of each task on different nodes are 

distinctive. While each multiclass task has an availability requirement, computational nodes 

exhibit a variety of availability levels. For simplicity, and without loss of generality, the 

availability levels and availability requirements are normalized in the range from 0 to 1.0. 

We introduce the concepts of computational heterogeneity and availability heterogeneity. The 

computational weight of class i on node j is defined as a ratio between its service rate on node j 

and the fastest service rate in the system. That is, the computational weight is expressed 

by ( )ik

n

k
ijijw µµ

1
max

=
= . The computational heterogeneity of the ith class, i.e. iHC , can be 

measured by the standard deviation of the computational weights. Thus, we have  
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                                                        ( )∑
=

−=
n

j
ijii ww

n
HC

1

21
,                                                    (19) 

where iw is the average computational weight , i.e., nww
n

j
iji ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=1

.             

The computational heterogeneity can be expressed as the following equation 

                                                         ∑
=

=
m

i
iHC

m
HC

1

1
.                                                           (20) 

The heterogeneity of availability HA in a heterogenous system is measured by the standard 

deviation of the availability offered by all the nodes in the system. Hence, HA is written as Eq. 

(21) 

                                    ( )∑
=

−=
n

j
jn

HA
1

21 ξξ , where n
n

j
j ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=1

ξξ .                                (21) 

2.5 Load imbalance detection mechanism 

To fully satisfy tasks’ availability requirements, SSAC tends to assign tasks to a group of 

nodes (a subset of N) that can provide high availability levels. Note that the availability level 

offered by a node is orthogonal to its computational speed. The implication is that SSAC might 

assign a large number of tasks onto a node with high availability level and low computational 

speed. As a result, the mean response time achieved by SSAC could be suffered significantly due 

to load imbalance. To prevent severe load-imbalance from occurring, SSAC leverages a load 

imbalance detection mechanism called Load Imbalance Detector (LID) to detect whether or not a 

node j in the system is overloaded. LID uses load index Lj defined by Eq. (22) to measure 

relative workload of node j. 

                                                        Lj = 
n

j

/φ
φ

,                                                                          (22) 
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where jφ  is the service utilization of node j (see Eq. 3) and φ /n is the average node service 

utilization of the whole system (see Eq. 4).  When Lj is higher than a threshold value TL, node j is 

overloaded. Note that TL is an empirical parameter and we set it to 1.25 in our experiments. The 

service utilization of node j is essentially the traffic intensity of node j.  

3. The Availability-Aware Scheduling Algorithm 

In this section, we present a novel Scheduling Strategy for multiple classes of tasks with 

Availability Constraints or SSAC for short.  

We now present the SSAC scheduling strategy, which is intended to determine probability 

{pij}1≤ i≤ m, 1≤ j ≤ n in a judicious way to improve the availability of heterogeneous systems while 

maintaining good performance in response time. Since the average response time largely depends 

on sequencing strategies used in each node, we employ an existing optimal sequencing strategy 

[24][27] to minimize the average response time of all classes (see Eq. 9). Our approach relies on 

the following proposition that can be proved based on proposition 2.1 in [24].  

Proposition 1. Given an m-class M/G/1 queue and an n-node heterogeneous system, class i has 

arrival rate λi and service rate µij on node j. The scheduling policy on node j that gives priority to 

class i over k whenever µij ≥ µkj minimizes the expected response time ∑
=

⎟
⎠
⎞

⎜
⎝
⎛=

m

i
i

i TCT
1 λ

λ
 (see Eq. 

9). 

Proposition 1 indicates that classes with higher service utilization must be given high priority 

in the process of scheduling. For simplicity, we have the following assumption 

Assumption 1. The classes are labelled such that ∑∑∑ ===
≥≥ n

j mjm

n

j j

n

j j 11 221 11 µλµλµλ L , 

where ∑ =

n

j iji 1
µλ  is the service utilization of task class i.  
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This assumption is valid because the first step of the algorithm can sort the task classes in 

such a way before having the task classes relabelled. The relabelling process of the algorithm 

assigns a number of priority levels to the task classes. That is, the priority of class i is higher than 

that of k if i < k. Based on the standard queuing theory, the expected response time for tasks of 

class i on node j can be approximated by the following equation 

                      ,
)1)(1(2

)(1 1

2

∑∑
∑

≤<

=

−−
=+=

il ljil lj

m

i iiij

ij
iij

sEp
WTC

ρρ
λ

µ
where 

lj

jlj
lj

p

µ
λ

ρ = .                     (23)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The SSAC algorithm, which is outlined in Fig. 3, aims to improve availability while 

Fig. 3. The scheduling strategy for multiple classes of tasks with availability constraints.  

1. Sort and label classes such that ∑∑∑ ===
≥≥ n

j mjm

n

j j

n

j j 11 221 11 µλµλµλ L ; 

2. for each class i do 
3.     Initialize the availability cost and response time for class i, i.e., AC←∞, TC←∞;  
4.     Create a set Ni of nodes, where node j∈ Ni if ai ≤ ξj;  
5.     if (Ni ≠ ∅) then 
6.         for each node j in Ni do 
7.             pij ← 1; calculate expected response time of class i, TCi; (see Eq. 8) 
8.       if TCi < TC then 
9.            TC ← TCi; v ← j; 
10.       end for 
11.   else 
12.       for each node j in the system do 
13.           Calculate the availability cost of class i on node j,ACij; (see Eq. 14) 
14.       if  ACij < AC or (ACij = AC and TCi < TC) then 
15.           AC = ACij; TC ← TCi; v ← j; 
16.       end for 
17.   end if 
18.  nmin = 1; Lmin = ∞; /* Assume node 1 is the lightest load node and its load index is ∞ */ 
19.  for each node nj ∈ N do 
20.        Calculate its load index Lj; (see Eq. 22) 
21.        if  Lj < Lmin then 
22.             Lmin = Lj; Nmin = j; 
23.  end for 
24.  if  Lv <= TL then /* node v is not overloaded */ 
25.      piv ← 1;  /* indicate that class i to node v */ 
26.      Allocate class i to node v; 
27.  else 
28.      Allocate class i to the node nmin;   
29.  end if 
30.end for 
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achieving low average response time for multi-class tasks running in heterogeneous systems. 

First, SSAC is intended to give higher priorities to classes with higher service utilization (see 

Assumption 1). To achieve this goal, SSAC sorts and relabels all the classes in a way that the 

condition ∑∑∑ ===
≥≥ n

j mjm

n

j j

n

j j 11 221 11 µλµλµλ L  is satisfied (see Step 1).  

Step 3 sets the initial values of the availability cost and response time for task class i to 

infinity. Step 4 determines a set Ni of nodes that can meet the availability demands of tasks of 

class i. Specifically, a node j ∈ Ni meets the availability constraints of class i if the ith class’s 

availability requirement is smaller than the availability level offered by Ni (i.e., ai ≤ ξj).   

Steps 5-17 are at the core of the SSAC algorithm. Step 5 determines if there exists at least one 

node whose availability shortage factor for class i equals to zero. This process is implemented in 

Step 5 by checking if set Ni has at least one element. In case where there is one or more nodes 

with zero availability shortage factor for class i, Steps 6-10 aim at reducing the mean response 

time of class i by estimating the mean response times of class i on all candidate nodes in set Ni. 

Thus, the SSAC algorithm chooses the most appropriate node from set Ni in a way that the 

selected candidate node can provide task class j with the minimal response time estimated by 

Step 7.  

There is a possibility that node set Ni is empty, meaning that no node in the heterogenous 

system is capable of guaranteeing the availability constraint of class i. In this case Steps 12-16 

make an effort to improve system availability derived from Eq. (18). More specifically, Step 13 

leverages Eq. (14) to compute the availability cost ACij of class i on node j. Then, Steps 14 and 15 

gradually reduce the availability cost value AC, thereby enhancing the system availability 

characterized by Eq. (18). If two nodes offer the same availability for class i, the node offering a 

smaller mean response time will be chosen for class i to break the tie (see Step 14).  
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Steps 18-23 calculate the load index value Lj for each node j in the system and find a node 

nmin with the lightest load Lmin. If node v is not overloaded (Lv <= TL), Steps 25 and 26 allocate 

tasks of class i to node v, which is expected to enhance the system availability. 

 The mean response time of all the classes is further reduced through static load balancing 

(see Step 28). Specifically, in case that node v is overloaded, Step 28 allocates class i to a node 

with the lightest load. Node i is considered overloaded if its load index is greater than TL, which 

is set to 1.25 in our experiments.  

To analyze the computational overhead of SSAC, we obtain its worst time complexity as 

follows. 

Theorem 1. The worst case time complexity of SSAC is O(m(logm + 2n + 1), where n is the 

number of nodes, and m is the number of classes. 

Proof. The time complexity of sorting and label multiple classes is O(mlogm) (Step 1). If Ni = ∅, 

it takes O(n) time to maximize availability by reducing availability cost (Steps 12-16) and Steps 

6-10 will be skipped. If Ni = N, it takes O(n) time to discover a node who can offer the minimal 

expected time for the current class of tasks (Steps 6-10) and Steps 12-16 will be skipped. In case 

that Ni ⊂  N and Ni  ≠ ∅, it takes O(k) (k is the length of Ni and 1 ≤  k < n) time to discover a 

node that offers the minimal expected response time for the current class of tasks ( Steps 6-10) 

and  Steps 12-16 will be ignored. Therefore, the worst case for Steps 5-17 is O(n). Additionally, 

it takes O(n) time to calculate the load index of each node in the system (Steps 19-23). For other 

steps, they only consume O(1). Since the total number of classes is m, the time complexity for 

the process of optimizing availability (Steps 2-30) is O((n+1)m). Thus, the worst time 

complexity of the SSAC algorithm is O(mlogm)+ O((2n+1)m) = O(m(logm + 2n + 1).                                    

Since m and n are all finite integers, which are not big numbers in practice, Theorem 1 shows 
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that the time complexity of SSAC is low in most cases. This time complexity indicates that the 

execution time of SSAC is a small value compared with task execution times. Thus, the CPU 

overhead of executing SSAC is ignored in our experiments. 

The following two theorems show important features of the SSAC strategy. Assuming that all 

nodes in a heterogeneous system are able to fulfil availability requirements of all tasks classes, 

we can prove the following two theorems regarding the availability shortage and mean response 

time of the system. Theorem 2 demonstrates that if each node j ∈ N can fully satisfy the 

availability requirements of tasks of any class i, there is no availability shortage in node j 

(availability provider) for tasks of class i (availability consumer). Theorem 2 implies that in this 

perfect availability satisfaction scenario, minimizing mean response time of the system becomes 

the only goal pursued by SSAC. 

Theorem 2. In a workload where the maximal availability requirement among all classes is less 

than or equal to the minimal availability among all nodes in a system, then the availability 

shortage of the system is zero. Thus, ( ) ( ) .0minmax 11 =→≤ == δξ j
n
ji

m
i a  

Proof. Given a task class k (1 ≤ k ≤ m) and a node l (1 ≤ l ≤ n), we have  

                                              ( ) ( ) .11 minmax lj
n
ji

m
ik aa ξξ ≤≤≤ ==  
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which completes the proof of theorem 2.                                                                                                             

Theorem 3. In a workload where the maximal availability requirement among all classes is less 
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than or equal to the minimal availability among all nodes in a system (i.e., ( ) ≤= i
m
i a1max  

( )j
n
j ξ1min = ), then the mean response time of the system is 
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Proof. Since ( ) ( )j
n
ji

m
i a ξ11 minmax == ≤  means that all the nodes can meet the availability 

requirements of all the task classes, Steps 6-10 and 24-29 in the SSAC algorithm judiciously 

reduce mean response time by balancing the load of the nodes. Hence, 
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We therefore conclude that the mean response time of the system can be calculated as 
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 and the proof of theorem 3 is complete.                              

 Since homogeneous systems widely deployed in the real world are a special case of 
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heterogeneous systems, we study the behaviors of SSAC in a homogeneous system in the 

following two theorems. Theorems 4 and 5 below capture the characteristic behaviors of SSAC 

in the context of homogeneous systems. Specifically, Theorem 4 establishes that in case where 

all nodes in a homogeneous system are incapable of guaranteeing the availability requirements of 

a task class, the SSAC algorithm initially allocates the class to a node with the highest 

availability among all the nodes in the system. Thus we have the following theorem.  

Theorem 4. Given a task class i whose availability requirement can not be satisfied by any node 

in a homogeneous system with n nodes (i.e., ia > ( )k
n
k ξ1max = ), SSAC initially allocates class i to 

a node j whose availability is the highest among the n nodes, i.e., ( )j
n
kj ξξ 1max == . Formally, if 

( )iikijkjnkjmi µµµ ==≠≤≤∀≤≤∀ :,,1:1 , then ia > ( )k
n
k ξ1max = → SSAC initially allocates 

class i to node j subject to ( )j
n
kj ξξ 1max == . 

Proof. Since we have ia > ( )j
n
j ξ1max = , it is intuitive that all the nodes in the homogeneous 

system are unable to meet the availability requirement of task class i. Thus we show that the set 

Ni of nodes for class i is empty (see Step 4 in Fig. 3). In this case, Steps 12-16 are executed to 

determine a node j that offers the smallest availability cost among all the nodes in the system (see 

Step 14 in Fig. 3). The initial availability cost of class i on node j equals to 
ij

j

µ
θ

 (see Eq 14). 

Because the n nodes are homogeneous (i.e., iij µµ = ), the availability cost of class i on node j 

can be expressed as 
i

j

µ
θ

. If  the value of 
i

j

µ
θ

 is the smallest among all the nodes and iµ  is a 

constant, then the value of unavailable rate jθ  is also the smallest. The smallest value of  jθ  

indicates the highest availability jξ   of node j among all the n nodes. Hence, we show that SSAC 
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initially allocates class i to a node j whose availability is the highest among the n nodes.              

Theorem 5 below states that if all nodes in a homogeneous system are incapable of 

guaranteeing the availability requirements of all tasks classes (i.e., ( )j
n
j ξ1max = < ( )i

m
i a1min = ), the 

SSAC strategy gracefully degrades to a load-balancing scheme. 

Theorem 5. If all nodes in a homogeneous system are incapable of guaranteeing the availability 

requirements of all tasks classes (i.e., ( )j
n
j ξ1max = < ( )i

m
i a1min = ), the SSAC strategy gracefully 

degrades to a load-balancing scheme. 

Proof. Given ( )j
n
j ξ1max = < ( )i

m
i a1min = , we show that ij anjmi <≤≤≤≤∀ ξ:1,1 . This means 

for any task class i, no node in the system can guarantee the class’s availability requirement. 

Hence, the set Ni of nodes for class i is empty (see Step 4 in Fig. 3), making SSAC allocate class 

i to a node j offering the smallest availability cost among all the nodes in the system (see Step 14 

in Fig. 3). Based on Theorem 4, it is proved that Steps 12-16 in SSAC initially attempt to allocate 

all the classes to a set NHA of nodes whose availability is the highest among the n nodes. 

Therefore, nodes in set NHA have a high likelihood of being overloaded. If any node in set NHA is 

overloaded, Step 28 of SSAC is invoked to balance the load across all the nodes in the system. 

Thus, in case that all nodes in a homogeneous system are incapable of guaranteeing the 

availability requirements of all tasks classes, the SSAC strategy gracefully degrades to a load-

balancing scheme. Hence, the proof.                                                                                                

4. Experimental Results 

We evaluate in this section the performance of the SSAC algorithm using simulation 

experiments. There are two important workload parameters: mean arrival rate λ of multi-class 

tasks and mean execution time (see Table 1). The system parameters in our experiments are 
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chosen either based on those used in the literature [35] or to represent real-world heterogeneous 

systems. It is assumed that task arrival times abide by Poisson distribution and task execution 

times follow Uniform distribution. We evaluated the proposed SSAC algorithm under a wide 

range of system workloads by varying λ and number of nodes n. To simulate a heterogenous 

system, we randomly generated a vector of n (number of nodes) execution times for each task 

using the heterogeneity model described in Section 3. For each simulated result we performed 

1,000 runs, of which the average value is computed after discarding the 10 largest and 10 

smallest measurements.  

We compared SSAC with two well-known scheduling algorithms to reveal the strengths of the 

proposed scheduling strategy. The alternative scheduling algorithms are MINMIN and 

SUFFERAGE [28], which are non-preemptive task scheduling algorithms. MINMIN and 

SUFFERAGE were selected for comparison purpose, because these two algorithms represent 

many existing algorithms that are the closest to our SSAC algorithm. MINMIN and 

SUFFERAGE can be applied to allocate a stream of independent tasks to a heterogeneous 

system. It is important to note that the two alternatives are representative dynamic scheduling 

algorithms for distributed systems that are either homogeneous or heterogenous in nature. 

MINMIN and SUFFERAGE were successfully applied in real world distributed resources 

management systems such as SmartNet. These two scheduling algorithms are described in brief 

as follows. 

(1) MINMIN:  For each submitted task, the node providing the earliest completion time is 

tagged. Among all the mapped tasks, the one that has the minimal earliest completion time is 

chosen and then allocate to the tagged node.  

(2) SUFFERAGE: A node is assigned to a task that would “suffer” most in terms of 
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completion time if that node is not allocated to the task.  

Table 2 shows the parameters of simulated heterogenous systems. In what follows, we briefly 

introduce the performance metrics used to evaluate the performance of the proposed availability-

aware scheduling strategy. 

Table 2. Characteristics of System Parameters 

             Parameter           Value (Fixed) - (Varied) 
Number of nodes (16) – (16, 32,64,128) 

Mean task arrival rate λ (Poisson dist.) (1.0) – (0.2, 0.4, 0.6, 0.8, 1.0) 
Task execution time range (Uniform dist.) (1, 500) second 

Node availability (Uniform dist.) (0.1 – 1.0) 
Task availability demands (Uniform dist.) 

 
(0.1 – 1.0) 

Computational heterogeneity (computed) 0.35 
Availability heterogeneity (computed) 0.22 

TL (Threshold value of load index) 1.25 
 

 (1) Availability (see Eq. 18): The system’s availability, which is measured by Eq. (18), is the 

probability that the system is continuously performing at any random period of time.  

(2) Availability shortage (see Eq. 13): The availability shortage of the system quantifies the 

discrepancy between availability demands and actual availability offered by the system. 

(3) Average response time (see Eq. 9): The average response time of multiple task classes is the 

average time interval between task arrival time and the finish time. 

(4) Node utilization: Utilization of a node is the percentage of total task running time out of total 

available time of the node. Node utilization is the average value of all nodes’ utilizations.  

In the first group of experiments, we vary the mean arrival rate from 0.2 to 1.0 with an 

increment of 0.2. Fig. 4 shows experimental results of the three evaluated algorithms applied to a 

heterogeneous system with 16 nodes. We observe from Fig. 4a that SSAC significantly improve 

system availability over the two alternatives, whereas MINMIN and SUFFERAGE algorithms 

exhibit similar performance in terms of availability. For example, SSAC enhances system 
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availability over the existing approaches by an average of 73.3%. We attribute the availability 

improvements of SSAC over MINMIN and SUFFERAGE to SSAC’s capability of considering 

tasks’ availability requirements in the process of allocating tasks to heterogenous nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4b reveals that the availability shortage of the proposed SSAC is considerably smaller 

than those of MINMIN and SUFFERAGE. We observe that the results plotted in Fig. 4b are 

consistent with those reported in Fig. 4a, because a low value of availability shortage gives rise 

to high system availability. Fig. 4c shows that the average response time yielded by SSAC is 

marginally larger than those generated by MINMIN and SUFFERAGE. More specifically, the 

                    (a)                                                                             (b) 

                      (c)                                                                             (d) 

Fig. 4. Performance impact of mean arrival rate λ. 
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performance degradation of our SSAC in terms of response time is less than 5.7% on average. In 

other words, compared with MINMIN and SUFFERAGE, SSAC achieves much better 

availability performance while maintaining reasonably short response times. Fig. 4d clearly 

shows that MINMIN and SUFFERAGE perform slightly better than SSAC in terms of node 

utilization. This is because MINMIN and SUFFERAGE only aim at minimizing response times; 

therefore, they tend to assign tasks to nodes with high speed while ignoring tasks’ availability 

requirements. Hence, the average task running time is relatively shorter. In accordance with the 

definition of node utilization, a short average task running time results in low node utilization. 

Unlike MINMIN and SUFFERAGE, SSAC guarantees tasks’ availability requirements while 

shortening response times. SSAC may assign tasks to slow nodes with high availability levels, 

thereby making tasks have long execution times, which in turn leads to higher node utilization. 

An interesting observation drawn from Figs. 4(a) and 4(b) is that SSAC outperforms 

MINMIN and SUFFERAGE in terms of system availability. Furthermore, Fig. 4(d) reveals that 

compared with SSAC, MINMIN and SUFFERAGE can deliver better performance with respect 

to node utilization. Let us make use of the example in Fig. 2 to explain this phenomenon. As we 

described in Section 2.1, SSAC selects node 8 (the black one) to meet the task’s availability 

requirement (0.85 in this example). Therefore, 
8ξ = 0.93. On the contrary, MINMIN and 

SUFFERAGE choose node 6 as the candidate node for the tasks of the current class because 

node 6 can deliver the minimal expected finish time. Thus, 
6ξ =0.79 for MINMIN and 

SUFFERAGE. Eq. 15 indicates that a large value of 
jξ  implies a small value of jθ , which in 

turn results in a small ijAC . A small value of ijAC  gives rise to a high availability Ai (see Eq. 17), 

which eventually leads to high system availability A (see Eq. 18). In short, a high 
jξ  results in 

high system availability A. Since 
8ξ (selected by SSAC) is noticeably higher than 

6ξ (selected by 
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MINMIN and SUFFERAGE), SSAC outperforms MINMIN and SUFFERAGE in terms of 

system availability. The rationale that SSAC judiciously reduces availability cost by choosing 

nodes with high availability levels, while MINMIN and SUFFERAGE totally ignore the issue of 

availability cost.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second group of experiments is focused on the scalability of the SSAC algorithm. In this 

set of experiments, we vary the number of nodes in the simulated heterogeneous system from 16 

to 128. Fig. 5 plots the four performance metrics of all the three examined algorithms as 

functions of the number of nodes. 

                    (a)                                                                                   (b) 

                    (c)                                                                                 (d) 

Fig. 5. Performance impact of number of nodes. 
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An important observation made from Figs. 5a and 5b is that SSAC exhibits good scalability 

with respect to system availability and availability shortage. This is because Fig 5a reveals that 

the performance improvement in system availability becomes more pronounced when the 

heterogenous system is scaled up. Similarly, Fig. 5b shows that the availability shortage 

reduction of SSAC over the two competitive algorithms is more prominent with the increasing 

number of nodes in the heterogenous system. Figs. 5a and 5b indicate that the performance gain 

of SSAC in availability becomes more significant for large-scale heterogenous systems, because 

a larger number of nodes means a higher probability that SSAC can choose a node to meet each 

task’s availability demands. Figs. 5c and 5d show that for all the evaluated scheduling 

algorithms, the average response time and node utilization reduce as the number of nodes 

increases. These results are expected because a larger number of nodes implies less work for 

each node, which in turn leads to a smaller response time on each node. 

5. Summary and Future Work 

An increasing number of applications with availability constraints are running on 

heterogeneous computing platforms. However, most existing scheduling algorithms in 

heterogeneous systems ignore availability requirements imposed by multi-class applications. To 

remedy this deficiency, we address in this paper the scheduling problem for multi-class 

applications with availability constraints running in heterogeneous systems. Multi-class tasks are 

characterized by their execution times and availability requirements, whereas each node in a 

heterogeneous system is modeled by the node’s computing capability and availability. We 

introduced new metrics to quantify availability and heterogeneity in the context of multi-class 

tasks. Next, we proposed a scheduling algorithm (or SSAC for short) geared to enhance 

availability of heterogeneous systems while maintaining good performance in average response 
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time of multi-class tasks. Empirical results show that compared with existing schemes, the 

proposed algorithm significantly improves availability of multi-class tasks in heterogeneous 

systems without degrading response times.  

As part of future directions, we will extend SSAC to schedule parallel applications with 

flexible availability requirements. This future work will be accomplished by factoring in 

communication availability and precedence constraints among tasks. To further improve the 

performance of the SSAC scheduling algorithm that is heuristic in nature, in future work we also 

plan to explore two efficient algorithms to solve the same problem addressed in this paper. The 

first algorithm will take an efficient dynamic programming approach, whereas the second 

algorithm will make use of a branch and bound method. A third future direction is to investigate 

an availability-aware scheduling algorithm that handles cases of Poisson arrivals as well as 

general arrivals.  
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