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Abstract 
 

High availability plays an important role in 
heterogeneous clusters, where processors operate at 
different speeds and are not continuously available for 
processing. Existing scheduling algorithms designed 
for heterogeneous clusters do not factor in availability. 
We address in this paper the stochastic scheduling 
problem for heterogeneous clusters with availability 
constraints. Each node in a heterogeneous cluster is 
modeled by its speed and availability, and different 
classes of tasks submitted to the cluster are 
characterized by their execution times and availability 
requirements. To incorporate availability and 
heterogeneity into stochastic scheduling, we introduce 
metrics to quantify availability and heterogeneity in 
the context of multiclass tasks. A stochastic scheduling 
algorithm SSAC (Stochastic Scheduling with 
Availability Constraints) is then proposed to improve 
availability of heterogeneous clusters while reducing 
average response time of tasks. Experimental results 
show that our algorithm achieves a good trade-off 
between availability and responsiveness.  
 
 

 

1. Introduction 
 

Stochastic scheduling is to investigate the problem 
of scheduling a set of tasks with random features. 
Common random features such as task processing 
times are usually modelled by specifying their 
probability distribution. Although a task's processing 
time is not known until it is complete, the probability 
distribution of task processing times are assumed to be 
known by the system as a priori. Stochastic scheduling 
could be preemptive or non-preemptive, conduct on 
one 
vario

A heterogeneous cluster consists of an array of 
diverse computers, called computing nodes, which are 
connected by a high-performance network. To date 
heterogeneous clusters have been emerging as popular 
computing platforms for computationally intensive 
applications with diverse computing needs. Scheduling 
algorithms play a key role in obtaining high 
performance in parallel systems like heterogeneous 
clusters [12]. The objective of scheduling algorithms is 
to map tasks onto nodes and order their execution in a 
way to optimize overall performance.  

In scheduling theory the basic assumption is that all 
machines are always available for processing [17]. 
This assumption might be justified in some cases but it 
is not valid in scenarios where certain maintenance 
requirements, breakdowns or other constraints, which 
make the machines not to be available for processing, 
have to be considered [17]. Examples of such 
constraints can be found in many areas. For instance, 
computational nodes in heterogeneous clusters need to 
be maintained periodically to prevent malfunctions 
[10]. In this study availability is defined as the ratio of 
the total time a computing node is functional during a 
given interval to the length of the interval. Thus, the 
availability of a heterogeneous cluster will be degraded 
if one or multiple nodes are out of duty due to random 
breakdown or preventive maintenance. On the other 
hand, however, nowadays many high-performance 
clusters need a high availability [1][20]. For instance, 
military applications, 24×7 healthcare applications, and 
international business applications all demand an 
extremely high availability as severe damages or fatal 
errors could occur when even only one computing 
node becomes unavailable [1]. As such, a scheduling 
strategy for heterogeneous clusters has to factor in 
availability to deal with maintenance activities and 
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or on multiple processors, and be concerned with 
us optimization criteria.  

unexpected failures.  Unfortunately, conventional 
stochastic scheduling algorithms for heterogeneous 
clusters only concentrated on high throughput with the 
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goal of reducing tasks’ average response times and 
normally ignored the availability requirements of the 
tasks. It is challenging, however, to achieve high 
throughput and high availability simultaneously 
because they are two conflict objectives [1]. For 
example, it is unacceptable to assign a critical-task 
with high availability requirement to a node that 
provides with a high speed but low availability level. A 
feasible scheme is to achieve a good trade-off such that 
tasks’ availability requirements can be met while 
average response time is confined to an ideal range.  

In this paper we address the problem of scheduling 
different classes of tasks with availability constraints in 
heterogeneous system. We aim at developing a 
stochastic scheduling strategy to improve availability 
of heterogeneous systems while reducing average 
response time of multi-class tasks. The scheduling 
algorithm proposed in this paper can be applied to 
heterogeneous systems where capacity and availability 
constraints are known a priori.  

The main contributions of this paper are: (1) an 
availability-latency driven stochastic scheduling 
scheme SSAC (Stochastic Scheduling with 
Availability Constraints) for multiple classes of tasks 
on heterogeneous clusters; (2) a system model for 
quantitatively measuring availability of computing 
nodes; (3) two types of heterogeneities: computational 
heterogeneity and availability heterogeneity; (4) a 
simulated heterogeneous cluster where the SSAC 
strategy is implemented and evaluated. The rest of the 
paper is organized as follows. In the next section we 
briefly introduce related works. Section 3 describes the 
system model, the task model and heterogeneity 
model. In Section 4, we propose the SSAC scheme for 
multiple classes of tasks running on heterogeneous 
clusters. We present in Section 5 experimental results 
based on synthetic benchmarks. Section 6 concludes 
the paper with summary and future directions. 
 
2. Related work 
 

In stochastic scheduling, a typical scenario is that m 
tasks have processing times that are exponentially 
distributed with different means and are to be 
processed by n identical computing nodes operating in 
parallel. In this case minimizing the expected 
makespan (the time at which all tasks are complete) is 
an objective function for a scheduling strategy 
dedicated to this scenario. Extensive research has been 
done in stochastic scheduling. Schopf and Berman 

defined a stochastic scheduling policy based on time-
balancing for data parallel applications whose 
execution behavior can be represented as a normal 
distribution [19]. Cai et al. studied the problem of 
finding a dynamically optimal policy to process n jobs 
on a single machine subject to stochastic breakdowns. 
The problem of scheduling customers in a multi-class 
G/G/1 queue was addressed by Nain and Towsley [13] 
so as to minimize a weighted sum of the work-loads of 
the different classes. However, little attention has been 
paid to scheduling tasks with stochastic features and 
high system availability requirements. Recently, 
Chakraverty proposed a co-synthesis mechanism for 
generating gracefully degrading multiprocessor 
architectures which fulfill the dual objectives of 
achieving real-time performance as well as ensuring 
high levels of system availability [6].  

Over the last decade, heterogeneous clusters have 
become widely used for scientific and commercial 
applications [8]. In recent years, the issue of 
scheduling on heterogeneous clusters has been 
addressed and reported in the literature [7][24]. Dogan 
and F. Özgüner developed reliable matching and 
scheduling algorithms for tasks with precedence 
constraints in heterogeneous distributed clusters [7]. 
Srinivasan and Jha incorporated reliability cost, 
defined to be the product of processor failure rate and 
task execution time, into scheduling algorithms for 
tasks with precedence constraints [23]. Ranaweera and 
Agrawal proposed a scalable scheduling scheme called 
STDP for heterogeneous systems [16]. Scheduling 
algorithms are of critical importance in obtaining high 
performance in various computing platforms [15][25]. 
The problem of scheduling multiple classes of tasks 
was motivated by a wide range of distributed 
applications like scalable web server systems [9]. 
Sethuraman et al. proposed an optimal stochastic 
scheduling strategy that can minimize a function of the 
per-class response time variances [20]. The scheduling 
algorithm proposed in this paper differs from theirs in 
that our algorithm incorporates availability constraints 
into scheduling. In our previous work, we studied 
security-aware scheduling for clusters [25] and Grids 
[26]. These scheduling algorithms only support 
homogeneous systems, limiting their applicability to 
heterogeneous systems. Further, these algorithms are 
not suitable for multi-class tasks with availability 
requirements. In contrast, our algorithm makes a trade-
off between availability and responsiveness. 
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Figure 1. System model of the SSAC strategy 
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Some researches about improving availability of 
clusters were reported in the literature recently.  Solter 
and Tripathi presented a protocol and architecture on 
the Sun/spl trade/ Cluster system for delivering cluster 
events to a high-availability cluster [21]. Leangsuksun 
et al. proposed concepts of integrating high availability 
cluster mechanism with a secure cluster infrastructure 
[11]. Apon and Wilbur designed an Advanced Multi 
Processor Network with a high availability in mind [1]. 
Our approach of improving availability of a 
heterogeneous cluster is different from the methods 
above. We integrated tasks’ availability requirements 
into stochastic scheduling to achieve a good balancing 
between system availability and throughput measured 
as average response time. 

 
3. Mathematical models   
 
3.1. System model 
 

In this study, we consider a queuing architecture of 
an n-node heterogeneous cluster in which n 
heterogeneous nodes are connected via a network to 
process independent m class of tasks submitted by m 
users. Let N = {N1, N2, …, Nn} denote the set of 
heterogeneous nodes. The system model, depicted in 
Figure 1, is composed of a task schedule queue, SSAC 
task scheduler, and n local task queues. The function 
of SSAC is intended to make a good task allocation 
decision for each arrival task to satisfy its availability 
requirement and maintain an ideal performance in 
average response time. 

A schedule queue is used to accommodate incoming 
tasks. SSAC scheduler then processes all arrival tasks 
in a First-Come First-Served (FCFS) manner. After 

being handled by SSAC, the tasks are dispatched to 
one of the designated node Ni ∈ N for execution. The 
nodes, each of which maintains a local queue, can 
execute tasks in parallel. The main component of the 
system model above is SSAC, which is composed of 
three modules: (1) Availability deficiency calculator; 
(2) Availability-adaptive window controller; and (3) 
Task allocation decision maker. The availability 
deficiency calculator is used to calculate discrepancies 
between an arrival task’s availability requirement and 
the availability value that each node offers. The 
function of availability-adaptive window controller is 
to vary size of the window to discover a suitable node 
for the current arrived task so that (1) its availability 
demands can be well met; (2) the execution time can 
be as small as possible. To illustrate how availability-
adaptive window controller works, we give an example 
as below. 

In Figure 2 we assume that there are 8 nodes in the 
cluster. The first row shows the execution time for an 
arrival task on the 8 nodes in seconds. Note that the 
execution of each node for a particular task is an 
expected execution time. The second row displays the 
availability levels that the 8 nodes can offer. The third 
row is a node list sorted by the task’s execution time in 
a non-decrease order. The size of availability-adaptive 
window is 4, which means SSAC will select a node 
that can deliver the best availability within the first 
four candidate nodes. If availability-adaptive window 
controller cannot find an idea node in terms of 
availability, it will automatically enlarge the window to 
expand the search range. However, large window size 
will result in a long execution time for the task in a 
high probability because the execution time increases 
when the size of the window enlarges. 
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After retrieving information like degree of 
availability deficiency on each node and the size of 
availability-adaptive window for the current task from 
the corresponding modules, the task allocation 
decision maker will decide which node will be 
assigned to the task. Each node in the system model 
above is inherently heterogeneous in both computation 
and availability. Computational heterogeneity means 
that for each task the execution time on different nodes 
is distinctive. While each task has an availability 
request, each node offers the availability with different 
levels. The level of availability provided by a node is 
normalized in the range from 0 to 1.0. 
 
3.2. Tasks with availability requirements 
 

For future reference, we summarize the notations 
for availability in Table 1. 

We consider a heterogeneous cluster system where 
arrival tasks are independent of one another. There are 
m classes of tasks submitted to the system by m users. 
Each class of tasks requires a common availability 
level specified by a user. Values of availability levels 
are normalized in the range from 0 to 1.0. For 
example, a critical task may specify availability level 
1.0 in its request, meaning that this task should be 
assigned to a node that can provide 100 percent 
availability. It will take a risk for being disturbed 
during its execution, otherwise.  Suppose there are m 
different users and each of them keeps submitting a 
class of tasks. The arrival pattern of tasks in class i 
follows a Poisson process with rate iλ (see Figure 1). 

Suppose there is a task Ti submitted by a user, Ti is 
modeled as a set of rational parameters, e.g., Ti = (ai, 
Ei, fi, avi), where ai and fi are the arrival and expected 
finish times, and Ei is a vector of expected execution 
times for task Ti on each node in N, and Ei = ( , , 
…, ). Suppose T

1
ie 2

ie
n
ie i’s requirement of availability is 

avi. 
Since arrival patterns and service rates can be 

estimated by code profiling and statistical prediction 

[3]

Nota

, it is assumed in this study that the arrival patterns 
and service rate is known a priori.  

Table 1. Notation of system model 

tion Explanation 

  m Number of classes of tasks  

  n Number of nodes in the system 
1 ≤ i ≤   i One particular class of tasks, 

  j One particular node, 1 ≤ j ≤ n 

 iλ  Arrival rate of the ith class of tasks 
 λ  Task arrival rate of the entire system 

 pij
s  Probability that a task of the ith clas

is dispatched to node j 

 ijµ  Service rate of tasks of the ith class 
on node j 

 iρ  Service utilization of all tasks of class 
i jφ  Service utilization of node j 

 φ  Total service utilization of the system 

 jξ  Probability that node j is available 

  ai

the jth node 

Availability requirement of tasks of 
class i, 0 ≤ ai ≤ 1  

 jδ  Availability deficiency of node j 
Task arrival rate of  jΛ  

 jθ  Unavailable rate of node j 
A parameter to control the value of   α 
θ

  A System availability 

  dij Discrepancy between jξ and ai

j

 node j 

C

  ES Mean service time of node j 

 jES 2 Mean-square service time of 

  2
ijs  Mean-square service time of class i 

on node j 

  T i
Expected response time of tasks in 
class i 

23

3 

0.6
29

8 

0.3
47

4

0.8
76

1

0.6

84

6

0.9
145

2

0.1
208

7 

0.4

541
Availability level: 

 Execution time: 
0.8

5 Node: 

4

Availability-adaptive window

 Figure 2. Example sorted node list with availability-adaptive window 4 
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s   T Expected response time of all classe
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where TC  is the expected response time of class i 
tas

mulate the stochastic scheduling 
pro

3.3. Heterogeneity model 

We describe two types of heterogeneities in this 
su

i
ks.            
Now we for
blem as a trade-off problem between availability 

and mean response time. Thus, the objective of the 
proposed scheduling algorithm is to maximize system 
availability (see Equation 2) and to minimize mean 
response time of submitted tasks (see Equation 5). 
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node j is defined as a ratio between its service rate on 
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where iw is average computational weight.  
The computational heterogeneity can be expressed 

by ∑
=

=
m1

 is written as  

  

i
iHC

m
HC

1

.  

The heterogeneity of availability in a heterogeneous 
system
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4.  
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way to improve the system 
m ime. Our algorithm relies on the 
following proposition, which can be easily proved 
based on proposition 2.1 in [20].  
Proposition: Given an m-class M/G/1 queue and an n-
node heterogeneous system, class i has arrival rate λi 
and service rate µij on node j. The scheduling policy on 

whenever µij ≥ µkj minimizes the expected response 

time ∑
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algorithm. For tasks of class i, the expected response 
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The SSAC algorithm is depicted in Figure 3. The 
algorithm aims to improve availability while 
maintaining low average response time for multi-class 
tasks on heterogeneous systems. First, SSAC gives 
classes with higher service utilization higher priority. 
Thus, SSAC sorts and re-labels all the classes in a way 
that 

∑∑∑ ===
≥≥

n

j mjm
n

j j
n

j j 11 221 1 µλµλµ L (see 

Step 1). Step 4 identifies all nodes that can meet

 of SSAC is O(nm), 

me complexity calculating availability 

1λ

 the 
availability demand of tasks of class i. Steps 5-10 are 
at the core of the proposed algorithm. In particular, 
Steps 6 and 7 leverage Eqs. 1 and 9 to estimate the 
availability deficiency and expected response time of 
class i on node j. Step 8 makes an effort to improve 
system availability by reducing availability deficiency. 
In the case there is no way to further reduce the 
availability deficiency, Step 8 endeavors to minimize 
the expected response time of class i. When the load of 
the system is balanced, Steps 13 and 14 allocate tasks 
of class i to node π, which yields the highest system 
availability. Importantly, the average response time is 
further reduced by the algorithm through static load 
balancing (see Steps 12 and 16). 
Theorem 1. The time complexity
where n is the number of nodes, m is the number of 
task classes.  
Proof. The ti
deficiency and response time for node j is O(n) (Step 6 
and 7). Sorting the classes of tasks time a non-
decreasing order (Step 1) will take O(mlgm) since we 
only have m classes. For other steps, they only 
consume O(1). Thus, the time complexity of the SSAC 

1. Sort and label classes such that  

∑∑∑ ===
≥≥

n

j mjm
n

j j
n

j j 11 221 11 µλµλµλ L ; 

2. for each class i do 
3.   Initialize availability deficiency and response 
     time for class i, i.e., d ← ∞, TC

 
 ← ∞

4.    create a set of nodes Ni, where  
≤ ξj;  

response time of  
Equation 8) 

en 
 j; 

e class i to node π; 

aded 

;  

      node j ∈Ni  if ai 
5.    for each node j in Ni do 
6.        calculate availability deficiency of  
              class i on node j, dij; 
7.        calculate expected 
              class i, TCi; (see 
8.         if dij < d or (dij = d and TCj < TC) th

←9.            d ← dij ; TC ← TCj; π 
10.       end if 
11.    end for 
12.    if the system is balanced then  
13.    piπ ← 1;  
14.       allocat
15.    else 
16.       Allocate class i to the lightly lo
          node;   
17.    end if 
18.end for 

Figure 3.The SSAC algorithm



 7

algorithm is as follows: O(m)(O(n))+ O(mlgm)= 
O(mn)+O(mlgm)= O(mn).                       
 
5. Simulations 
 

Using simulation experiments based on 
synthetically generated workload, we evaluate in this 
section the performance of the SSAC algorithm. Task 
arrival rate λ and task execution time range (ETR) are 
two important workload parameters (see Table 2). We 
assume that task arrival times abide by Poisson 
distribution and task execution times follow Uniform 
distribution. We evaluate SSAC along with two 
existing algorithms under a wide range of system 
workload conditions by varying λ and number of 
nodes. To reflect the heterogeneity of the simulated 
distributed system, we translated the “execution time” 
of each task from a single value to a vector with n 
(number of nodes) elements based on the heterogeneity 
model described in Section 3. In purpose of revealing 
the strength of SSAC, we compared it with two well-
known scheduling algorithms, namely, Min-Min and 
Sufferage [22]. Min-Min and Sufferage are non-
preemptive task scheduling algorithms, which schedule 
a stream of independent tasks onto a heterogeneous 
distributed computing system. They are representative 
dynamic scheduling algorithms for distributed systems 
and were successfully applied in real world distributed 
resources management systems such as SmartNet. The 
two algorithms are briefly described below. 
(1) MINMIN:  For each submitted task, the node that 
offers the earliest completion time is tagged. Among 
all the mapped tasks, the one that has the minimal 
earliest completion time is chosen and then allocate to 
the tagged node.  
(2) SUFFERAGE: Allocating a node to a submitted 
task that would “suffer” most in terms of completion 
time if that node is not allocated to it. 
 
Table 2. Characteristics of system parameters 

 

Parameter 
Value 
(Fixed) - 
(Varied) 

Number of sites (16) – (16, 
32,64,128) 

Task arrival rate λ (Poisson dist.) 

(1.0) – 
(0.2, 0.4, 
0.6, 0.8, 
1.0) 

Task execution time range (ETR) (1, 500) 
second 

Node availability level (Uniform dist.) (0.1 – 1.0) 

Task availability level (Uniform dist.) 
 

(0.1 – 1.0) 

Computational heterogeneity 1.08 
Availability heterogeneity 0.22 
 

5.1. Simulation setup 
 

Table 2 summarizes the key configuration 
parameters of the simulated distributed system used in 
our experiments. The performance metrics we used  
include: Availability (see Equation 2),  Availability 
shortage (defined as the mean discrepancy between 
availabilities requested by tasks and availabilities 
provided by nodes in the distributed system), Node 
utilization (defined as the percentage of total task 
running time out of total available time of a given 
node), Average response time (see Equation 5). 

 
5.2. Overall performance comparisons 
 

The goal of this experiment is two fold: (1) to 
compare the proposed SSAC algorithm against the two 
heuristics, and (2) to understand the sensitivity of 
SSAC to the task arrival rate λ. 

Figure 4 shows the simulation results for the three 
algorithms on a distributed system with 16 nodes. We 
observe from Figure 4a that SSAC significantly 
outperforms the two heuristics in terms of Availability, 
whereas MINMIN and SUFFERAGE algorithms 
exhibit similar performance. We attribute the 
performance improvement of SSAC over MINMIN 
and SUFFERAGE to the fact that SSAC is an 
availability-adaptive scheduler and judiciously assigns 
a task to a node not only considering its computational 
time but also its availability demands. Similar 
observations can be made from Figure 4b, where 
SSAC has a much better performance in Availability 
shortage. The lower Availability shortage, the better 
performance achieved in availability satisfaction. As 
for the performance of Average response time (Figure 
4c), SSAC is slightly worse than the two existing 
algorithms by 5.7% on average. However, the 
performance improvement of SSAC over MINMIN 
and SUFFERAGE in Availability is 73.3% on average. 
In addition, SSAC achieves a better performance in 
Node utilization as well (Figure 4d). 
 
5.3. Scalability 
 



This experiment is intended to investigate the 
scalability of the SSAC algorithm. We scale the 
number of nodes in a heterogeneous distributed system 
from 16 to 128. Figure 5 plots the performances as 
functions of the number of nodes in the simulated 
distributed system. The results show that the SSAC 
approach exhibits good scalability. 

 
Figures 5a and Figure 5b show the improvement of 

SSAC in Availability and Availability shortage over 
the other two heuristics. It is observed from Figure 5a 
that the amount of improvement becomes more 
prominent with the increasing value of node number. 
This result can be explained by the non-availability-
awareness nature of MINMIN and SUFFERAGE, 
which merely select a node for a task without 
considering the task’s availability demands.  
Conversely, SSAC can achieve a much higher 
performance when there are more nodes available in 

the system. This is because with a high probability 
SSAC can find a node that meets a task’s availability 
demands well when there are more nodes to be chosen. 
For all the three algorithms, their performances 
improve in terms of Average response time (Figure 5c). 
This can be readily understood because more nodes 
result in a low value for Average response time. 

 

               (a)                                               (b) 

                 (c)                                                (d) 

Figure 4.Performance impact of task arrival rate λ 

6. Summary and future work  
 

In this paper, we address the stochastic scheduling 
problem for heterogeneous systems with availability 
constraints. While different classes of tasks are 
characterized by their execution times and availability 
requirements, each node in a heterogeneous system is 
modeled by its speed and availability. We introduce 
metrics to quantify availability and heterogeneity in the 
context of multi-class tasks. To incorporate availability 
and heterogeneity into scheduling, we have proposed a 
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stochastic scheduling. Our scheduling algorithm is 
geared to enhance availability of heterogeneous 
systems while reducing average response time of 
multi-class tasks. Empirical results show that the novel 
algorithm improves performance in availability over 
existing schemes for heterogeneous systems. In future 

research, the heuristic will be extended to schedule 
parallel applications. This work can be accomplished 
by factoring in precedence constraints among tasks and 
communication availability. 
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