
This paper appeared in the Proceedings of the 8th IEEE International Conference on Cluster Computing
(Cluster 2006), Sept. 2006.

Stochastic Scheduling with Availability Constraints in Heterogeneous Clusters

 Tao Xie Xiao Qin
 Department of Computer Science Department of Computer Science
 San Diego State University New Mexico Institute of Mining and Technology
 San Diego, California 92182 Socorro, New Mexico 87801
 xie@cs.sdsu.edu xqin@cs.nmt.edu

Abstract

High availability plays an important role in
heterogeneous clusters, where processors operate at
different speeds and are not continuously available for
processing. Existing scheduling algorithms designed
for heterogeneous clusters do not factor in availability.
We address in this paper the stochastic scheduling
problem for heterogeneous clusters with availability
constraints. Each node in a heterogeneous cluster is
modeled by its speed and availability, and different
classes of tasks submitted to the cluster are
characterized by their execution times and availability
requirements. To incorporate availability and
heterogeneity into stochastic scheduling, we introduce
metrics to quantify availability and heterogeneity in
the context of multiclass tasks. A stochastic scheduling
algorithm SSAC (Stochastic Scheduling with
Availability Constraints) is then proposed to improve
availability of heterogeneous clusters while reducing
average response time of tasks. Experimental results
show that our algorithm achieves a good trade-off
between availability and responsiveness.

1. Introduction

Stochastic scheduling is to investigate the problem
of scheduling a set of tasks with random features.
Common random features such as task processing
times are usually modelled by specifying their
probability distribution. Although a task's processing
time is not known until it is complete, the probability
distribution of task processing times are assumed to be
known by the system as a priori. Stochastic scheduling
could be preemptive or non-preemptive, conduct on
one
vario

A heterogeneous cluster consists of an array of
diverse computers, called computing nodes, which are
connected by a high-performance network. To date
heterogeneous clusters have been emerging as popular
computing platforms for computationally intensive
applications with diverse computing needs. Scheduling
algorithms play a key role in obtaining high
performance in parallel systems like heterogeneous
clusters [12]. The objective of scheduling algorithms is
to map tasks onto nodes and order their execution in a
way to optimize overall performance.

In scheduling theory the basic assumption is that all
machines are always available for processing [17].
This assumption might be justified in some cases but it
is not valid in scenarios where certain maintenance
requirements, breakdowns or other constraints, which
make the machines not to be available for processing,
have to be considered [17]. Examples of such
constraints can be found in many areas. For instance,
computational nodes in heterogeneous clusters need to
be maintained periodically to prevent malfunctions
[10]. In this study availability is defined as the ratio of
the total time a computing node is functional during a
given interval to the length of the interval. Thus, the
availability of a heterogeneous cluster will be degraded
if one or multiple nodes are out of duty due to random
breakdown or preventive maintenance. On the other
hand, however, nowadays many high-performance
clusters need a high availability [1][20]. For instance,
military applications, 24×7 healthcare applications, and
international business applications all demand an
extremely high availability as severe damages or fatal
errors could occur when even only one computing
node becomes unavailable [1]. As such, a scheduling
strategy for heterogeneous clusters has to factor in
availability to deal with maintenance activities and

1-42
1

or on multiple processors, and be concerned with
us optimization criteria.

unexpected failures. Unfortunately, conventional
stochastic scheduling algorithms for heterogeneous
clusters only concentrated on high throughput with the

44-0328-6/06/$20.00 ©2006 IEEE.

 2

goal of reducing tasks’ average response times and
normally ignored the availability requirements of the
tasks. It is challenging, however, to achieve high
throughput and high availability simultaneously
because they are two conflict objectives [1]. For
example, it is unacceptable to assign a critical-task
with high availability requirement to a node that
provides with a high speed but low availability level. A
feasible scheme is to achieve a good trade-off such that
tasks’ availability requirements can be met while
average response time is confined to an ideal range.

In this paper we address the problem of scheduling
different classes of tasks with availability constraints in
heterogeneous system. We aim at developing a
stochastic scheduling strategy to improve availability
of heterogeneous systems while reducing average
response time of multi-class tasks. The scheduling
algorithm proposed in this paper can be applied to
heterogeneous systems where capacity and availability
constraints are known a priori.

The main contributions of this paper are: (1) an
availability-latency driven stochastic scheduling
scheme SSAC (Stochastic Scheduling with
Availability Constraints) for multiple classes of tasks
on heterogeneous clusters; (2) a system model for
quantitatively measuring availability of computing
nodes; (3) two types of heterogeneities: computational
heterogeneity and availability heterogeneity; (4) a
simulated heterogeneous cluster where the SSAC
strategy is implemented and evaluated. The rest of the
paper is organized as follows. In the next section we
briefly introduce related works. Section 3 describes the
system model, the task model and heterogeneity
model. In Section 4, we propose the SSAC scheme for
multiple classes of tasks running on heterogeneous
clusters. We present in Section 5 experimental results
based on synthetic benchmarks. Section 6 concludes
the paper with summary and future directions.

2. Related work

In stochastic scheduling, a typical scenario is that m
tasks have processing times that are exponentially
distributed with different means and are to be
processed by n identical computing nodes operating in
parallel. In this case minimizing the expected
makespan (the time at which all tasks are complete) is
an objective function for a scheduling strategy
dedicated to this scenario. Extensive research has been
done in stochastic scheduling. Schopf and Berman

defined a stochastic scheduling policy based on time-
balancing for data parallel applications whose
execution behavior can be represented as a normal
distribution [19]. Cai et al. studied the problem of
finding a dynamically optimal policy to process n jobs
on a single machine subject to stochastic breakdowns.
The problem of scheduling customers in a multi-class
G/G/1 queue was addressed by Nain and Towsley [13]
so as to minimize a weighted sum of the work-loads of
the different classes. However, little attention has been
paid to scheduling tasks with stochastic features and
high system availability requirements. Recently,
Chakraverty proposed a co-synthesis mechanism for
generating gracefully degrading multiprocessor
architectures which fulfill the dual objectives of
achieving real-time performance as well as ensuring
high levels of system availability [6].

Over the last decade, heterogeneous clusters have
become widely used for scientific and commercial
applications [8]. In recent years, the issue of
scheduling on heterogeneous clusters has been
addressed and reported in the literature [7][24]. Dogan
and F. Özgüner developed reliable matching and
scheduling algorithms for tasks with precedence
constraints in heterogeneous distributed clusters [7].
Srinivasan and Jha incorporated reliability cost,
defined to be the product of processor failure rate and
task execution time, into scheduling algorithms for
tasks with precedence constraints [23]. Ranaweera and
Agrawal proposed a scalable scheduling scheme called
STDP for heterogeneous systems [16]. Scheduling
algorithms are of critical importance in obtaining high
performance in various computing platforms [15][25].
The problem of scheduling multiple classes of tasks
was motivated by a wide range of distributed
applications like scalable web server systems [9].
Sethuraman et al. proposed an optimal stochastic
scheduling strategy that can minimize a function of the
per-class response time variances [20]. The scheduling
algorithm proposed in this paper differs from theirs in
that our algorithm incorporates availability constraints
into scheduling. In our previous work, we studied
security-aware scheduling for clusters [25] and Grids
[26]. These scheduling algorithms only support
homogeneous systems, limiting their applicability to
heterogeneous systems. Further, these algorithms are
not suitable for multi-class tasks with availability
requirements. In contrast, our algorithm makes a trade-
off between availability and responsiveness.

λ1 Local

 3

Figure 1. System model of the SSAC strategy

N1

N2

Nn

Schedule
Queue

SSAC
Class 2

Class m

Class 1

λ2

λm

Availability-
adaptive window

Task allocation
decision maker

Availability
deficiency

Some researches about improving availability of
clusters were reported in the literature recently. Solter
and Tripathi presented a protocol and architecture on
the Sun/spl trade/ Cluster system for delivering cluster
events to a high-availability cluster [21]. Leangsuksun
et al. proposed concepts of integrating high availability
cluster mechanism with a secure cluster infrastructure
[11]. Apon and Wilbur designed an Advanced Multi
Processor Network with a high availability in mind [1].
Our approach of improving availability of a
heterogeneous cluster is different from the methods
above. We integrated tasks’ availability requirements
into stochastic scheduling to achieve a good balancing
between system availability and throughput measured
as average response time.

3. Mathematical models

3.1. System model

In this study, we consider a queuing architecture of
an n-node heterogeneous cluster in which n
heterogeneous nodes are connected via a network to
process independent m class of tasks submitted by m
users. Let N = {N1, N2, …, Nn} denote the set of
heterogeneous nodes. The system model, depicted in
Figure 1, is composed of a task schedule queue, SSAC
task scheduler, and n local task queues. The function
of SSAC is intended to make a good task allocation
decision for each arrival task to satisfy its availability
requirement and maintain an ideal performance in
average response time.

A schedule queue is used to accommodate incoming
tasks. SSAC scheduler then processes all arrival tasks
in a First-Come First-Served (FCFS) manner. After

being handled by SSAC, the tasks are dispatched to
one of the designated node Ni ∈ N for execution. The
nodes, each of which maintains a local queue, can
execute tasks in parallel. The main component of the
system model above is SSAC, which is composed of
three modules: (1) Availability deficiency calculator;
(2) Availability-adaptive window controller; and (3)
Task allocation decision maker. The availability
deficiency calculator is used to calculate discrepancies
between an arrival task’s availability requirement and
the availability value that each node offers. The
function of availability-adaptive window controller is
to vary size of the window to discover a suitable node
for the current arrived task so that (1) its availability
demands can be well met; (2) the execution time can
be as small as possible. To illustrate how availability-
adaptive window controller works, we give an example
as below.

In Figure 2 we assume that there are 8 nodes in the
cluster. The first row shows the execution time for an
arrival task on the 8 nodes in seconds. Note that the
execution of each node for a particular task is an
expected execution time. The second row displays the
availability levels that the 8 nodes can offer. The third
row is a node list sorted by the task’s execution time in
a non-decrease order. The size of availability-adaptive
window is 4, which means SSAC will select a node
that can deliver the best availability within the first
four candidate nodes. If availability-adaptive window
controller cannot find an idea node in terms of
availability, it will automatically enlarge the window to
expand the search range. However, large window size
will result in a long execution time for the task in a
high probability because the execution time increases
when the size of the window enlarges.

 4

After retrieving information like degree of
availability deficiency on each node and the size of
availability-adaptive window for the current task from
the corresponding modules, the task allocation
decision maker will decide which node will be
assigned to the task. Each node in the system model
above is inherently heterogeneous in both computation
and availability. Computational heterogeneity means
that for each task the execution time on different nodes
is distinctive. While each task has an availability
request, each node offers the availability with different
levels. The level of availability provided by a node is
normalized in the range from 0 to 1.0.

3.2. Tasks with availability requirements

For future reference, we summarize the notations
for availability in Table 1.

We consider a heterogeneous cluster system where
arrival tasks are independent of one another. There are
m classes of tasks submitted to the system by m users.
Each class of tasks requires a common availability
level specified by a user. Values of availability levels
are normalized in the range from 0 to 1.0. For
example, a critical task may specify availability level
1.0 in its request, meaning that this task should be
assigned to a node that can provide 100 percent
availability. It will take a risk for being disturbed
during its execution, otherwise. Suppose there are m
different users and each of them keeps submitting a
class of tasks. The arrival pattern of tasks in class i
follows a Poisson process with rate iλ (see Figure 1).

Suppose there is a task Ti submitted by a user, Ti is
modeled as a set of rational parameters, e.g., Ti = (ai,
Ei, fi, avi), where ai and fi are the arrival and expected
finish times, and Ei is a vector of expected execution
times for task Ti on each node in N, and Ei = (, ,
…,). Suppose T

1
ie 2

ie
n
ie i’s requirement of availability is

avi.
Since arrival patterns and service rates can be

estimated by code profiling and statistical prediction

[3]

Nota

, it is assumed in this study that the arrival patterns
and service rate is known a priori.

Table 1. Notation of system model

tion Explanation

 m Number of classes of tasks

 n Number of nodes in the system
1 ≤ i ≤ i One particular class of tasks,

 j One particular node, 1 ≤ j ≤ n

 iλ Arrival rate of the ith class of tasks
 λ Task arrival rate of the entire system

 pij
s Probability that a task of the ith clas

is dispatched to node j

 ijµ Service rate of tasks of the ith class
on node j

 iρ Service utilization of all tasks of class
i jφ Service utilization of node j

 φ Total service utilization of the system

 jξ Probability that node j is available

 ai

the jth node

Availability requirement of tasks of
class i, 0 ≤ ai ≤ 1

 jδ Availability deficiency of node j
Task arrival rate of jΛ

 jθ Unavailable rate of node j
A parameter to control the value of α
θ

 A System availability

 dij Discrepancy between jξ and ai

j

 node j

C

 ES Mean service time of node j

 jES 2 Mean-square service time of

 2
ijs Mean-square service time of class i

on node j

 T i
Expected response time of tasks in
class i

23

3

0.6
29

8

0.3
47

4

0.8
76

1

0.6

84

6

0.9
145

2

0.1
208

7

0.4

541
Availability level:

 Execution time:
0.8

5 Node:

4

Availability-adaptive window

 Figure 2. Example sorted node list with availability-adaptive window 4

 5

s T Expected response time of all classe

Without loss

the th class arrive according to a Poisson process with
rat

of generality, we assume that tasks of
 i
e iλ . All classes of tasks arrive at the system at total

rate ∑ =
=

m

i i1
λλ . Let pof ij be the probability that a

task of th dispatched to node j, where 1 ≤ j
≤ n. Th arrival rate of the jth node is
computed by∑ =

m

i iijp
1

λ . The service rate of tasks of

class i on denoted by ij

e ith class is
us, the task

node j is µ , and the

corresponding mean service time is g by iven ijµ1 .

The service utilization of class I is exp d
as

resse
()[] ()∑∑ ==

==
n

j ijiij
n

j ijiijiji ppp
1

2
1

µλµλρ .

Th e service utilization at node j is given by
()∑ =

=
i ijiijj p

1
µλφ . The total service utilization

ulated by ∑ =
=

n

j j1
φφ .

Let j

m

of the system can be calc

ξ denote the probability that node j is

av
req ent

ailabl computation. We denote ae for i as availability
uirem of class i. To quantify availability of a

heterogeneous system, we introduce the concept of
availability deficiency. Thus, the availability
deficiency of node j is expressed by

∑∑ Λ
=

Λ
=

m

ijiij

m

ij
iij

j d
p 1 λ

== iji j

dp
11

λ
δ , (1)

Equ e

where

ation 1 measures the discrepancy between th
availability of node j and the availability requirements
of

∑
=

=Λ
m

i
iijj p

1
λ ,

⎪⎩

⎪
⎨
⎧

−

≤
=

otherwise,a

a if,0

ji

ji
ijd

ξ

ξ

tasks allocated to node j. Although the availability
deficiency reflects a satisfaction degree in availability,
the availability deficiency is inadequate to evaluate
system availability for all the classes of tasks during
their executions. The availability of the system for

class i is calculated by
⎥
⎥
⎤

⎢
⎡
− ∑

n
j

ijpexp
θ

, where
⎦⎢⎣ =j ij1 µ

jθ is the unavailable rate vailable

 is expressed as:)1(exp(1 jj

 of node j. The una

rate ξαθ −−−= . Note

that the rate model is e only,
and it can be replaced odel or
using any reasonable parameter α. The system
availability can be obtained below

 ∑ ∑
= = ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪⎧ ⎡
⎜
⎛m n

iλ⎨
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎟
⎟
⎠

⎞
⎜
⎝

−=
i j ij

j
ijpA

1 1
exp

µ
θ

λ
. (2)

We model each node in the system as a single
M

/G/1 queue. Hence, the average response time of
node j can be calculated as

)1(2

2

j

jj
jj

ES
ESTN

φ−
Λ

+= , (3)

where ES and are the mean and mean-square

ser ode
j

vice time of n j, respectively. They can be
calculated by the following equation:

2
jES

∑∑
==

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Λ
=⎟

⎟
⎠

⎞⎛m
iijp 11λ

⎜
⎜
⎝

⋅
Λ

=
m

i ij

iij

ji ijj
j

p
ES

11 µ
λ

µ
 ,

()∑∑
== Λ

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅

Λ
=

m

i
ijiij

j

m

i
ij

j

iij
j sps

p
ES

1

2

1

22 1 λ
λ

 (4)

Where is the mean-square service time of class

i o
 Equation 3, the expected response time of

all

2
ijs

n node j.
Based on
 the classes is given as follows

 ∑
=

⎟
⎠
⎞

⎜
⎝
⎛=

m
iλ

i
iTCT

1 λ
, (5)

where TC is the expected response time of class i
tas

mulate the stochastic scheduling
pro

3.3. Heterogeneity model

We describe two types of heterogeneities in this
su

i
ks.
Now we for
blem as a trade-off problem between availability

and mean response time. Thus, the objective of the
proposed scheduling algorithm is to maximize system
availability (see Equation 2) and to minimize mean
response time of submitted tasks (see Equation 5).

bsection. The computational weight of class i on
node j is defined as a ratio between its service rate on
node j and the fastest service rate in the system. That
is, the computational weight is expressed

by ()ik

n
w µµ max=

kijij 1=

erogeneity of the ith class, i.e.
ion

. The computational

het , can be
measured by the standard deviat of the
computational weights. Thus, we have

iHC

()∑
=

−=
n

j
ijii ww

n
HC

1

21 , nww
n

j
iji ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=1

 (6)

 just for illustration purpos
 by any unavailable rate m

 6

where iw is average computational weight.
The computational heterogeneity can be expressed

by ∑
=

=
m1

 is written as

i
iHC

m
HC

1

.

The heterogeneity of availability in a heterogeneous
system

()∑ −=
n

=

HA 21 ξξ
j

jn 1

, n
n

j
j ⎟
⎠

⎜
⎝

⎟
⎞

⎜
⎛

= ∑
=

ξξ . (7)

The SSAC algorithm

e now propose the scheduling algorithm, w ich is
ity {pij}1≤ i≤ m, 1≤ j ≤ n in a
availability and reduce

ean response t

node j that gives a higher priority to class i over k

1

4.

hW
intended to determine probabil
way to improve the system
m ime. Our algorithm relies on the
following proposition, which can be easily proved
based on proposition 2.1 in [20].
Proposition: Given an m-class M/G/1 queue and an n-
node heterogeneous system, class i has arrival rate λi
and service rate µij on node j. The scheduling policy on

whenever µij ≥ µkj minimizes the expected response

time ∑
=

⎟
⎠
⎞⎛m

i TC
λ (see Equation 5). ⎜

⎝
=

i
iT

1 λ
It is assumed that the classes are labelled such

that

∑∑∑ ===
≥≥

n

j mjm
n

j j
n

j j 11 221 11λ

be sorted and relabelled in the first step of the
algorithm. For tasks of class i, the expected response
time on node j can be approximated by

µλµλµ L .

This assumption is valid because the task classes can

,
)1)(1(2

)(1 1
2

∑∑
∑

≤<

=

−−
=+=

il ljil lj

m

i iiij

ij
ii

sEp
WTC

ρρ
λ

µ

where
lj

jlj
lj

p
µ
λ

ρ = . (8)

The SSAC algorithm is depicted in Figure 3. The
algorithm aims to improve availability while
maintaining low average response time for multi-class
tasks on heterogeneous systems. First, SSAC gives
classes with higher service utilization higher priority.
Thus, SSAC sorts and re-labels all the classes in a way
that

∑∑∑ ===
≥≥

n

j mjm
n

j j
n

j j 11 221 1 µλµλµ L (see

Step 1). Step 4 identifies all nodes that can meet

 of SSAC is O(nm),

me complexity calculating availability

1λ

 the
availability demand of tasks of class i. Steps 5-10 are
at the core of the proposed algorithm. In particular,
Steps 6 and 7 leverage Eqs. 1 and 9 to estimate the
availability deficiency and expected response time of
class i on node j. Step 8 makes an effort to improve
system availability by reducing availability deficiency.
In the case there is no way to further reduce the
availability deficiency, Step 8 endeavors to minimize
the expected response time of class i. When the load of
the system is balanced, Steps 13 and 14 allocate tasks
of class i to node π, which yields the highest system
availability. Importantly, the average response time is
further reduced by the algorithm through static load
balancing (see Steps 12 and 16).
Theorem 1. The time complexity
where n is the number of nodes, m is the number of
task classes.
Proof. The ti
deficiency and response time for node j is O(n) (Step 6
and 7). Sorting the classes of tasks time a non-
decreasing order (Step 1) will take O(mlgm) since we
only have m classes. For other steps, they only
consume O(1). Thus, the time complexity of the SSAC

1. Sort and label classes such that

∑∑∑ ===
≥≥

n

j mjm
n

j j
n

j j 11 221 11 µλµλµλ L ;

2. for each class i do
3. Initialize availability deficiency and response
 time for class i, i.e., d ← ∞, TC

 ← ∞

4. create a set of nodes Ni, where
≤ ξj;

response time of
Equation 8)

en
 j;

e class i to node π;

aded

;

 node j ∈Ni if ai
5. for each node j in Ni do
6. calculate availability deficiency of
 class i on node j, dij;
7. calculate expected
 class i, TCi; (see
8. if dij < d or (dij = d and TCj < TC) th

←9. d ← dij ; TC ← TCj; π
10. end if
11. end for
12. if the system is balanced then
13. piπ ← 1;
14. allocat
15. else
16. Allocate class i to the lightly lo
 node;
17. end if
18.end for

Figure 3.The SSAC algorithm

 7

algorithm is as follows: O(m)(O(n))+ O(mlgm)=
O(mn)+O(mlgm)= O(mn).

5. Simulations

Using simulation experiments based on
synthetically generated workload, we evaluate in this
section the performance of the SSAC algorithm. Task
arrival rate λ and task execution time range (ETR) are
two important workload parameters (see Table 2). We
assume that task arrival times abide by Poisson
distribution and task execution times follow Uniform
distribution. We evaluate SSAC along with two
existing algorithms under a wide range of system
workload conditions by varying λ and number of
nodes. To reflect the heterogeneity of the simulated
distributed system, we translated the “execution time”
of each task from a single value to a vector with n
(number of nodes) elements based on the heterogeneity
model described in Section 3. In purpose of revealing
the strength of SSAC, we compared it with two well-
known scheduling algorithms, namely, Min-Min and
Sufferage [22]. Min-Min and Sufferage are non-
preemptive task scheduling algorithms, which schedule
a stream of independent tasks onto a heterogeneous
distributed computing system. They are representative
dynamic scheduling algorithms for distributed systems
and were successfully applied in real world distributed
resources management systems such as SmartNet. The
two algorithms are briefly described below.
(1) MINMIN: For each submitted task, the node that
offers the earliest completion time is tagged. Among
all the mapped tasks, the one that has the minimal
earliest completion time is chosen and then allocate to
the tagged node.
(2) SUFFERAGE: Allocating a node to a submitted
task that would “suffer” most in terms of completion
time if that node is not allocated to it.

Table 2. Characteristics of system parameters

Parameter
Value
(Fixed) -
(Varied)

Number of sites (16) – (16,
32,64,128)

Task arrival rate λ (Poisson dist.)

(1.0) –
(0.2, 0.4,
0.6, 0.8,
1.0)

Task execution time range (ETR) (1, 500)
second

Node availability level (Uniform dist.) (0.1 – 1.0)

Task availability level (Uniform dist.)

(0.1 – 1.0)

Computational heterogeneity 1.08
Availability heterogeneity 0.22

5.1. Simulation setup

Table 2 summarizes the key configuration
parameters of the simulated distributed system used in
our experiments. The performance metrics we used
include: Availability (see Equation 2), Availability
shortage (defined as the mean discrepancy between
availabilities requested by tasks and availabilities
provided by nodes in the distributed system), Node
utilization (defined as the percentage of total task
running time out of total available time of a given
node), Average response time (see Equation 5).

5.2. Overall performance comparisons

The goal of this experiment is two fold: (1) to
compare the proposed SSAC algorithm against the two
heuristics, and (2) to understand the sensitivity of
SSAC to the task arrival rate λ.

Figure 4 shows the simulation results for the three
algorithms on a distributed system with 16 nodes. We
observe from Figure 4a that SSAC significantly
outperforms the two heuristics in terms of Availability,
whereas MINMIN and SUFFERAGE algorithms
exhibit similar performance. We attribute the
performance improvement of SSAC over MINMIN
and SUFFERAGE to the fact that SSAC is an
availability-adaptive scheduler and judiciously assigns
a task to a node not only considering its computational
time but also its availability demands. Similar
observations can be made from Figure 4b, where
SSAC has a much better performance in Availability
shortage. The lower Availability shortage, the better
performance achieved in availability satisfaction. As
for the performance of Average response time (Figure
4c), SSAC is slightly worse than the two existing
algorithms by 5.7% on average. However, the
performance improvement of SSAC over MINMIN
and SUFFERAGE in Availability is 73.3% on average.
In addition, SSAC achieves a better performance in
Node utilization as well (Figure 4d).

5.3. Scalability

This experiment is intended to investigate the
scalability of the SSAC algorithm. We scale the
number of nodes in a heterogeneous distributed system
from 16 to 128. Figure 5 plots the performances as
functions of the number of nodes in the simulated
distributed system. The results show that the SSAC
approach exhibits good scalability.

Figures 5a and Figure 5b show the improvement of

SSAC in Availability and Availability shortage over
the other two heuristics. It is observed from Figure 5a
that the amount of improvement becomes more
prominent with the increasing value of node number.
This result can be explained by the non-availability-
awareness nature of MINMIN and SUFFERAGE,
which merely select a node for a task without
considering the task’s availability demands.
Conversely, SSAC can achieve a much higher
performance when there are more nodes available in

the system. This is because with a high probability
SSAC can find a node that meets a task’s availability
demands well when there are more nodes to be chosen.
For all the three algorithms, their performances
improve in terms of Average response time (Figure 5c).
This can be readily understood because more nodes
result in a low value for Average response time.

 (a) (b)

 (c) (d)

Figure 4.Performance impact of task arrival rate λ

6. Summary and future work

In this paper, we address the stochastic scheduling
problem for heterogeneous systems with availability
constraints. While different classes of tasks are
characterized by their execution times and availability
requirements, each node in a heterogeneous system is
modeled by its speed and availability. We introduce
metrics to quantify availability and heterogeneity in the
context of multi-class tasks. To incorporate availability
and heterogeneity into scheduling, we have proposed a

 8

stochastic scheduling. Our scheduling algorithm is
geared to enhance availability of heterogeneous
systems while reducing average response time of
multi-class tasks. Empirical results show that the novel
algorithm improves performance in availability over
existing schemes for heterogeneous systems. In future

research, the heuristic will be extended to schedule
parallel applications. This work can be accomplished
by factoring in precedence constraints among tasks and
communication availability.

 9

References

[1] A. Apon and L. Wilbur, “AmpNet - a highly available

cluster interconnection network,” Proceedings IEEE
Intl' Symp. Parallel and Distributed Processing, April
22-26, 2003.

[2] A.C. Arpaci-Dusseau, “Implicit Co-
scheduling: Coordinated Scheduling with Implicit
Information in Distributed Systems,” ACM Trans. on

Computer Systems, Vol.19, No. 3, pp.283-331, Aug.
2001.

[3] T. D. Braun et al., “A Comparison Study of Static
Mapping Heuristics for a Class of Meta-tasks on
Heterogeneous Computing Systems,” Proc. Workshop
Heterogeneous Computing, pp.15-29, Apr. 1999.

[4] X. Cai, X. Wu, and X. Zhou, “Dynamically optimal

policies for stochastic scheduling subject to preemptive-
repeat machine breakdowns,” IEEE Transactions on
Automation Science and Engineering, Vol. 2, Issue 2,
April 2005.

 (a) (b)

 (c) (d)

Figure 5. Performance impact of number of nodes

[5] T.L. Casavant and J.G. Kuhl, “A Taxonomy of
Scheduling in General-purpose Distributed Computing
Systems,” IEEE Trans. Software Engineering,
Vol.14, No.2, pp.141-154, Feb. 1988.

[6] S. Chakraverty, “Cosynthesis on multiprocessor
architectures with high availability,” Proceedings 17th
International Conference on VLSI Design, pp. 927-932,
2004.

[7] A. Dogan and F. Özgüner, “Reliable Matching and
Scheduling of Precedence-Constrained Tasks in

 10

Heterogeneous distributed computing,” Proc. Int’l Conf.
Parallel Processing, pp. 307-314, 2000.

[8] A. Dogan and F. Özgüner, “LDBS: A Duplication
Based Scheduling Algorithm for Heterogeneous
Computing Systems,” Proc. Int’l Conf. Parallel
Processing, pp.352-359, B.C., Canada, 2002.

[9] G. Hunt, G. Goldszmidt, R. King, and R. Mukherjee,
“Network Dispatcher: A Connection Router for Scalable
Internet Services,” Proc. Int’l World Wide Web Conf.,
April 1998.

[10] H. C. Lau and C. Zhang, “Job Scheduling with Unfixed
Availability Constraints,” Proc. 35th Meeting of the
Decision Sciences Institute (DSI), 4401-4406, Boston,
USA, November 2004.

[11] C. Leangsuksun, A. Tikotekar, M. Pourzandi, and
I.Haddad, “Feasibility study and early experimental
results towards cluster survivability,” Proceedings of
the IEEE International Symposium on Cluster
Computing and the Grid, pp. 77-81, 2005.

[12] M. Maheswaran and H.J. Siegel, “A Dynamic Matching
and Scheduling Algorithm for Heterogeneous
Computing Systems,” Proc. the Seventh Heterogeneous
Computing Workshop, pp.57-69, 1998.

[13] P. Nain and D. Towsley, “Stochastic scheduling in a
multiclass G/G/1 queue,” Proceedings of the 31st IEEE
Conference on Decision and Control, pp 3340-3341,
1992.

[14] D.-T. Peng and K.G. Shin, “Optimal scheduling of
cooperative tasks in a distributed system using an
enumerative method,” IEEE Trans. Software
Engineering, Vol.19, No.3, pp. 253-267, March 1993.

[15] X. Qin and H. Jiang, “A Dynamic and Reliability-driven
Scheduling Algorithm for Parallel Real-time Jobs on
Heterogeneous Clusters,” Journal of Parallel and
Distributed Computing, Vol. 65, No. 8, pp.885-900,
August 2005.

[16] S. Ranaweera, and D.P. Agrawal, “Scheduling of
Periodic Time Critical Applications for Pipelined
Execution on Heterogeneous Systems,” Proc. Int’l
Conf. Parallel Processing, pp. 131-138, Sept. 2001.

[17] G. Schmidt, “Scheduling with limited machine
availability,” European Journal of Operational
Research, pp. 1-15, 121, 2000.

[18] Journal of Operational Research 121 (2000) 1–15.
[19] J.M Schopf and F. Berman, “Stochastic Scheduling,”

Proceedings of the ACM/IEEE Conf. Supercomputing,
13-18 Nov. 1999.

[20] J. Sethuraman and M. S. Squillante, “Optimal
Stochastic Scheduling in Multicalss Parallel Queues,”
Proc. ACM Sigmetric Conf., May 1999.

[21] N.A. Solter and A. Tripathi, “Architecture and
protocol for reliable event delivery to clients of a high-
availability cluster,” Proceedings of the 18th
International Parallel and Distributed Processing
Symposium, April 2004.

[22] S. Song, Y.-K. Kwok, and K. Hwang, “Trusted Job
Scheduling in Open Computational Grids: Security-
Driven Heuristics and A Fast Genetic Algorithms,”

Proc. Int’l Symp. Parallel and Distributed Processing,
2005.

[23] S. Srinivasn and N. K. Jha, “Safty and Reliability
Driven Task Allocation in Distributed Systems,” IEEE
Trans. Parallel and Distributed Systems, Vol.10, No.3,
pp. 238-251, Mar. 1999.

[24] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-
effective and Low-complexity Task Scheduling for
Heterogeneous Computing,” IEEE Trans. Parallel and
Distributed Sys., Vol.13, No.3, Mar. 2002.

[25] T. Xie and X. Qin, “A New Allocation Scheme for
Parallel Applications with Deadline and Security
Constraints on Clusters,” Proc. IEEE Int’l Conf. Cluster
Computing, Boston, USA, Sept. 2005.

[26] T. Xie and X. Qin, “Enhancing Security of Real-Time
Applications on Grids through Dynamic Scheduling,”
Proc. 11th Workshop Job Scheduling Strategies for
Parallel Processing, MA, June 2005.

	1. Introduction
	2. Related work
	3. Mathematical models
	3.1. System model
	3.2. Tasks with availability requirements
	3.3. Heterogeneity model

	4. The SSAC algorithm
	5. Simulations
	5.1. Simulation setup
	5.2. Overall performance comparisons
	5.3. Scalability

	6. Summary and future work
	References

