
Energy-Aware Duplication Strategies for Scheduling Precedence-
Constrained Parallel Tasks on Clusters

Ziliang Zong, Adam Manzanares, Brian Stinar, and Xiao Qin*
Department of Computer Science, New Mexico Institute of Mining and Technology

zzong @ nmt.edu, {amanzana, bstinar, xqin}@cs.nmt.edu

Abstract

Optimizing energy consumption has become a
major concern in designing economical clusters.
Scheduling precedence-constrained parallel tasks on
clusters is challenging because of high communication
overhead. Although duplication-based strategies are
applied to minimize communication overhead, most of
them merely consider schedule lengths, completely
ignoring energy consumption of clusters. In this
regard, we propose two energy-aware duplication
scheduling algorithms, called EADUS and TEBUS, to
schedule precedence-constrained parallel tasks. Unlike
existing duplication-based scheduling algorithms that
replicate all possible predecessors of each task, the
proposed algorithms judiciously replicate predecessors
only if the duplication can help in conserving energy.
Our energy-aware scheduling strategies are conducive
to balancing the scheduling length and energy
consumption of precedence-constrained parallel tasks.
Extensive experimental results based on real-world
applications demonstrate the effectiveness and
practicality of the proposed scheduling strategies.

1. Introduction

With the advances in VLSI technology and high-
speed networks, cluster systems have become very
poplar for a diverse set of parallel applications like
molecular design, weather modelling, database
systems, and complex image rendering. Energy
demands of cluster computing systems have been
growing rapidly. For example, a large-scale cluster
commonly requires 40TWh per year, costing over $4B
per year at the price of $100 per MWh [6]. Designing
economically attractive and environmentally friendly
clusters is highly challenging, because we have to take
into account multiple design objectives, including
performance (throughput, execution time), energy
efficiency, quality-of-service (QOS), and scalability.

Although much attention has been paid to processor
and memory energy conservation in clusters, saving

energy in cluster interconnects for parallel applications
remains an open problem. Reducing energy dissipation
in cluster interconnects is of critical importance as a
significant amount of the total energy consumption in a
cluster is due to the interconnect fabric. For example, it
is observed that interconnect consumes 33% of the total
energy in an Avici switch [8] [12], whereas routers and
links consume 37 percent of the total power budget in a
Mellanox server blade [12]. The energy consumption
in interconnects becomes more critical for
communication-intensive parallel applications, which
extensively make use of cluster interconnects to
transfer data. Examples of this type of parallel
applications include 3-D perspective rendering,
molecular dynamics simulation, and 2-D fluid flow
using the vortex method [7]. Lack of energy
conservation technology for cluster interconnects
becomes a severe problem because, without it,
reducing the energy consumption of cluster systems is
most unlikely.

Task partitioning and scheduling strategies play an
important role in achieving high performance for
parallel applications on clusters. A partitioning
algorithm can be employed to partition a parallel
application into a set of precedence-constrained tasks
represented in the form of a directed acyclic graph
(DAG), whereas a scheduling algorithm can be used to
schedule the DAG onto the computational nodes of a
cluster. Duplication heuristics proved to be feasible
strategies to schedule parallel tasks to minimize
communication overhead. However, almost all the
duplication-based scheduling algorithms only take
schedule lengths into consideration. One of the most
important factors, energy consumption, was completely
ignored. To remedy this deficiency, in this paper we
design two energy-aware duplication scheduling
algorithms to schedule a set of precedence-constrained
parallel tasks in a judicious way to improve
performance (shorten schedule length) while
optimizing energy consumption in cluster
interconnects.

In this research, we first build an energy
consumption model used to estimate power dissipation

* Corresponding author. http://www.cs.nmt.edu/~xqin

This paper appeared in the Proceedings of the 8th IEEE International Conference on Cluster Computing
(Cluster 2006), Sept. 2006.

in CPUs and network links. Second, we proposed two
duplication-based scheduling algorithms, called
EADUS and TEBUS, to provide energy savings in
network links by duplicating tasks on more than one
computational node to reduce network traffic. EADUS
is designed to aggressively provide the greatest energy
savings by using task replicas to eliminate energy-
consuming messages, whereas TEBUS aims at making
the best tradeoff between energy conservation and
performance. Hence, the two algorithms are named
Energy-Aware Duplication Scheduling algorithm (or
EADUS) and Time-Energy Balanced Duplication
Scheduling algorithm (or TEBUS). Finally, to
demonstrate the effectiveness of the proposed
scheduling strategies, we designed and implemented a
simulated cluster computing system with Myrinet-style
[11] cluster interconnects and compare our approaches
against existing duplication-based scheduling scheme
using real-world applications.

The rest of the paper is organized as follows. In
section 2, we present a brief description of related
work. Next, Section 3 introduces an energy
consumption model. The novel scheduling strategies
are proposed in Section 4. In Section 5, the
experimental environment and simulation results are
analysed. Finally, the concluding remarks are provided
in Section 6.

2. Related Work

Since energy demands of clusters have been steadily
growing in the last five years, the issue of energy
conservation has increasingly received much attention.
A large body of research has been conducted into
power-aware scheduling [1] [2] [14] [24] [26]. For
example, dynamic power management [5] [4] [17] and
variable voltage scheduling schemes [15] [18] were
proposed to achieve minimum energy consumption.
Yao et al. developed a static off-line scheduling
algorithm [25], whereas Hong et al. proposed on-line
heuristics scheduling for aperiodic tasks [15]. Shin and
Choi proposed a scheme to slow down a processor
when there is a single task eligible for execution [22].
Very recently, we proposed a task allocation strategy,
which can minimize overall energy consumption while
confining schedule lengths to an ideal range [24]. We
also studied a power-aware message scheduling
algorithm in the context of real-time wireless networks
[1]. Most of the prior work in the area of energy-aware
scheduling has focused on energy consumed by
processors. Growing evidence indicates that the
interconnection fabric is one of the most energy-
consuming components in clusters [8] [19]. In this

study, we aim at developing energy conservation
techniques for both processors and interconnect of a
cluster. As such, our approaches are in sharp contrast to
the existing scheduling algorithms for processor energy
conservation.

Scheduling strategies deployed in clusters have a
large impact on overall system performance. Three
extensive categories for scheduling schemes include
priority based scheduling, cluster based scheduling, and
task duplication based scheduling [3][21]. Duplication
based scheduling strategies address the problem that
inter-processor communication in parallel and
distributed systems accounts for a major portion of
total system overhead. Many researchers have
demonstrated that various strategies regarding task
duplication are extremely applicable for reducing total
execution time within a system employing static
scheduling [3][21][9][10]. However, most of the
existing duplication-based scheduling algorithms are
developed with consideration of schedule lengths,
completely ignoring energy consumption of clusters.
Our algorithms are fundamentally different from
existing duplication-based scheduling approaches in
that ours are the first two duplication-based scheduling
strategies designed to conserve energy consumption in
clusters.

3. Mathematical Models

In this section, we build mathematical models used

to represent a cluster system, precedence-constrained
parallel tasks, and energy consumption in CPUs and
interconnects.

3.1 System model

A cluster system in this study is characterized by a
set P = {p1, p2,..., pm} of computational nodes
connected by a Myrinet-style cluster interconnects. It is
assumed that the computational nodes are
homogeneous in nature, meaning that all the computing
nodes are identical in their capabilities. Similarly, the
underlying interconnection is assumed to be
homogeneous and, thus, communication overhead of a
message with fixed data size between any pair of nodes
is considered to be the same. In our system model,
computation and communication can take place
simultaneously. This assumption is reasonable because
each computational node in a modern cluster has a
communication coprocessor that can be used to free the
processor of the node from communication tasks [16].

To simplify the system model without loss of
generality, we assume that the cluster system is fault

free and the page fault service time of each task is
integrated into its execution time. With respect to
energy conservation, energy consumption rate of each
node in the system is measured by Joule per unit time.
Each interconnection link is modelled by its energy
consumption rate that heavily relies on data size and
the transmission rate of the link.

3.2 The task model

A parallel application with a set of precedence-
constrained tasks is represented in form of a Directed
Acyclic Graph (DAG), which throughout this paper is
modeled as a pair (V, E). V = {v1, v2, ..., vn} represents
a set of precedence-constrained parallel tasks, and ti is
the ith task’s computation requirement showing the
number of time units to compute vi, 1 ≤ i ≤ n. It is
assumed that all the tasks in V are nonpreemptive and
indivisible work units, and a similar assumption can be
found in related studies [9] [20]. (vi, vj)∈ E is a
message transmitted from task vi to vj, and cij is the
communication cost of the message (vi, vj) ∈ E. We
assume in this study that there is one entry task and one
exit task for an application with a set of tasks. The
assumption is reasonable because in case multiple entry
or exit tasks exist, the multiple tasks can always be
connected through a dummy task with zero
computation cost and zero communication cost
messages.

The communication-to-computation ratio or CCR of
a parallel application is defined as the ratio between the
average communication cost of the application and the
average computation cost on a given cluster. Formally,
the CCR of an application (V, E) is given by Eq. (1):

∑

∑

=

∈=
||

1

),(

||

1

||

1

),(
V

i
i

Evv
ij

t
V

c
E

EVCCR ji
 (1)

A task allocation matrix (e.g., X) is an n×m binary

matrix reflecting a mapping of n precedence-
constrained parallel tasks to m computational nodes in
a cluster. Element xij in X is “1” if task vi is assigned to
node pj and is “0”, otherwise.

3.3 Energy consumption model

We use a bottom-up approach to derive energy
dissipation experienced by a parallel application
running on a cluster. In this subsection, we first model

energy consumption exhibited by computational nodes
in the cluster. Next, we calculate energy dissipation in
the interconnection network of the cluster.

Let eni be the energy consumption caused by task vi
running on a computational node, of which the energy

consumption rate is activePN , and the energy

dissipation of task vi can be expressed as Eq. (2)

iactivei tPNen ×= (2)

Given a parallel application with a task set V and
allocation matrix X, we can calculate the total energy
consumed (TECN) by all the tasks in V using Eq. (3).

()

.

1

1

||

1

∑

∑∑

=

==

=

⋅==

n

i
iactive

n

i
iactive

V

i
iactive

tPN

tPNenEN

 (3)

We denote ijel as the energy consumed by the

transmission of message (ti, tj)∈ E. We can compute
the energy consumption of the message as below

 ijactiveij cPLel ×= (4)

where activePL is the power of the link when it is

active. The cluster interconnect in this study is
homogeneous, which implies that all messages are
transmitted over the interconnection network at the
same transmission rate. The energy consumed by a
network link between pa and pb is a cumulative energy
consumption caused by all messages transmitted over
the link. Then, the link’s energy consumption is
obtained as follows, where Lab is a set of messages
delivered on the link, and Lab can be expressed as

{ }11,1,),(=∧=≤≤∈∀= jviujiab xxmbaEvvL

()

(),

1 ,1

),(),(

∑ ∑

∑∑

= ≠=

∈∈

⋅⋅⋅=

⋅==

n

i

n

ijj
ijactivejbia

Lvv
ijactive

Lvv
ij

ab
active

cPLxx

cPLelEL
abjiabji

 (5)

The energy consumption of the whole

interconnection network is derived from Eq. (5) as the
summation of all the links’ energy consumption. Thus,
we have

 ∑ ∑
= ≠=

=
m

a

m

abb

ab
activeactive ELEL

1 ,1

 ()∑ ∑ ∑ ∑
= ≠= = ≠=

⋅⋅⋅=
n

i

n

ijj

m

a

m

abb
ijactivejbia cPLxx

1 ,1 1 ,1

. (6)

It is observed from our experiments that energy
consumption caused by idle computational nodes

(idlePN) and interconnection network (idleEL) is

negligible and, therefore, here we ignore the definition
of energy consumption model by idle resources.

Thus, we can compute the energy dissipation
experienced by the parallel application on the cluster
using Eqs. (3) and (6). Hence, we can express the total
energy consumption of the cluster executing the
application as

activeactive ELENE +≈ (7)

4. Energy-Aware Duplication Strategies

In this section, we present two energy-aware
duplication strategies, called EADUS and TEBUS. The
objective of the two scheduling strategies is to optimize
energy consumption of clusters. The scheduling
problem studied in this paper can be shown to be NP-
hard by mapping it to the scheduling problem proven to
be an NP-complete [13]. Therefore, the proposed two
scheduling algorithms are heuristic in the sense that
they can produce suboptimal solutions in polynomial-
time. The EADUS and TEBUS algorithms consist of
three major steps delineated in Sections 4.1-4.3.

4.1 Generate a task sequence

Precedence-constraints of a set of parallel tasks have
to be guaranteed by executing predecessor tasks before
successor tasks. To achieve this goal, the first step in
our algorithms is to construct an ordered task sequence
using the concept of level, which of each task is
defined as the length in computation time of the longest
path from the task to the exit task. In this study, we use
a similar approach as proposed by Srinivasan and Jha
[27] to define the level L(vi) of task vi as below

()⎪⎩

⎪
⎨
⎧

++
∉≤≤∀

=
∈

otherwise ,)(max

),(1 if ,
)(

),(
ijj

Evv
i

jii

i cvLt

Ettn:jt
vL

ji

(8)

The levels of other tasks can be obtained in a

bottom-up fashion by specifying the level of the exit
task as its execution time and then recursively applying
the second term on the right side of Eq. (8) to calculate

the levels of all the other tasks. Next, all the tasks are
placed in a queue in the decreasing order of levels.

4.2 Calculate important parameters

The second phase in the EADUS and TEBUS
algorithms is to calculate some important parameters,
which the algorithms rely on. The important notation
and parameters are listed in Table 1.

Table 1. Important notations and parameters

Note that similar notation was used by Darbha and

Agrawal in [9]. The earliest start time of the entry task
is 0. The earliest start times of all the other tasks can be
calculated in a top-down manner by recursively
applying the second term on the right side of Eq. (9).

()⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ +

∉≤≤∀
=

≠∈∈
otherwise ,)(),(maxmin

),(1 if ,0
)(

,),(),(
kikj

vvEvvEvv

ij

i cvECTvECT

Evvn:j
vEST

jkikij

(9)

The earliest completion time of task vi is expressed as
the summation of its earliest start time and execution
time. Thus, we have

.)()(iii tvESTvECT += (10)

Allocating task vi and its favorite predecessor FP(vi)

on the same computational node can lead to a shorter
schedule length. As such, the favourite processor FP(vi)
is defined as Eq. (11)

.)()(,)(kikjijji cvECTcvECTkjvvFP +≥+≠= (11)

As shown by the first term on the right side of Eq.
(12), the latest allowable completion time of the exit
task equals to its earliest completion time. The latest
allowable completion times)(ivLACT of all the other

tasks are calculated in a top-down manner by
recursively applying the following Expression.

() ()
⎪
⎪
⎩

⎪⎪
⎨

⎧

⎟
⎠
⎞

⎜
⎝
⎛ −

∉≤≤∀

=∈≠∈

otherwise

 ,)(min,)(minmin

),(1 if),(

)(,),()(,),(
j

vFPvEvv
ijj

vFPvEvv

jii

vLASTcvLAST

Evvn:jvECT

jijijiji

(12)

Notation Definition
EST(vi) Earliest start time of task vi
ECT(vi) Earliest completion time of task vi
FP(vi) Favorite predecessor of task vi
LACT(vi) Latest allowable completion time of task vi
LAST(vi) Latest allowable start time of task vi

The latest allowable start time of task vi is derived from
its latest allowable completion time and execution time.
Hence, the LAST(vi) can be written as

.)()(iii tvLACTvLAST −= (13)

1. v = first waiting task of scheduling queue;
2. i = 0; assign v to Pi;
3. while (not all tasks are allocated) do
4. u = FP(v);
5. if (u has already been assigned to another

processor) then
6. if (LAST(v) - LACT(u) ≥ cvu) then /* if duplicate

u, we can shorten the execution time*/
7. moreenergy = enu - elvu; /*energy increase*/
8. if (moreenergy ≤ threshold h) then /* increased

energy less than our threshold*/
9. assign u to Pi; /*duplicate u*/
10. if v has another predecessor z ≠ u has not yet

been allocated to any node then
11. u = z;
12. else
13. if u is entry task then
14. u = the next task that has not yet been

assigned to a node;
15. i++;
16. else
17. for another predecessor z of v, z ≠ u,
18. if (ECT(u)+ccuv = ECT(z) + cczv) and z hasn’t

been allocated) then
19. u = z; /* do not duplicate*/
20. else
21. for another predecessor z of x, z≠ u,
22. if (ECT(u)+ccuv = ECT(z) + cczv) and z hasn’t

been allocated) then
23. u = z; /* do not duplicate*/
24. else allocate u to Pi;
25. v = u;
26. if v is entry task then
27. v = the next task that has not yet been allocated to

a computational node;
28. i++;
29. assign v to Pi;
30. return schedule list, schedule length and energy

consumption;
Fig. 1. Pseudocode of phase 3 in the EADUS algorithm

4.3 Duplication phase

4.3.1 The EADUS algorithm. Given a parallel
application presented in form of DAG, the EADUS
algorithm in this phase allocates each parallel task to a
computational node in a way to aggressively shorten

the schedule length of the DAG while conserving
energy consumption. The pseudocode in Fig. 1. shows
the details of this phase in the EADUS algorithm. Most
existing duplication-based scheduling schemes merely
optimize schedule lengths without addressing the issue
of energy conservation. As such, the existing
duplication-based approaches tend to yield minimized
schedule lengths at the cost of energy consumption. To
make the best trade-off between energy-saving and
schedule lengths, we design the EADUS algorithm in
which a task-duplication is strictly forbidden if the
duplication does not exhibit energy conservation (see
Steps 8-9). In other words, duplication is infeasible if it
results in a significant increase in energy consumption
(e.g., the increase exceeds a threshold) and, is avoided
in EADUS.

Before this phase starts, phase 1 sorts all the tasks in
a waiting queue, followed by phase 2 to calculate the
important parameters. In phase 3 EADUS strives to
group communication-intensive parallel tasks together
and have them allocated to the same computational
node. Once multiple task groups are constructed, each
group of tasks is assigned to a different node in the
cluster. The process of grouping tasks is repeated from
the first task in the queue by performing a depth-first
style search, which traces the path from the first task to
the entry task. Steps 4 and 5 choose a favorite
predecessor if it has not been allocated a computational
node. Otherwise, EADUS may or may not replicate the
favorite predecessor on the current node. For example,
we assume that vj is the favorite predecessor of the
current task vi, and vj has been allocated to another
node. If duplicating vj on the current node to which vi is
allocated can improve performance without sacrificing
energy conservation, Step 11 makes a duplication of vj.
More formally, the following property must be satisfied
before any duplication is generated. Note that enu - elvu

are computed by Eqs (2) and (4), respectively.

Property 1. Let vj be the favorite predecessor of the
current task vi, and vj has been allocated to another
node. A duplication of vj is made on vi’s current node if
the following two conditions are satisfied:
• LAST(vi) - LACT(vj) < cji,
• enu - elvu < threshold h, and

• ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=+

≠∈∃
¬

jijkik

kik

cvECTcvECT

vjkEvv

)()(

:allocatedbeen not has ,,),(

• Here the first condition in Property 1 ensures that vj is a
critical predecessor of vi, the second condition signifies
that the increase in energy due to the duplication must
be maintained at a low level. The third condition is
used to identify if vi’s other unallocated predecessors

can initially be the favorite predecessors. In case that
such an initial favorite predecessor (e.g., vk) exists, the
path to the entry task will be traversed through vk.

The generation of a task group terminates once the
path reaches the entry task. The next task group starts
from the first unassigned task in the queue. If all the
tasks are assigned to the computation nodes, then the
algorithm terminates.

4.3.2 The TEBUS algorithm. The third phase of the
TEBUS algorithm is similar as that of EADUS except
that TEBUS seamlessly integrate the approach to
minimizing schedule lengths with the process of energy
optimization, which means that we will change the rule
of deciding duplication. Here we define three variables
called moreenergy, lesstime, ratio and replace the
corresponding lines (see line 8-10 in Fig. 1) with the
following segment,

Unlike EADUS, the development of TEBUS is

motivated by the needs of making the right tradeoff
between performance and energy conservation. Thus,
the TEBUS algorithm is geared to efficiently reduce
schedule lengths while providing the greatest energy
savings. Energy consumption incurred by duplicating a
task involves judging whether the duplication is
feasible or not. To facilitate the construction of
TEBUS, we introduce a concept of cost ratio of a
duplication, which is defined as the ratio between the
energy saving and schedule length reduction. While the
energy increasing of the duplication is obtained in Step
1, the reduction in schedule length is computed in Step
2. The TEBUS algorithm is, of course, conducive to
maintaining cost ratios at a low level, thereby
efficiently shortening schedule lengths with low energy
consumption. This feature is accomplished by Steps 3-
4, which duplicate a task in case the cost ratio of such
duplication is smaller than a given threshold.

5. Performance Evaluation

To demonstratively show the strength of our novel
scheduling schemes, we conducted extensive
experiments using real-world applications like

Gaussian elimination and Fast Fourier Transform
applications. Furthermore, we compare EADUS and
TEBUS with two existing scheduling algorithms: the
non-duplication-based scheduling heuristic (NDS) [23],
and the task duplication-based scheduling algorithm
(TDS) [9].

5.1 Simulation setup

In this subsection we present the experimental
setup. Table 2 summarizes the configuration parameters
of simulated cluster systems used in our experiments.
On the right hand side of each row in Table 2,
parameters in the first part are fixed while parameters
in the second part are varied or randomly generated
using uniform distributions. For instance, the threshold
values of EADUS and TEBUS are respectively fixed to
0.5 and 2 in one experiment and the threshold values
are varied from 0.02 to 500 in another experiment (see
the last row of Table 2).

Table 2. Characteristics of System Parameters

5.2 Experimental Results

To compare the performance of the EADUS and

TEBUS algorithms with NDS and TDS, we apply them
to allocate parallel tasks of two real-world applications,
namely, the Gaussian Elimination and Fast Fourier
Transform applications. We are focusing on the energy
consumption for each application under various CCRs
and thresholds. The experimental results for the energy
consumption of the Gaussian Elimination application
are shown in Fig. 2.

Parameters Value (Fixed) - (Varied)

Different Trees
Gaussian elimination,
Fast Fourier Transform

Execution time of
Gaussian Tree

{5, 4, 1, 1, 1, 1, 10, 2, 3, 3, 3, 7,
8, 6, 6, 20, 30, 30 }-(random)

Execution time of
FFT Tree

{15, 10, 10, 8, 8, 1, 1, 20, 20,
40, 40, 5, 5, 3, 3 }-(random)

Node energy
consumption rate

6.0 mW

Comm_energy
consumption rate

1.5 mW

CCR set
{0.1, 0.2, 0.3, 0.5, 0.7, 0.9,1, 2,
3, 4, 5, 6, 7, 8, 9, 10}

Threshold h
{0.5, 2}-{0.02, 0.1, 0.2, 0.3,
0.4, 0.5, 0.8, 1, 5, 10, 20, 30,
100, 500}

1. moreenergy = enu – elvu; /* energy increase */
2. lesstime = LAST(v) – LACT(u) – cvu; /*

schedule length is reduced */
3. cost ratio = moreenergy/lesstime; /* calculate

the value of cost ratio */
4. if (ratio ≤ threshold h) then … /* continued */

Four observations are evident from this group of
experiment. First, the energy consumption of Gaussian
Elimination under all the four scheduling schemes is
very sensitive to CCR. Second, when CCR is greater
than 6, energy consumption under NDS is consistently
higher than that under the other three algorithms.
However, NDS provides the greatest energy savings if
CCR is less than 4. This is because energy cost in the
interconnection network is extremely low with a small
CCR value. Third, with respect to energy conservation,
EADUS performs as well as NDS with small CCRs.
However, EADUS is superior to NDS when CCR is
large. These results demonstrate that regardless of the
CCR value, EADUS is the best energy-efficient
duplication scheduling algorithm among the four
examined schemes. Last, and generally speaking, the
energy performance of TEBUS is somewhere between
those of EADUS and TDS.

Fast Fourier Transform is a very well known
algorithm used to implement a three-dimensional Fast
Fourier transform. We are focused on the energy
sensitivity of the Fast Fourier Transform application to

CCR. Fig. 3 plots CPU and total energy consumption
of Fast Fourier Transform under an array of CCR
values from 0.1 to 10. Fig. 3 shows that the total energy
consumption of Fast Fourier Transform becomes more
sensitive to CCR when CCR is less than 1. Comparing
energy consumption results plotted in Figs. 2 and 3, we
observe that Fast Fourier Transform is less sensitive to
CCR than Gaussian Elimination. The implication
behind this observation is that Gaussian Elimination
can take more energy-saving advantages of EADUS
and TEBUS than Fast Fourier Transform.

0

200

400

600

800

1000

1200

0.1 0.3 0.5 0.7 0.9 1 2 3 4 5 6 7 8 9 10

CCR
C
P
U

E
n
e
r
g
y

CPU Energy(EADUS) CPU Energy(TEBUS)

CPU Energy(TDS) CPU Energy(NDS)

(a) CPU Energy Consumption

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.1 0.3 0.5 0.7 0.9 1 2 3 4 5 6 7 8 9 10

CCR

T
o
t
a
l

E
n
e
r
g
y

Total Energy(EADUS) Total Energy(TEBUS)

Total Energy(TDS) Total Energy(NDS)

(b) Total Energy Consumption

Fig. 3 CCR Sensitivity for Fast Fourier Transform

6. Conclusions

In this paper, EADUS and TEBUS are designed and
implemented to provide energy savings in clusters by
duplicating tasks on more than one computational
node. We also proposed mathematical energy
consumption models to facilitate the presentation of
EADUS and TEBUS. We conducted extensive
experiments based on real-world applications running
on a simulated cluster. The experimental results show
that EADUS and TEBUS significantly improve the

0

100

200

300

400

500

600

700

0.1 0.3 0.7 0.9 1 2 3 4 5 6 7 8 9 10

CCR

Co
m
mu

n
i
ca

t
io

n
 E

n
er

g
y

Comm Energy(EADUS)
Comm Energy(TEBUS)
Comm Energy(TDS)
Comm Energy(NDS)

0

100

200

300

400

500

600

700

800

900

0.1 0.3 0.7 0.9 1 2 3 4 5 6 7 8 9 10

CCR

To
t
al

 E
ne

rg
y

Total Energy(EADUS)
Total Energy(TEBUS)
Total Energy(TDS)
Total Energy(NDS)

(a) Communication Energy Consumption

(b) Total Energy Consumption

Fig. 2. CCR Sensitivity for Gaussian Elimination

performance in terms of energy dissipation over two
existing allocation schemes called NDS and TDS.
Compared with TDS, EADUS achieves energy-
performance improvement for Gaussian Elimination on
average of 16.08% with only 5.7% increase in schedule
length. Likewise, TEBUS improves energy
conservation on average of 8.1% with merely 2.2%
increase in schedule length.

Acknowledgements

The work reported in this paper was supported in part
by the New Mexico Institute of Mining and
Technology under Grant 103295 and by Intel
Corporation under Grant 2005-04-070.

References

[1] M. Alghamdi, T. Xie, X. Qin, “PARM: A Power-Aware
Message Scheduling Algorithm for Real-Time Wireless
Networks,” Proc. ACM Workshop Wireless Multimedia
Networking and Performance Modeling, Montreal, Oct.
2005.
[2] H. Aydin, R. Melhem, D. Mossé, and P. M. Alvarez,
“Determining Optimal Processor Speeds for Periodic Real-
Time Tasks with Different Power Characteristics,” Proc.
EuroMicro Conf. Real-Time Systems, Delft, Netherlands,
June 2001.
[3] S. Bansal, P. Kumar, and K. Singh, “An Improved
Duplication Strategy for Schedulng Precedence Constrained
Graphs in Multiprocessor Systems,” IEEE Trans. Parallel
and Distributed Systems, Vol. 14, No. 6, pp. 533-544, June
2003.
[4] L. Benini and G. De Micheli, Dynamic Power
Management: Design Techniques and CAD Tools, Kluwer,
1998
[5] L. Benini, A. Bogliolo, G. D. Micheli, “A Survey of
Design Techniques for System-Level Dynamic Power
Management,” IEEE Trans. Very Large Scale Integration
Systems, Vol. 8, No. 3, pp.299-316, June 2000.
[6] J. Chase and Ron Doyle, “Energy Management for Server
Clusters,” Proc. the 8th Workshop Hot Topics in Operating
Systems (HotOS-VIII), pp. 165, May 2001
[7] R. Cypher, A. Ho, S. Konstantinidou, and P. Messina,
“Architectural Requirements of Parallel Scientific
Applications With Explicit Communication,” Proc. 20th Int’l
Symp. Computer Architecture, 1993
[8] W. Dally, P. Carvey, and L. Dennison, “The Avici
Terabit Switch/Rounter,” Proc. Hot Interconnects 6, pp. 41-
50, Aug. 1998.
[9] S. Darbha, D.P. Agrawal, “Optimal Scheduling
Algorithm for Distributed-Memory Machines,” IEEE Trans.
Parallel and Distributed Systems, Vol. 9, No. 1, pp.87-95,
Jan. 1998.
[10] S. Darbha and D. P. Agrawal, “A Task Duplication
Based Scalable Scheduling Algorithm for Distributed
Memory Systems”, J. Parallel and Distributed Computing,
Vol. 46, No. 1, pp. 15-27, Oct. 1997.

[11] C. Dubnicki, A. Bilas, Y. Chen, S.N. Damianakis, and
K. Li, “Myrinet Communication,” IEEE Micro, Vol. 18, No.
1, pp. 50-52, Jan.-Feb. 1998.
[12] E.N. M. Elnozahy, M. Kistler, and R. Rajamony,
“Energy-Efficient Server Clusters,” Proc. Int’l Workshop
Power-Aware Computer Systems, Feb. 2002.
[13] R.L. Graham, L.E. Lawler, J.K. Lenstra, and A.H. Kan,
“Optimizing and Approximation in Deterministic Sequencing
and Scheduling: A Survey,” Annals of Discrete Math,
pp.287-326, 1979.
[14] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M.
Srivastava, “Power Optimization of Variable Voltage Core-
Based Systems,” Proc. Design Automation Conf., 1998.
[15] I. Hong, M. Potkonjak, and M. Srivastava, “Synthesis
Techniques for Low-Power Hard Real-Time Systems on
Variable Voltage Processors,” Proc. IEEE Real-Time System
Symp., Dec. 1998.
[16] J. Kuskin et al., “The Stanford FLASH Multiprocessor,”
Proc. 21st Int’l Symp. Computer Architecture, 1994.
[17] J. Lorch and A. Smith, “Software Strategies for Portable
Computer Energy Management,” IEEE Personal Commun.,
Vol. 5, pp.60-73, June 1998.
[18] J. R. Lorch and A. J. Smith, “Improving Dynamic
Voltage Scaling Algorithm with PACE,” Proc. ACM
SIGMETRICS Conf., Cambridge, MA, June 2001
[19] Mellanox Technologies Inc., “Mellanox Performance,
Price, Power, Volumn Metric (PPPV),” 2004.
[20] X. Qin and H. Jiang, “A Dynamic and Reliability-driven
Scheduling Algorithm for Parallel Real-time Jobs on
Heterogeneous Clusters,” J. Parallel and Distributed
Computing, Vol. 65, No. 8, pp.885-900, Aug. 2005.
[21] S. Ranaweera, and D.P. Agrawal, “A Task Duplication
Based Scheduling Algorithm for Heterogeneous Systems,”
Proc. Parallel and Distributed Processing Symp., pp.445-
450, May 2000.
[22] Y. Shin and K. Choi, “Power Conscious Fixed Priority
Scheduling for Hard Real-Time Systems,” Proc. Design
Automation Conf., 1999.
[23] M.Y. Wu and D.D. Gajski, “Hypertool: A Performance
Aid for Message-Passing Systems,” IEEE Trans. Parallel
and Distributed Systems, Vol. 1, No. 3, pp. 330-343, July
1990.
[24] T. Xie, X. Qin, and M. Nijim, “Solving Energy-Latency
Dilemma: Task Allocation for Parallel Applications in
Heterogeneous Embedded Systems,” Proc. 35th Int’l Conf.
Parallel Processing, Columbus, Ohio, Aug. 2006.
[25] F. Yao, A. Demers, and S. Shenker, “A Scheduling
Model for Reduced CPU Energy,” Proc. IEEE Annual
foundations of Computer Science, pp. 374-382, 1995.
[26] Y. Yu and V.K. Prasanna, “Energy-Balanced Task
Allocation for Collaborative Processing in Wireless Sensor
Networks,” Mobile Networks and Applications, Vol.10,
No.1-2, pp.115-131, Feb. 2005.
[27] S. Srinivasan and N.K. Jha, “Safety and Reliability
Driven Task Allocation in Distributed Systems,” IEEE
Trans. Parallel and Distributed Systems, Vol. 10, No. 3, pp.
238-251, March 1999.

