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Abstract 
 

Optimizing energy consumption has become a 
major concern in designing economical clusters. 
Scheduling precedence-constrained parallel tasks on 
clusters is challenging because of high communication 
overhead. Although duplication-based strategies are 
applied to minimize communication overhead, most of 
them merely consider schedule lengths, completely 
ignoring energy consumption of clusters. In this 
regard, we propose two energy-aware duplication 
scheduling algorithms, called EADUS and TEBUS, to 
schedule precedence-constrained parallel tasks. Unlike 
existing duplication-based scheduling algorithms that 
replicate all possible predecessors of each task, the 
proposed algorithms judiciously replicate predecessors 
only if the duplication can help in conserving energy. 
Our energy-aware scheduling strategies are conducive 
to balancing the scheduling length and energy 
consumption of precedence-constrained parallel tasks. 
Extensive experimental results based on real-world 
applications demonstrate the effectiveness and 
practicality of the proposed scheduling strategies. 
 
 

1. Introduction 
 

With the advances in VLSI technology and high-
speed networks, cluster systems have become very 
poplar for a diverse set of parallel applications like 
molecular design, weather modelling, database 
systems, and complex image rendering. Energy 
demands of cluster computing systems have been 
growing rapidly. For example, a large-scale cluster 
commonly requires 40TWh per year, costing over $4B 
per year at the price of $100 per MWh [6]. Designing 
economically attractive and environmentally friendly 
clusters is highly challenging, because we have to take 
into account multiple design objectives, including 
performance (throughput, execution time), energy 
efficiency, quality-of-service (QOS), and scalability. 

Although much attention has been paid to processor 
and memory energy conservation in clusters, saving 

energy in cluster interconnects for parallel applications 
remains an open problem. Reducing energy dissipation 
in cluster interconnects is of critical importance as a 
significant amount of the total energy consumption in a 
cluster is due to the interconnect fabric. For example, it 
is observed that interconnect consumes 33% of the total 
energy in an Avici switch [8] [12], whereas routers and 
links consume 37 percent of the total power budget in a 
Mellanox server blade [12]. The energy consumption 
in interconnects becomes more critical for 
communication-intensive parallel applications, which 
extensively make use of cluster interconnects to 
transfer data. Examples of this type of parallel 
applications include 3-D perspective rendering, 
molecular dynamics simulation, and 2-D fluid flow 
using the vortex method [7]. Lack of energy 
conservation technology for cluster interconnects 
becomes a severe problem because, without it, 
reducing the energy consumption of cluster systems is 
most unlikely. 

Task partitioning and scheduling strategies play an 
important role in achieving high performance for 
parallel applications on clusters. A partitioning 
algorithm can be employed to partition a parallel 
application into a set of precedence-constrained tasks 
represented in the form of a directed acyclic graph 
(DAG), whereas a scheduling algorithm can be used to 
schedule the DAG onto the computational nodes of a 
cluster. Duplication heuristics proved to be feasible 
strategies to schedule parallel tasks to minimize 
communication overhead. However, almost all the 
duplication-based scheduling algorithms only take 
schedule lengths into consideration. One of the most 
important factors, energy consumption, was completely 
ignored. To remedy this deficiency, in this paper we 
design two energy-aware duplication scheduling 
algorithms to schedule a set of precedence-constrained 
parallel tasks in a judicious way to improve 
performance (shorten schedule length) while 
optimizing energy consumption in cluster 
interconnects. 

In this research, we first build an energy 
consumption model used to estimate power dissipation 
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in CPUs and network links. Second, we proposed two 
duplication-based scheduling algorithms, called 
EADUS and TEBUS, to provide energy savings in 
network links by duplicating tasks on more than one 
computational node to reduce network traffic. EADUS 
is designed to aggressively provide the greatest energy 
savings by using task replicas to eliminate energy-
consuming messages, whereas TEBUS aims at making 
the best tradeoff between energy conservation and 
performance. Hence, the two algorithms are named 
Energy-Aware Duplication Scheduling algorithm (or 
EADUS) and Time-Energy Balanced Duplication 
Scheduling algorithm (or TEBUS). Finally, to 
demonstrate the effectiveness of the proposed 
scheduling strategies, we designed and implemented a 
simulated cluster computing system with Myrinet-style 
[11] cluster interconnects and compare our approaches 
against existing duplication-based scheduling scheme 
using real-world applications. 

The rest of the paper is organized as follows. In 
section 2, we present a brief description of related 
work. Next, Section 3 introduces an energy 
consumption model. The novel scheduling strategies 
are proposed in Section 4. In Section 5, the 
experimental environment and simulation results are 
analysed. Finally, the concluding remarks are provided 
in Section 6. 
 

2. Related Work 
 

Since energy demands of clusters have been steadily 
growing in the last five years, the issue of energy 
conservation has increasingly received much attention. 
A large body of research has been conducted into 
power-aware scheduling [1] [2] [14] [24] [26]. For 
example, dynamic power management [5] [4] [17] and 
variable voltage scheduling schemes [15] [18] were 
proposed to achieve minimum energy consumption. 
Yao et al. developed a static off-line scheduling 
algorithm [25], whereas Hong et al. proposed on-line 
heuristics scheduling for aperiodic tasks [15]. Shin and 
Choi proposed a scheme to slow down a processor 
when there is a single task eligible for execution [22]. 
Very recently, we proposed a task allocation strategy, 
which can minimize overall energy consumption while 
confining schedule lengths to an ideal range [24]. We 
also studied a power-aware message scheduling 
algorithm in the context of real-time wireless networks 
[1]. Most of the prior work in the area of energy-aware 
scheduling has focused on energy consumed by 
processors. Growing evidence indicates that the 
interconnection fabric is one of the most energy-
consuming components in clusters [8] [19]. In this 

study, we aim at developing energy conservation 
techniques for both processors and interconnect of a 
cluster. As such, our approaches are in sharp contrast to 
the existing scheduling algorithms for processor energy 
conservation. 

Scheduling strategies deployed in clusters have a 
large impact on overall system performance. Three 
extensive categories for scheduling schemes include 
priority based scheduling, cluster based scheduling, and 
task duplication based scheduling [3][21]. Duplication 
based scheduling strategies address the problem that 
inter-processor communication in parallel and 
distributed systems accounts for a major portion of 
total system overhead. Many researchers have 
demonstrated that various strategies regarding task 
duplication are extremely applicable for reducing total 
execution time within a system employing static 
scheduling [3][21][9][10]. However, most of the 
existing duplication-based scheduling algorithms are 
developed with consideration of schedule lengths, 
completely ignoring energy consumption of clusters.  
Our algorithms are fundamentally different from 
existing duplication-based scheduling approaches in 
that ours are the first two duplication-based scheduling 
strategies designed to conserve energy consumption in 
clusters. 

 

3. Mathematical Models 
 
In this section, we build mathematical models used 

to represent a cluster system, precedence-constrained 
parallel tasks, and energy consumption in CPUs and 
interconnects. 

 
3.1 System model 
 

A cluster system in this study is characterized by a 
set P = {p1, p2,..., pm} of computational nodes 
connected by a Myrinet-style cluster interconnects. It is 
assumed that the computational nodes are 
homogeneous in nature, meaning that all the computing 
nodes are identical in their capabilities. Similarly, the 
underlying interconnection is assumed to be 
homogeneous and, thus, communication overhead of a 
message with fixed data size between any pair of nodes 
is considered to be the same. In our system model, 
computation and communication can take place 
simultaneously. This assumption is reasonable because 
each computational node in a modern cluster has a 
communication coprocessor that can be used to free the 
processor of the node from communication tasks [16].  

To simplify the system model without loss of 
generality, we assume that the cluster system is fault 



free and the page fault service time of each task is 
integrated into its execution time. With respect to 
energy conservation, energy consumption rate of each 
node in the system is measured by Joule per unit time. 
Each interconnection link is modelled by its energy 
consumption rate that heavily relies on data size and 
the transmission rate of the link. 

 
3.2 The task model 
 

A parallel application with a set of precedence-
constrained tasks is represented in form of a Directed 
Acyclic Graph (DAG), which throughout this paper is 
modeled as a pair (V, E). V = {v1, v2, ..., vn} represents 
a set of precedence-constrained parallel tasks, and ti is 
the ith task’s computation requirement showing the 
number of time units to compute vi, 1 ≤ i ≤ n. It is 
assumed that all the tasks in V are nonpreemptive and 
indivisible work units, and a similar assumption can be 
found in related studies [9] [20]. (vi, vj)∈ E is a 
message transmitted from task vi to vj, and cij is the 
communication cost of the message (vi, vj) ∈ E. We 
assume in this study that there is one entry task and one 
exit task for an application with a set of tasks. The 
assumption is reasonable because in case multiple entry 
or exit tasks exist, the multiple tasks can always be 
connected through a dummy task with zero 
computation cost and zero communication cost 
messages. 

The communication-to-computation ratio or CCR of 
a parallel application is defined as the ratio between the 
average communication cost of the application and the 
average computation cost on a given cluster. Formally, 
the CCR of an application (V, E) is given by Eq. (1): 
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A task allocation matrix (e.g., X) is an n×m binary 

matrix reflecting a mapping of n precedence-
constrained parallel tasks to m computational nodes in 
a cluster. Element xij in X is “1” if task vi is assigned to 
node pj and is “0”, otherwise. 

 
3.3 Energy consumption model 
 

We use a bottom-up approach to derive energy 
dissipation experienced by a parallel application 
running on a cluster. In this subsection, we first model 

energy consumption exhibited by computational nodes 
in the cluster. Next, we calculate energy dissipation in 
the interconnection network of the cluster.  

Let eni be the energy consumption caused by task vi 
running on a computational node, of which the energy 

consumption rate is activePN , and the energy 

dissipation of task vi can be expressed as Eq. (2) 

iactivei tPNen ×=                        (2) 

Given a parallel application with a task set V and 
allocation matrix X, we can calculate the total energy 
consumed (TECN) by all the tasks in V using Eq. (3). 
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We denote ijel  as the energy consumed by the 

transmission of message (ti, tj)∈ E. We can compute 
the energy consumption of the message as below 

                   ijactiveij cPLel ×=                               (4) 

where activePL  is the power of the link when it is 

active. The cluster interconnect in this study is 
homogeneous, which implies that all messages are 
transmitted over the interconnection network at the 
same transmission rate. The energy consumed by a 
network link between pa and pb is a cumulative energy 
consumption caused by all messages transmitted over 
the link. Then, the link’s energy consumption is 
obtained as follows, where Lab is a set of messages 
delivered on the link, and Lab can be expressed as 
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The energy consumption of the whole 

interconnection network is derived from Eq. (5) as the 
summation of all the links’ energy consumption. Thus, 
we have 
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It is observed from our experiments that energy 
consumption caused by idle computational nodes 

( idlePN ) and interconnection network ( idleEL ) is 

negligible and, therefore, here we ignore the definition 
of energy consumption model by idle resources. 

Thus, we can compute the energy dissipation 
experienced by the parallel application on the cluster 
using Eqs. (3) and (6). Hence, we can express the total 
energy consumption of the cluster executing the 
application as 

 

activeactive ELENE +≈                          (7) 

 

4. Energy-Aware Duplication Strategies 
 

In this section, we present two energy-aware 
duplication strategies, called EADUS and TEBUS. The 
objective of the two scheduling strategies is to optimize 
energy consumption of clusters. The scheduling 
problem studied in this paper can be shown to be NP-
hard by mapping it to the scheduling problem proven to 
be an NP-complete [13]. Therefore, the proposed two 
scheduling algorithms are heuristic in the sense that 
they can produce suboptimal solutions in polynomial-
time. The EADUS and TEBUS algorithms consist of 
three major steps delineated in Sections 4.1-4.3. 

 
4.1 Generate a task sequence 
 

Precedence-constraints of a set of parallel tasks have 
to be guaranteed by executing predecessor tasks before 
successor tasks. To achieve this goal, the first step in 
our algorithms is to construct an ordered task sequence 
using the concept of level, which of each task is 
defined as the length in computation time of the longest 
path from the task to the exit task. In this study, we use 
a similar approach as proposed by Srinivasan and Jha 
[27] to define the level L(vi) of task vi as below 
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The levels of other tasks can be obtained in a 

bottom-up fashion by specifying the level of the exit 
task as its execution time and then recursively applying 
the second term on the right side of Eq. (8) to calculate 

the levels of all the other tasks. Next, all the tasks are 
placed in a queue in the decreasing order of levels. 

 
4.2 Calculate important parameters 
 

The second phase in the EADUS and TEBUS 
algorithms is to calculate some important parameters, 
which the algorithms rely on. The important notation 
and parameters are listed in Table 1. 

  
Table 1. Important notations and parameters 

 
Note that similar notation was used by Darbha and 

Agrawal in [9]. The earliest start time of the entry task 
is 0. The earliest start times of all the other tasks can be 
calculated in a top-down manner by recursively 
applying the second term on the right side of Eq. (9). 
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The earliest completion time of task vi is expressed as 
the summation of its earliest start time and execution 
time. Thus, we have 
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Allocating task vi and its favorite predecessor FP(vi) 

on the same computational node can lead to a shorter 
schedule length. As such, the favourite processor FP(vi) 
is defined as Eq. (11) 

.)()(,)( kikjijji cvECTcvECTkjvvFP +≥+≠=  (11) 

As shown by the first term on the right side of Eq. 
(12), the latest allowable completion time of the exit 
task equals to its earliest completion time. The latest 
allowable completion times )( ivLACT  of all the other 

tasks are calculated in a top-down manner by 
recursively applying the following Expression. 
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Notation Definition 
EST(vi) Earliest start time of task vi 
ECT(vi) Earliest completion time of task vi 
FP(vi) Favorite predecessor of task vi 
LACT(vi) Latest allowable completion time of task vi 
LAST(vi) Latest allowable start time of task vi 



The latest allowable start time of task vi is derived from 
its latest allowable completion time and execution time. 
Hence, the LAST(vi) can be written as 
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1. v = first waiting task of scheduling queue; 
2. i = 0; assign v to Pi; 
3. while (not all tasks are allocated) do 
4.   u = FP(v); 
5.   if (u has already been assigned to another 

processor) then 
6.     if (LAST(v) - LACT(u) ≥ cvu) then /* if duplicate 

u, we can shorten the execution time*/ 
7.       moreenergy = enu - elvu; /*energy increase*/ 
8.       if (moreenergy ≤ threshold h) then /* increased 

energy less than our threshold*/ 
9.         assign u to Pi; /*duplicate u*/ 
10.         if v has another predecessor z ≠ u has not yet 

been allocated to any node then 
11.           u = z; 
12.         else 
13.           if u is entry task then 
14.             u = the next task that has not yet been 

assigned to a node; 
15.             i++; 
16.       else 
17.         for another predecessor z of v, z ≠ u,  
18.         if (ECT(u)+ccuv = ECT(z) + cczv) and z hasn’t 

been allocated) then 
19.           u = z; /* do not duplicate*/ 
20.     else 
21.       for another predecessor z of x, z≠ u,  
22.       if  (ECT(u)+ccuv = ECT(z) + cczv) and z hasn’t 

been allocated) then  
23.         u = z; /* do not duplicate*/ 
24.   else allocate u to Pi; 
25.   v = u; 
26.   if v is entry task then 
27.     v = the next task that has not yet been allocated to 

a computational node; 
28.     i++; 
29.     assign v to Pi; 
30.   return schedule list, schedule length and energy 

consumption; 
Fig. 1. Pseudocode of  phase 3 in the EADUS algorithm 
 
4.3 Duplication phase 
 
4.3.1 The EADUS algorithm. Given a parallel 
application presented in form of DAG, the EADUS 
algorithm in this phase allocates each parallel task to a 
computational node in a way to aggressively shorten 

the schedule length of the DAG while conserving 
energy consumption. The pseudocode in Fig. 1. shows 
the details of this phase in the EADUS algorithm. Most 
existing duplication-based scheduling schemes merely 
optimize schedule lengths without addressing the issue 
of energy conservation. As such, the existing 
duplication-based approaches tend to yield minimized 
schedule lengths at the cost of energy consumption. To 
make the best trade-off between energy-saving and 
schedule lengths, we design the EADUS algorithm in 
which a task-duplication is strictly forbidden if the 
duplication does not exhibit energy conservation (see 
Steps 8-9). In other words, duplication is infeasible if it 
results in a significant increase in energy consumption 
(e.g., the increase exceeds a threshold) and, is avoided 
in EADUS.  

Before this phase starts, phase 1 sorts all the tasks in 
a waiting queue, followed by phase 2 to calculate the 
important parameters. In phase 3 EADUS strives to 
group communication-intensive parallel tasks together 
and have them allocated to the same computational 
node. Once multiple task groups are constructed, each 
group of tasks is assigned to a different node in the 
cluster. The process of grouping tasks is repeated from 
the first task in the queue by performing a depth-first 
style search, which traces the path from the first task to 
the entry task. Steps 4 and 5 choose a favorite 
predecessor if it has not been allocated a computational 
node. Otherwise, EADUS may or may not replicate the 
favorite predecessor on the current node. For example, 
we assume that vj is the favorite predecessor of the 
current task vi, and vj has been allocated to another 
node. If duplicating vj on the current node to which vi is 
allocated can improve performance without sacrificing 
energy conservation, Step 11 makes a duplication of vj. 
More formally, the following property must be satisfied 
before any duplication is generated. Note that enu - elvu 

are computed by Eqs (2) and (4), respectively. 

Property 1. Let vj be the favorite predecessor of the 
current task vi, and vj has been allocated to another 
node. A duplication of vj is made on vi’s current node if 
the following two conditions are satisfied:  
• LAST(vi) - LACT(vj) < cji,  
• enu - elvu < threshold h, and 
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• Here the first condition in Property 1 ensures that vj is a 
critical predecessor of vi, the second condition signifies 
that the increase in energy due to the duplication must 
be maintained at a low level. The third condition is 
used to identify if vi’s other unallocated predecessors 



can initially be the favorite predecessors. In case that 
such an initial favorite predecessor (e.g., vk) exists, the 
path to the entry task will be traversed through vk. 

The generation of a task group terminates once the 
path reaches the entry task. The next task group starts 
from the first unassigned task in the queue. If all the 
tasks are assigned to the computation nodes, then the 
algorithm terminates. 

 
4.3.2 The TEBUS algorithm. The third phase of the 
TEBUS algorithm is similar as that of EADUS except 
that TEBUS seamlessly integrate the approach to 
minimizing schedule lengths with the process of energy 
optimization, which means that we will change the rule 
of deciding duplication. Here we define three variables 
called moreenergy, lesstime, ratio and replace the 
corresponding lines (see line 8-10 in Fig. 1) with the 
following segment, 
 
 
 
 
 
 
 
 
 

 
Unlike EADUS, the development of TEBUS is 

motivated by the needs of making the right tradeoff 
between performance and energy conservation. Thus, 
the TEBUS algorithm is geared to efficiently reduce 
schedule lengths while providing the greatest energy 
savings. Energy consumption incurred by duplicating a 
task involves judging whether the duplication is 
feasible or not. To facilitate the construction of 
TEBUS, we introduce a concept of cost ratio of a 
duplication, which is defined as the ratio between the 
energy saving and schedule length reduction. While the 
energy increasing of the duplication is obtained in Step 
1, the reduction in schedule length is computed in Step 
2. The TEBUS algorithm is, of course, conducive to 
maintaining cost ratios at a low level, thereby 
efficiently shortening schedule lengths with low energy 
consumption. This feature is accomplished by Steps 3-
4, which duplicate a task in case the cost ratio of such 
duplication is smaller than a given threshold. 
 
5. Performance Evaluation 
 

To demonstratively show the strength of our novel 
scheduling schemes, we conducted extensive 
experiments using real-world applications like 

Gaussian elimination and Fast Fourier Transform 
applications. Furthermore, we compare EADUS and 
TEBUS with two existing scheduling algorithms: the 
non-duplication-based scheduling heuristic (NDS) [23], 
and the task duplication-based scheduling algorithm 
(TDS) [9].  

 
5.1 Simulation setup 
 

In this subsection we present the experimental 
setup. Table 2 summarizes the configuration parameters 
of simulated cluster systems used in our experiments. 
On the right hand side of each row in Table 2, 
parameters in the first part are fixed while parameters 
in the second part are varied or randomly generated 
using uniform distributions. For instance, the threshold 
values of EADUS and TEBUS are respectively fixed to 
0.5 and 2 in one experiment and the threshold values 
are varied from 0.02 to 500 in another experiment (see 
the last row of Table 2). 

 
Table 2. Characteristics of System Parameters 

 
5.2 Experimental Results 

 
To compare the performance of the EADUS and 

TEBUS algorithms with NDS and TDS, we apply them 
to allocate parallel tasks of two real-world applications, 
namely, the Gaussian Elimination and Fast Fourier 
Transform applications. We are focusing on the energy 
consumption for each application under various CCRs 
and thresholds. The experimental results for the energy 
consumption of the Gaussian Elimination application 
are shown in Fig. 2. 

 

Parameters      Value (Fixed) - (Varied) 

Different Trees 
Gaussian elimination,  
Fast Fourier Transform 

Execution time of  
Gaussian Tree 

{5, 4, 1, 1, 1, 1, 10, 2, 3, 3, 3, 7, 
8, 6, 6, 20, 30, 30 }-(random) 

Execution time of  
FFT Tree 

{15, 10, 10, 8, 8, 1, 1, 20, 20, 
40, 40, 5, 5, 3, 3 }-(random) 

Node energy  
consumption rate 

6.0 mW 

Comm_energy 
consumption rate 

1.5 mW 

CCR set 
{0.1, 0.2, 0.3, 0.5, 0.7, 0.9,1, 2, 
3, 4, 5, 6, 7, 8, 9, 10} 

Threshold h 
{0.5, 2}-{0.02, 0.1, 0.2, 0.3, 
0.4, 0.5, 0.8, 1, 5, 10, 20, 30, 
100, 500} 

1. moreenergy = enu – elvu; /* energy increase */ 
2. lesstime = LAST(v) – LACT(u) – cvu; /* 

schedule length is reduced */ 
3. cost ratio = moreenergy/lesstime; /* calculate 

the value of cost ratio */ 
4. if (ratio ≤ threshold h) then … /* continued */ 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Four observations are evident from this group of 
experiment. First, the energy consumption of Gaussian 
Elimination under all the four scheduling schemes is 
very sensitive to CCR. Second, when CCR is greater 
than 6, energy consumption under NDS is consistently 
higher than that under the other three algorithms. 
However, NDS provides the greatest energy savings if 
CCR is less than 4. This is because energy cost in the 
interconnection network is extremely low with a small 
CCR value. Third, with respect to energy conservation, 
EADUS performs as well as NDS with small CCRs. 
However, EADUS is superior to NDS when CCR is 
large. These results demonstrate that regardless of the 
CCR value, EADUS is the best energy-efficient 
duplication scheduling algorithm among the four 
examined schemes. Last, and generally speaking, the 
energy performance of TEBUS is somewhere between 
those of EADUS and TDS. 

Fast Fourier Transform is a very well known 
algorithm used to implement a three-dimensional Fast 
Fourier transform. We are focused on the energy 
sensitivity of the Fast Fourier Transform application to 

CCR. Fig. 3 plots CPU and total energy consumption 
of Fast Fourier Transform under an array of CCR 
values from 0.1 to 10. Fig. 3 shows that the total energy 
consumption of Fast Fourier Transform becomes more 
sensitive to CCR when CCR is less than 1. Comparing 
energy consumption results plotted in Figs. 2 and 3, we 
observe that Fast Fourier Transform is less sensitive to 
CCR than Gaussian Elimination. The implication 
behind this observation is that Gaussian Elimination 
can take more energy-saving advantages of EADUS 
and TEBUS than Fast Fourier Transform. 
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(a) CPU Energy Consumption 
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(b) Total Energy Consumption 
 

Fig. 3 CCR Sensitivity for Fast Fourier Transform 
 

6. Conclusions 
 

In this paper, EADUS and TEBUS are designed and 
implemented to provide energy savings in clusters by 
duplicating tasks on more than one computational 
node. We also proposed mathematical energy 
consumption models to facilitate the presentation of 
EADUS and TEBUS. We conducted extensive 
experiments based on real-world applications running 
on a simulated cluster. The experimental results show 
that EADUS and TEBUS significantly improve the 
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Fig. 2. CCR Sensitivity for Gaussian Elimination 



performance in terms of energy dissipation over two 
existing allocation schemes called NDS and TDS. 
Compared with TDS, EADUS achieves energy-
performance improvement for Gaussian Elimination on 
average of 16.08% with only 5.7% increase in schedule 
length. Likewise, TEBUS improves energy 
conservation on average of 8.1% with merely 2.2% 
increase in schedule length. 
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