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There is a growing demand for large-scale distributed storage systems to
support resource sharing and fault tolerance. Although heterogeneity issues
of distributed systems have been widely investigated, little attention has been
given to security solutions designed for distributed storage systems with het-
erogeneous vulnerabilities. To address this issue, we design a Secure Fragment
Allocation Scheme called S-FAS to improve security of a distributed system
where storage sites have a wide variety of vulnerabilities. In the S-FAS ap-
proach, we integrate file fragmentation with the secret sharing technique in a
distributed storage system with heterogeneous vulnerabilities. Storage sites
in a distributed system are categarized into a variety of different server types
based on vulnerability characteristics. Given a file and a distributed system,
S-FAS allocates fragments of the file to a set of nodes with various vulnera-
bility characteristics. Data confidentiality is preserved because fragments of
a file are allocated to multiple types of storage nodes. We built storage as-
surance and dynamic assurance models to evaluate the quality of the security
offered by S-FAS.
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We develop a Secure Allocation Processing (SAP) algorithm for the S-FAS
scheme to improve the security level and consider its performance using the
heterogeneous feature of a large distributed system. We also implement a
prototype using the multi-threading technique for S-FAS where the SAP al-
gorithm is incoporated. Analysis results of assurance show that fragment allo-
cations made by S-FAS lead to enhanced security because of the consideration
of heterogeneous vulnerabilities in distributed storage systems. Experimental
results based on the prototype show that the proposed solution not only im-
proves the security level, but also increases the throughput of the distributed
storage system with heterogeneous vulnerabilities. -

1.1 INTRODUCTION

1.1.1 Security Problems in Distributed Systems

An increasing number of scientific and business files need to be stored in large-
scale distributed storage systems. The confidentiality of security-sensitive files
must be preserved in modern distributed storage systems, because such sys-
tems are exposed to an increasing number of attacks from malicious users [17].

Although there exist many security techniques and mechanisms (see, for
example, [7] and [11]), it is quite challenging to secure data stored in dis-
tributed systems. In general, security mechanisms need to be built for each
component in a distributed system, then a secure method of integrating all the
components in the system can be implemented. It is critical and important
to maintain the confidentiality of files stored in a distributed storage system
when malicious programs and users compromise some storage nodes in the
system.

In addition to cryptographic systems, secret sharing is an approach to pro-
viding data confidentiality by distributing a file among a group of n storage
nodes, to each of which a fragment of the file is allocated. The file can be re-
constructed only when a sufficient number (e.g., more than k) of the fragments
are available to legitimate users. Attackers are unable to reconstruct a file us-
ing the compromised fragments when a group of servers are compromised if
fewer than k fragments are disclosed.

1.1.2 Heterogeneous Vulnerabilities

In a large-scale distributed system, different storage sites use a variety of
methods to protect data. The same security policy may be implemented
in various mechanisms. Data encryption schemes may vary; even with the
same encryption scheme, key lengths may vary across the distributed system.
The above mentioned factors can contribute to different vulnerabilities among
storage sites. Although security mechanisms deployed in multiple storage sites
can be implemented in a homogeneous way, different vulnerabilities may exist
due to heterogeneities in computational units.
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We started to address security heterogeneity issues by categorizing storage
servers into different server-type groups. Each server type represents a level of
security vulnerability. In a server-type group, storage servers with the same
vulnerabilities share the same weaknesses that allow attackers to reduce the
servers’ information assurance. Although it may be difficult to categorize all
servers in a system into a large number of groups, a practical way of identifying
server types is to organize those with similar vulnerabilities into one group.

In light of server types and heterogeneous vulnerabilities, we investigate in
this study a fragment allocation scheme called S-FAS to improve security of a
distributed system where storage sites have a wide variety of vulnerabilities.

1.1.3 File Fragmentation and Allocation

The file fragmentation technique is often used in distributed and parallel sys-
tems to improve availability and performance. Several file fragmentation
schemes have been proposed to achieve high assurance and availability in
large distributed systems [1][21]. In real-world distributed systems, the frag-
mentation technique is usually combined with replication to achieve better
performance at the cost of increased security risk to data stored in the sys-
tems. A practical distributed system normally contains multiple heteroge-
neous servers providing services with various vulnerabilities. Unfortunately,
the existing fragmentation algorithms do not take the heterogeneity issues
into account.

To address the aforementioned limitations, we focused on the development
of a file fragmentation and allocation approach to improving the assurance and
scalability of a heterogeneous distributed system. If one or more fragments
of a file have been compromised, it is still very difficult and time-consuming
for a malicious user to reconstruct the file from the compromised fragments.
Our solution is different from those previously explored, because it utilizes
heterogeneous features regarding vulnerabilities among servers.

To evaluate our method for fragment allocations, we developed static and
dynamic assurance models to quantify the assurance of a heterogeneous dis-
tributed storage system handling data fragments.

1.1.4 Main Contributions

The following are the main contributions of this study: We addressed the
heterogeneous vulnerability issue by dividing storage nodes of a distributed
system into different server-type groups based on their vulnerabilities. Each
server-type group - represents a group of storage nodes with the same group
of security vulnerabilities. We proposed a secure fragmentation allocation
scheme called S-FAS to improve security of a distributed system where storage
nodes have a wide variety of vulnerabilities. We developed storage assurance
and dynamic assurance models to quantify information assurance and to eval-
uate the proposed S-FAS scheme. We developed a secure allocation processing
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(SAP) algorithm to improve security and system performance by considering
the heterogeneous feature of a large distributed system. We discovered princi-
ples to improve assurance levels of heterogeneous distributed storage systems.
The principles are general guidelines to help designers achieve a secure frag-
ment allocation solution for distributed systems. In order to conduct the
performance analysis for the S-FAS scheme and SAP allocation algorithm, we
developed a prototype for our S-FAS scheme.

1.1.5 The Organization of this Chapter

The rest of this chapter is organized as follows. In Section 1.2, we review
related work. Section 1.3 presents the system and threat models of this study.
Section 1.4 describes S-FAS–a secure fragmentation allocation scheme. In
Section 1.5, we describe static and dynamic assurance models for distributed
storage systems. In Section 1.6, the SAP allocation algorithm Principles are
presented and the architecture and design of our prototype is illustrated.
In Sections 1.7, we quantitatively evaluate the assurance and performance
analysis of the proposed S-FAS scheme combined with our proposed SAP
algorithm in the context of distributed systems. Section 1.8 summarizes this
chapter and outlines our future work.

1.2 RELATED WORK

1.2.1 Security Techniques for Distributed Systems

Much research has been performed concerning the improvement of the secu-
rity of distributed and high-performance computing systems such as grids.
For example, Pourzandi et al. proposed a structured security approach that
incorporates both distributed authentication and distributed access control
mechanisms [17].

Intrusion detection techniques have been widely used to provide basic as-
surance of security in distributed systems, however, most intrusion detection
techniques are inadequate to protect data stored in distributed systems [2].
One of the most effective approaches to improving information assurance in
distributed systems is intrusion tolerance [10] [21]. To enhance security as-
surance, researchers have developed a range of intrusion-tolerant tools and
mechanisms. The fragmentation technique summarized below is one of the
intrusion tolerance methods that can be used in combination with intrusion
detection techniques.

1.2.2 Fragmentation Techniques

A fragmentation technique partitions a security sensitive file into multiple
fragments that are distributed across different nodes in a distributed system.
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A lot of fragmentation schemes have proven to be valuable tools in the im-
provement of the security of data stored in distributed systems (for example,
[20][5][6][1][8][9]).

Many fragmentation approaches aim to improve availability and perfor-
mance of distributed systems by applying data replication methods. For ex-
ample, Dabek et al. developed a wide-area cooperative storage system in
which they implemented a fragmentation scheme to improve availability and
to facilitate load balancing [3].

Although a scheme combining fragmentation and replication can enhance
performance and availability, data replications may impose security risks due
to an increasing number of file fragments handled by distributed storage
servers. A file is more likely to be compromised when more replications of the
file are stored in a distributed storage system.

All existing file fragmentation technologies are inadequate to address the
issue of heterogeneous vulnerabilities in large-scale distributed systems. Our
preliminary results show that security can be improved in a distributed stor-
age system when a fragmentation scheme incorporates the heterogeneous-
vulnerability feature.

1.2.3 Secret Sharing

Secret sharing is a method of distributing a secret among a group of par-
ticipants, by allocating each a share of the secret. The secret can be suc-
cessfully reconstructed only when a sufficient number of shares are combined
together [16][9]. Shamir proposed the (k, n) secret sharing scheme that divides
dataD into n pieces in such a way thatD can be easily reconstructed from any
k pieces. If fewer than k pieces are disclosed, the data cannot be reconstructed
from the revealed pieces. The secret sharing scheme has been extended and
employed in different application domains [19]. For example, Bigrigg et al.
proposed an architecture called PASIS for secure storage systems. The PASIS
architecture integrates the secret sharing scheme with information dispersal
to improve security, integrity and availability [4][12]. In a storage system with
PASIS, the confidentiality of stored data in the system is still preserved, even
if an attacker compromises a limited (i.e., fewer than the threshold) subset
of storage nodes. The aforementioned secret-sharing solutions designed for
distributed storage systems ignore the issue of heterogeneous vulnerabilities.
This fact motivated us to extend the secret sharing scheme by considering
heterogeneity in vulnerabilities, in the context of distributed storage systems.

1.2.4 Comparison of Our Work with Existing Solutions

The fragment allocation solution we describe in this chapter is entirely differ-
ent from the existing fragment allocation schemes found in the literature. Our
approach incorporates the vulnerability heterogeneity feature of distributed
storage systems into file fragment allocation. Our solution captures hetero-
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Figure 1.1: A distributed storage system is comprised of a set of cluster
storage subsystems. Multiple fragments of a file can be stored either in

storage nodes within a single cluster storage subsystem or in nodes across
multiple cluster storage subsystems.

geneous features regarding vulnerabilities of the nodes in order to improve
the security level of the data stored in a distributed system. In this study,
the data replication technique is not considered, because fragment allocation
and data replication are independent of each other. Thus, the availability
and performance of fragment allocation schemes can be improved when data
replication modules are integrated.

1.3 SYSTEM AND THREAT MODELS

In this section, we will outline the system and threat models that capture main
characteristics of distributed storage systems. The system model is used as
a basis to design the S-FAS fragmentation allocation scheme, whereas the
threat model helps us identify vulnerabilities and certain potential attacks in
distributed storage systems.

1.3.1 System Model

The S-FAS fragmentation allocation scheme was designed for a distributed
storage system (see Fig. 1.1) where each storage site is a cluster storage sub-
system. Different cluster storage subsystems may be connected within some
subnetworks to form a larger scale distributed storage sysytem. A cluster
storage subsystem consists of a number of storage nodes and a gateway. Con-
sidering heterogeneous vulnerability in large-scale storage systems, we divide
storage nodes into different server-type groups.

Before presenting details on the system model, let us summarize all nota-
tions used throughout this Chapter in Table 1.1.
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Table 1.1: Notations

Items Meaning Items Meaning

U The whole system considered N Total Number of storage nodes
F A file stored in the system Fi Fragment i of file F
K Total number of storage node

types
m Threshold of secret sharing

scheme
Tj Server type j in the system P (X) Probability of event X occurring
Ri Cluster storage subsystem P (Y ) Probability of event Y occurring
rij Node j in subsystem i P (Z) Probability of event Z occurring
α An allocation mapping of file F P (V ) Probability of event V occurring
L Number of subsystems in the

whole system
Hi Number of server nodes in the

subsystem i
Y An event ifX occurs, at least m

fragments can be compromised
using the same attack method

n Total number of fragments of
each file in the secret sharing
scheme

X The event by which a set of
storage nodes is chosen to be
attacked

Z The event of a successful attack
to a certain fragment of a file

Sj The size of a certain server type
j in a cluster

PN The probability of a successful
attack on a node

Pf The probability of successfully
compromising a fragment in a
compromised node

SA(α) The storage assurance of an allo-
cation mapping α of file F

q Number of fragments needed to
reconstruct a file transmitted
from outside of the subsystem

g Number of fragments compro-
mised out of the q fragments
transmitted across subsystems

PL The probability that a frag-
ment is intercepted during its
transmission

PD The probability that a file F is
intercepted because of the com-
promised transmitted fragments

V The event file F is compro-
mised under one attack method

DA(α) The dynamic assurance of an al-
location mapping α of file F

Iij Decreasing sorted list of frag-
ments to be allocated

LoadB work load that a fragment brings
to the node where it is stored
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In this study, we will consider a distributed storage system containing L
cluster storage subsystems (i.e., R1, R2, ..., RL). Cluster storage subsystem
Ri consists of Hi storage nodes (i.e., Ri = {ri1, ri2, ..., riHi}). All the storage
nodes connected in cluster Ri have heterogeneous vulnerabilities.

Since all the nodes, including a master node, are fully connected in a cluster
storage subsystem, we model the topology of a cluster storage system as a
general graph. Cluster storage subsystem Ri has a gateway, which hides the
cluster’s internal architecture from users by forwarding file requests to storage
nodes.

Data in cluster storage subsystem Ri can be accessed through its master
node. When a read request is submitted to cluster Ri, the master node is
responsible for reconstructing file fragments and returning the file to users.
When a write request of a file is issued, the master node updates all fragments
of the file.

Legitimate users access cluster storage subsystems through master nodes;
malicious users may bypass the master nodes to access storage nodes without
being authorized. See Section 1.3.2 below for details on the threat model.

1.3.2 Threat Model

It is not reasonable to assume that if a malicious user breaks into a storage
node, fragments of a file stored on the node are thereby compromised. Nor-
mally, a malicious user requires two steps to compromise fragments of a file
stored on a server. First, the malicious user must successfully compromise the
server. Second, fragments are retrieved by the malicious user.

Let PN be the probability that a storage server is successfully attacked; let
Pf be the probability that authorized users retrieve fragments stored on the
server, provided that the server has been compromised. We define event Z as a
successful attack on a fragment (i.e., unauthorized disclosure of the fragment).
Since the above two consecutive attack steps are independent, the probability
that event Z occurs is a product of probability PN and probability Pf . Thus,
the probability that a fragment is disclosed to an unauthorized attacker can
be expressed as:

P (Z) = PN ∗ Pf . (1.1)

Given two storage nodes with different vulnerabilities, successful attacks
of the nodes are not correlated. This statement is true for many potential
threats, because compromising one storage node does not necessarily lead to
the successful attack of another.

1.4 S-FAS: A SECURE FRAGMENT ALLOCATION SCHEME

In this section, we first outline the motivation for addressing the heterogeneity
issues in the vulnerability of distributed storage systems. Next, we describe a
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(a) A distributed storage system contains 16 stor-
age nodes, which are divided into 4 server-type
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(b) Possible insecure file fragment al-
location decision made using a hash-
ing function (see Eq. 11 in [1])

Figure 1.2: A Motivational Example

security problem addressed in this study. Last, we present a secure fragment
allocation scheme called S-FAS for distributed storage systems.

1.4.1 Heterogeneity in the Vulnerability of Data Storage

Since the existing security techniques (see Section 1.2) developed for dis-
tributed systems are inadequate for distributed systems with heterogeneity
in vulnerabilities, the focus of this study is heterogeneous vulnerabilities in
large-scale distributed storage systems. Vulnerabilities of storage nodes in a
distributed system are heterogeneous in nature due to the following four main
reasons. First, storage nodes have different ways to protect data. Second, a
security policy can be implemented in a variety of mechanisms. Third, the
key length of an encryption scheme may vary across multiple storage nodes.
Fourth, heterogeneities exist in computational units of storage sites. We be-
lieve that future security mechanisms for distributed systems must be aware
of vulnerability heterogeneities.

1.4.2 A Motivational Example

If the above heterogeneous vulnerability features are not incorporated into
fragment allocation schemes for distributed storage systems, a seemingly se-
cure fragment allocation decision can lead to a breach of data confidentiality.
The following motivational example illustrates a security problem caused by
ignoring vulnerability heterogeneities.
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Let us consider a file F with three partitioned fragments: fa, fb, and fc,
and a distributed storage system (see Fig. 1.2(a)) that contains 16 storage
nodes divided into 4 server-type groups (or server groups for short), i.e., T1,
T2, T3, and T4. Storage nodes in each server group offer similar services
with the same vulnerabilities. In this example, server group T1 consists of
nodes r1, r5, r9, r13, i.e., T1 = {r1, r5, r9, r13}. Similarly, we define the other
three server groups as: T2 = {r2, r6, r10, r14}, T3 = {r3, r7, r11, r15}, and
T4 = {r4, r8, r12, r16}.

Fig. 1.2(b) shows that it is possible to make insecure fragment allocation
decisions when vulnerability heterogeneity is not taken into account. The
decision made using a hashing function (see Eq. 11 in [1]) randomly allocates
the three fragments of file F to three different nodes, each of which belongs
to one of the three server sets illustrated in Fig. 1.2(b). For example, the
three fragments fa, fb, and fc are stored on nodes r1, r6, and r8, respectively.
This fragment allocation happens to be a good solution, because r1, r6, and
r8 have different vulnerabilities as the three nodes belong to different server
groups (i.e., T1, T2, and T4). A malicious user must launch at least three
successful attacks (one for each server group) in order to compromise all three
fragments.

The above fragment allocation scheme fails to address the threat described
in Section 1.3. This is because an attacker can first retrieve one fragment of
F by compromising a single node, and then wait for the other two fragments
to be passed through the compromised node. To solve this security problem,
Zanin et al. developed a static algorithm to decide whether a particular stor-
age node is authorized to handle a file fragment of F [12]. Zanin’s algorithm
can generate an insecure fragment allocation because heterogeneous vulnera-
bilities are not considered. For example, if the three fragments are respectively
stored on nodes r4, r8, and r12, which share the same vulnerability in server
group T4 (see Fig. 1.2(b)), rather than three attacks, one successful attack
against server group T4 allows unauthorized users to access the three frag-
ments of file F . Two other insecure fragment allocations are: (1) allocating
fa, fb, fc to nodes r1, r5, and r9, respectively; and (2) allocating fa, fb, fc to
nodes r7, r11 and r15, respectively. These three fragment allocation decisions
are unacceptable, because the fragments are assigned to a group of storage
nodes with the same vulnerability, meaning that an attacker who comprised
one node within a group can easily compromise the other nodes in the group.
The attacker can reconstruct F from fa, fb, and fc stored on the comprised
server group.

1.4.3 Design of the S-FAS Scheme

To solve the above security problem, we must incorporate vulnerability hetero-
geneities into fragment allocation schemes. Specifically, we designed a simple
yet efficient approach to allocating fragments of a file to storage nodes with
various vulnerabilities. Since allocating fragments of a file into different stor-
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age subsystems can degrade performance, our S-FAS scheme attempts to allo-
cate fragments to storage nodes in as few clusters as possible. To improve the
assurance of a distributed storage system while maintaining high I/O perfor-
mance, each cluster storage subsystem must be built with high vulnerability
heterogeneity. This causes the fragments of a file to be less likely distributed
across multiple storage clusters.

Because of the following two reasons, the S-FAS scheme can significantly
improve data security when fragments are stored in a large-scale distributed
storage system. First, S-FAS integrates the fragmentation technique with
secret sharing. Second, S-FAS addresses the issue of heterogeneous vulnera-
bilities when file fragments are allocated to a distributed storage system.

The S-FAS scheme makes fragment allocation decisions by following the
four policies below:

• Policy 1: All the storage nodes in a distributed storage system are
classified into multiple server-type groups based on their various vul-
nerabilities. Each server group consists of storage nodes with the same
vulnerabilities.

• Policy 2: To improve security of a distributed storage system, S-FAS
allocates fragments of a file to storage nodes belonging to as many differ-
ent server groups as possible. In doing so, it is impossible to compromise
the file’s fragments using a single successful attack method.

• Policy 3: The fragments of a file try to be allocated to nodes within
a wide range of vulnerabilities all within the fewest cluster storage sub-
systems which are close to clients. The goal of this policy is to improve
performance of the storage system by making the fragments less likely
to be distributed across too many distant clusters.

• Policy 4: The (m,n) secret sharing scheme is integrated with the S-FAS
allocation mechanism.

If a file’s fragment-allocation decisions are guided by the above four poli-
cies, successful attacks against less than m server groups have little chance
of gaining unauthorized accesses to files stored in a distributed system. In
other words, if the number of compromised fragments of a file is less than
m, attackers are unable to reconstruct the file from the fragments that are
accessed by the unauthorized attackers. The S-FAS scheme can improve in-
formation assurance of files stored in a distributed storage system without
enhancing confidentiality services deployed in cluster storage subsystems of
the distributed system, because S-FAS is orthogonal to security mechanisms
that provide confidentiality for each server group in a distributed storage
system. Thus, S-FAS can be seamlessly integrated with any confidentiality
service employed in distributed storage systems in order to offer enhanced
security services.
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1.5 ASSURANCE MODELS

We developed assurance models to quantitatively evaluate the security of a
heterogeneous distributed storage system in which S-FAS handles fragment
allocations.

1.5.1 Storage Assurance Model

For encrypted files, their encryption keys are partitioned and allocated using
the same strategy that handle file fragments. Once a storage node in set U is
compromised, file fragments and encryption key fragments stored on the node
are both breached. If a malicious user wants to crack a file, at least m nodes
within U must be successfully hacked.

We first investigate the probability that a file is compromised using one
attack method. Let X be the event that a set of storage nodes is chosen to
be attacked. Let Y be the event that if X occurs, at least m fragments can
be compromised using the same attack method. As we already defined in
Section 1.3, event Z represents a successful attack to a certain fragment of a
file. Applying the multiplication principle, we calculate the probability that
V - an event that file F is compromised under one attack - occurs as:

P(V) =

k∑
j=1

P(X)P(Y)P(Z) (1.2)

where P (X), P (Y ) and P (Z) are probabilities that events X , Y and Z occur
when the total number of different server-type groups (server group for short)
is K. The probability P (V ) is proportional to probability P (Z), which largely
depends on the quality of security mechanisms deployed in the storage system,
as well as the attacking skills of hackers.

Note that when k equals 1, there is no vulnerability difference among stor-
age nodes. Supposing that all the fragments of a file can be compromised
using one successful attack method, the probability that Y occurs becomes 1.
Then, we can express P (V ) as:

P(V) =

k∑
j=1

P(X)P(Z) (1.3)

Let Sj be the number of storage nodes in server type Tj set and N be the
total number of nodes in a distributed system. The probability that nodes in
set Tj are randomly attacked can be derived as P(X) =

Sj

N .
Probability P (Y ) in Eq. 1.2 can be calculated as follows:

P (Y) =
n∑

i=m

Ci
Sj
Cn−i

N−Sj

Cn
N

, (j = 2, . . .K) (1.4)
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where Cn
N is the total number of possibilities of allocating fragments of a file,

and the product of Ci
Sj

and Cn−i
N−Sj

is the number of possibilities that a file

is compromised using a successful attack method which means at least m (It
may be m+ 1, m+ 2, ..., n) fragments of the file are compromised.

To simplify the model, one may assume that security mechanisms and
attacking skills have no significant impacts on information assurance of the
entire distributed storage system. This assumption is reasonable because of
two factors. First, S-FAS is independent of security mechanisms that provide
confidentiality for server groups in a distributed storage system. Second, if
empirical studies can provide values for probability P (Z), the probability
P (V ) can be derived from P (Z) and the model (see Eq. 1.4) that calculates
P (Y ). Since the study of the distribution of P (Z) is not within the range of
this work, in Section 1.7 the impact of probability P (Z) on P (V ) is ignored
by setting the value of P (Z) to 1. Now we can derive Eq. 1.5 from Eq. 1.4 as
below:

P(V) =

K∑
j=1

(
Sj
N
P(Z)

n∑
i=m

Ci
Sj
Cn−i

N−Sj

Cn
N

)
(1.5)

The confidentiality of file F is assured if F is not compromised. Thus, we
can derive the assurance SA(α) of the storage system from Eq. 1.5 as:

SA (α) = 1− P (V) = 1−
K∑

j=1

(
Sj
N
P(Z)

n∑
i=m

Ci
Sj
Cn−i

N−Sj

Cn
N

)
(1.6)

1.5.2 Dynamic Assurance Model.

During read and write operations, some fragments of a file may be transmit-
ted among different storage clusters or subnetworks. We assume that data
transmissions within a cluster are secure, while connections among clusters
and subnetworks may be insecure. Let PL be the probability that a fragment
is intercepted during its transmission on an insecure link. We consider a com-
mon case in which some fragments of file F are allocated outside a cluster.
The probability PD that a fragment of F is intercepted during its transmission
can be expressed as:

PD = μ1μ2PL + μ3 [1− PL] PL (1.7)

where μ1 = 1 indicates that connections among storage clusters are insecure
and μ1 = 0 means the connections are secure. μ2 = 1 indicates that fragments
are transferred among different clusters, otherwise μ2 = 0. Similarly, μ3 = 1
means that fragments are transmitted across different subnetworks. When μ1,
μ2, and μ3 equal to 0, there is no fragment transmission risk. If q fragments
need to be collected outside a cluster processing read/write operations, then
probability Pq(g) that g out of q fragments are intercepted can be expressed
as:
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Pq (g) = Cg
qPD

g(1− PD)
q−g

(1.8)

Now we model the dynamic assurance of an allocation mapping α of file F .
For simplicity, let us focus on a time period during which there is only one
attempt to attack storage nodes where F is stored. During this time period,
we assume that only one read or write operation is issued to access F . There
are two cases in which file F can be compromised. First, a malicious user can
reconstruct F from m compromised fragments using the same attack method.
Second, although less than m fragments are compromised, other g fragments
are intercepted during their transmissions. Hence, we can derive the dynamic
assurance DA(α)( 1.9)from the storage risk (see Eq. 1.5) and the transmission
risk (see Eq. 1.8), as shown here:

DA(α) = 1−
⎛
⎝P(V) +

⎛
⎝ q∑

g=(m−i)

Pq(g)

⎞
⎠ K∑

j=1

(
Sj

N

m−1∑
i=0

Ci
Sj
Cn−i

N−Sj

Cn
N

)⎞
⎠ (1.9)

1.6 SAP ALLOCATION PRINCIPLES AND PROTOTYPE

We developed a prototype using the multi-threading technique for the SAP
algorithm to guide the file allocation. We then conducted some experiments
to evaluate the performance of SAP integrated in the S-FAS scheme. Results
show that the proposed solution can not only improve the storage security
level, but also enhance the throughput of the distributed storage system with
heterogeneous vulnerabilities.

1.6.1 Allocation Principles

The design of our S-FAS scheme is mainly focused on the improvement of
system security. Considering the heterogeneity of the system can also be used
to improve system performance, we developed a secure allocating processing
(SAP) algorithm for the S-FAS scheme [13] to improve the security level and
consider its performance using the heterogeneous feature of a large distributed
system. The SAP allocation algorithm, a key compoment, addresses the issues
of load balancing, delayed effects caused by the workload variance of many
consecutive requests, and the heterogeneous feature of distributed storage
systems.

There are three main factors affecting the processing delay of a request
from a client, namely, workload, network traffic, and IO latency at storage
nodes. In our algorithm design, we consider load balacing among storage
nodes and network interconnects to improve the system performance. Initially,
all nodes are logically categorized into different types based on the similarities
of their vulnerabilities. The basic principles of the SAP allocation algorithm
are described below.
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1. To sort the two-dimensional list Iij of file(i) fragments(j) in a decreasing
order based on the burdens of the input files.

2. To sort all storage nodes in a two-dimensional list in a decreasing order
based on their vulnerability type and processing speed.

3. To allocate each Fragment in list Iij to storage nodes.

There are two constraints used when deciding whether a fragment should
be allocated to a node:

• There is enough space is enough to store the fragment;

• The available LoadB is higher than 80% (The upper bound of the stor-
age load can be adjusted to different level to control the storage space
efficiency on a server) of the LoadB of the current fragment.

It is possible that fragments of a file can be allocated in the same type of
nodes. Nevertheless, the chances of allocating multiple fragments of a file to
nodes of the same type is much less than those in random allocation scheme.

1.6.2 Prototype Architecture and Design

In order to evaluate the S-FAS scheme along with the SAP algorithm, we
designed and implemented a prototype to test system throughput on a dis-
tributed storage testbed. We applied the multi-threading technique, allowing
one thread to process one request of fragment readwrite to enhance processing
performance.

In the implimentation of the prototype, system nodes are divided into three
main groups - computing nodes (clients), storage nodes, and a storage server.
The storage server is responsible for handling file allocation using the SAP
algorithm, managing the metadata and dealing with the incoming read or
write requests from the clients. The storage nodes are categorized into a few
groups based on their heterogeneous vulnerability features. The client nodes
can directly access storage servers through the network interconnect.

1.7 EVALUATION OF SYSTEM ASSURANCE AND PERFORMANCE

The assurance models described in Section 1.5 indicate that system assurance
is affected by the numberK of storage types, the numberN of storage nodes in
the system, and the number Sj of nodes of the jth storage type. In addition,
threshold m and the number n fragments of a file also have an impact on
system assurance.

In this section, we will first evaluate the impact of these factors (K,N , Sj , n
and m) on storage assurance (see Sections 1.7.1 to 1.7.5). We will compare our
approach with a traditional fragment allocation scheme that does not consider
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Figure 1.3: Heterogeneous system and homogeneous system using secret
sharing scheme.

vulnerability heterogeneities. Then, we will measure dynamic assurance of S-
FAS to analyze the impact of PL and q on system dynamic assurance (see
Sections 1.7.6 and 1.7.7). We evaluated a distributed storage system with the
threshold value m. The default number n of fragments of a file is set to 12
(the value can vary according to system sizes) and Sj=

N
K for all j from 1 to

K.
In the last part of this section, we discuss experimental results for the SAP

algorithm and the prototype. To explore the affecting factors that influence
the system performance, we evaluate the impact of the file size and fragment
number on system throughput(see section 1.7.8).

1.7.1 Impact of Heterogeneity on Storage Assurance

If all storage nodes in the evaluated distributed system are identical in terms of
vulnerability, the probability that fragments of a file can be compromised us-
ing one successful attack method is 1. Fig. 1.3 shows the impact of the number
K of storage types on system assurance. The results plotted in Fig. 1.3 sug-
gest that for a distributed system with homogeneous vulnerability, threshold
m has no impact on system assurance. For a distributed system with het-
erogeneous vulnerabilities, the system assurance increases significantly with
increasing values of K and threshold m (see Fig. 1.3). Such a trend implies
that a high heterogeneity level of vulnerability gives rise to high confidentiality
assurance.

1.7.2 Impact of System Size on Storage Assurance

To quantify the impact of system size N on assurance of a file stored in
the system, we gradually increase system size from 45 to 70 by increments
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Figure 1.4: The impact of the system size N on storage assurance.
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Figure 1.5: The impact of server-group size on data storage assurance. The
server-group size means the number of storage nodes in a server-type group.

of 5. We keep k at 3 and also vary m from 4 to 8. Fig. 1.4 reveals that
the storage assurance of the system is not very sensitive to the system size,
indicating that storage assurance largely depends on the vulnerability hetero-
geneity level rather than system size. Thus, large-scale distributed storage
systems with low levels of vulnerability heterogeneities may have lower assur-
ance than small-scale distributed systems. These results suggest that one way
to improve system assurance is to increase vulnerability heterogeneity while
increasing the scale of a distributed storage system. A high heterogeneity
level in vulnerability helps in increasing threshold m, making it difficult for
attackers to compromise multiple server groups and to reconstruct files.
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1.7.3 Impact of Size of Server Groups on Storage Assurance

Fig. 1.5 illustrates the impact of server-group size on data storage assurance.
Note that the server-group size is the number of storage nodes in a server-type
group, in which all the storage nodes share the same group of vulnerabilities.
We vary the server-group size from 12 to 18 by increments of 1. We observe
from Fig. 1.5 that when threshold m is small (e.g, m = 4), the assurance of
systems with large server-group sizes is slightly higher than that of systems
with small server-group sizes. Interestingly, the opposite is true when the
threshold m is large (e.g, m > 4). Given a fixed number of storage nodes
in a distributed storage system, increasing the server-group size can decrease
the number of server groups, which in turn tends to reduce vulnerability het-
erogeneity. The results shown in Fig. 1.5 match the results in the previous
experiments in which a low level of vulnerability heterogeneity results in de-
graded storage assurance.

1.7.4 Impact of Number n of File Fragments on Storage Assurance

Fig. 1.6 illustrates the impact of the number n of fragments of a file on storage
assurance. In this experiment, we increased the number n of fragments from 11
to 20 and measured data storage assurance using our model. The parameters
k and N were set to 3 and 75, respectively. We also varied threshold m from 4
to 7. Results depicted in Fig. 1.6 confirm that the system assurance is reduced
with the increasing value of fragment number n. The results indicate that a
large number of file fragments leads to low data storage assurance of the file.
This assurance trend is reasonable because more fragments are likely to be
allocated to storage nodes with the same vulnerability. If one storage node
is compromised by an attacker, fragments stored on nodes with the same
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Figure 1.7: Impact of PL(the probability that a fragment might be
intercepted by an attacker during the fragment’s transmission.)

vulnerabilities can also be obtained by the attacker, who is therefore more
likely to be able to reconstruct the file from the disclosed fragments.

In addition, Fig. 1.6 shows that increasing the value of threshold m can
improve storage assurance. This pattern is consistent with the results obtained
in the previous experiments.

1.7.5 Impact of Threshold m on Storage Assurance

Figs. 1.3-1.6 clearly show the impact of threshold m on storage assurance of a
distributed system. More specifically, regardless of other system parameters,
the storage assurance always goes up with the increasing threshold value m.
The results indicate that the more fragments an attacker needs in order to
reconstruct a file, the higher data storage assurance can be preserved for the
file in distributed storage systems. These results suggest that to improve
data storage assurance of a file, one needs to partition the file and allocate
fragments in such a way that an attacker must compromise more server groups
(the best case is m server groups when all fragments of the file are allocated
to nodes of different server types) in order to reconstruct the file.

1.7.6 Impact of PL on Dynamic Assurance

Now we are in a position to evaluate dynamic assurance of distributed storage
systems. The three parameters μ1, μ2, and μ3 in Eq. 1.7 have an important
impact on dynamic assurance because they indicate whether there is risk
during fragment transmission. Please refer to Sections 1.7.1 to 1.7.5 for details
on the impacts of a set of parameters on data storage assurance. PL - the
probability that a fragment might be intercepted by an attacker during the
fragment’s transmission through an insecure link - has a noticeable impact on
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dynamic assurance of a distributed storage system provided that threshold
m is small (e.g., smaller than 9). Fig. 1.7 shows the dynamic assurance of
a distributed system when PL is varied from 0 to 8 ∗ 10−3 by increments
of 1 ∗ 10−3. We also vary threshold m (i.e., m is varied from 7 to 10) to
evaluate the sensitivity of dynamic assurance on parameter PL under different
threshold m.

Fig. 1.7 demonstratively confirms that when threshold m is equal to or
smaller than 8, a large value of PL results in low dynamic assurance of the
system. These results are expected since a high value of PL means that the
transmitted fragments are likely to be intercepted by an attacker. Once the
attacker has collected enough fragments of a security-sensitive file, the file can
be reconstructed. When thresholdm is larger than 8, the dynamic assurance is
not noticeably sensitive to the probability PL that a fragment is compromised
during its network transfer.

1.7.7 Impact of q on Dynamic Assurance

Like parameter PL, the number q of fragments transmitted to and from a
storage cluster also has an impact on the dynamic assurance of a distributed
storage system. Intuitively, Fig. 1.8 shows that when the number of fragments
of a file that must be transmitted through insecure links is increasing, the
dynamic assurance of the file drops. Interestingly, when threshold m is larger
than 8, the dynamic assurance becomes very insensitive to the number q of
fragments. This observation suggests that when the threshold is small, the S-
FAS fragment allocation scheme must specifically attempt to lower the value
of q in order to maintain a high dynamic assurance level.

In addition, we observe from Fig. 1.8 that dynamic assurance is always
lower than the corresponding storage assurance (where q=0 in Fig. 1.8). This
trend is always true because in a dynamic environment, file fragments have
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Figure 1.9: File Size and Fragment Number Impact on System Throughput

to be transmitted through insecure network links where malicious users may
intercept the fragments in order to reconstruct files.

1.7.8 Performance Evaluation of S-FAS

We made use of the prototype to evaluate the performance of S-FAS. We
conducted some experiments by varying two parameters which noticebly affect
both security and performance. We conducted an experiment to test the file
allocation process by varying the workload and fragment number of the S-FAS
scheme as described in the following.

• File size: In our experiments, the test file size is varied from 950MB(996147200
bytes) to 2300MB(2411724800 bytes). The details can be seen in the
corresponding figures.

• Fragment number of a file: We varied the fragment number from 3 to
15. We set the upper bound to less than 16, since we have 16 storage
nodes in our test bed, and the S-FAS performs better when one storage
node stores one fragment of a file at most.

Fig. 1.9(a) plots the impact of the allocating file size on the throughput of
S-FAS. From Fig. 1.9(a), we observe that the S-FAS scheme improves the
throughput compared with the traditional non-fragmented storage method.
Because we use the multi-threading method to deal with the fragments of a
file in the S-FAS scheme, the system performance is significantly improved in
our scheme. The other trend we can observe from Fig. 1.9(a) is that with
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the increasing of file sizes, the system throughput firstly increases and then
decreases after the file size is larger than 1.2GB. This trend applies to S-FAS
and the non-S-FAS scheme. When file size is relatively small, the throughput
increases with the increasing of the file size. The reason is that the load is still
below the upper bound of the system peak performance. This experiment for
high-performance distributed storage systems suggests that implementing the
S-FAS scheme using multi-threading method is very important.

Fig. 1.9(b) shows the impact of the fragment number on the throughput.
Fig. 1.9(b) shows that the throughput goes up when we increase the fragment
number used in the S-FAS scheme. Because we use one thread to deal with
one fragment of a file in the S-FAS scheme, the performance is improved with
the increasing number of the fragments. The throughput does not noticeably
change when the number of fragments is anywhere between 7 and 11, because
we set the thread number equal to 8. When a file has more than 8 fragments,
the first 8 fragments are concurrently processed by the multi-threads while the
other fragments are waiting to be served. We can conclude from Fig. 1.9(a)-
Fig. 1.9(b) that using multi-threading method can improve the throughput
compared with the traditional scheme.

1.8 CONCLUSION

It is critical to maintain the confidentiality of files stored in a distributed
storage system, even when some storage nodes in the system are compromised
by attackers. In recognizing that storage nodes in a distributed system have
heterogeneous vulnerabilities, we investigated a secure fragment allocation
scheme by incorporating secret sharing and heterogeneous vulnerability to
improve security of distributed storage systems.

We addressed the security heterogeneity issue by categorizing storage servers
into different server-type groups (or server group for short), each of which rep-
resents a level of security vulnerability. With heterogeneous vulnerabilities in
place, we developed a fragment allocation scheme called S-FAS to improve
security of a heterogeneous distributed system. S-FAS allocates fragments of
a file in such a way that even if attackers compromised a number of server
groups but fewer than k fragments are disclosed, the file cannot be recon-
structed from the compromised fragments.

To evaluate the S-FAS scheme, we built the static and dynamic assur-
ance models in order to quantify the assurance of a heterogeneous distributed
storage system processing file fragments. We developed a SAP file allocation
algorithm based on the analysis of the assurance model as well as the proposed
S-FAS scheme. In order to measure the performance of the S-FAS scheme and
the algorithm, we built a prototype in a real-world distributed storage system.

We demonstrated how S-FAS incorporates the vulnerability heterogene-
ity feature into file fragment allocation for distributed storage systems. Ex-
perimental results show that increasing heterogeneity levels can improve file
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assurance in a distributed storage system. The experimental results of our
prototype implementation offer us inspiration on how to use S-FAS to effi-
ciently improve security and performance in distributed storage systems with
heterogeneous vulnerabilities.
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