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Abstract—By introducing an extra dimension to the inputs, 

sigmoid function can simulate the behavior of traditional RBF 

units. This paper introduces a sigmoid based RBF neuron and 

compares it with traditional RBF neuron. Neural networks 

composed of these neurons are trained with ErrCor algorithm on 

two classic experiments. Comparison results are presented to 

show advantages of the sigmoid based RBF model. 
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I.  INTRODUCTION  

Inspired by biological neural networks, artificial neural 
networks (ANN) are widely applied in function 
approximation, classification, data processing and pattern 
recognition. As a special type of ANN that uses radial basis 
function as activation function, radial basis function (RBF) 
networks are found more convenient and more powerful than 
conventional sigmoid neural network[1][2]. Recent research 
[3] compared traditional sigmoid neural networks with RBF 
networks and concluded that RBF networks worked better in 
regular function approximation, RBF networks performed 
more robustly and tolerantly than traditional neural networks 
while dealing with noised input data set. 

Though RBF networks are powerful and easy to use, they 
are usually criticized for not reassembling biological neurons. 
On the other hand, biological neurons are not able to compute 
a distance in multidimensional input space. In fact, for some 
special problems, like two-spiral problem, traditional RBF 
networks don’t work quite efficient because of its locally 
tuning mechanism and flat limit property. To improve these 
drawbacks of traditional RBF networks, many attempts were 
made. A method to simulate traditional RBF unit with sigmoid 
function by projecting inputs on a hyper sphere [4] solves this 
limit of conventional RBF and improves the computation 
significantly. This paper presents the implementation of this 
proposed model and compares it with traditional RBF neural 
networks through several experiments. 

The paper is organized as following. In the section II, the 
fundamentals of traditional RBF networks and RBF unit are 
presented briefly. Section III introduces the sigmoid based 
RBF model. Section IV gives a brief introduction of Error 
Correction (ErrCor) algorithm for RBF networks training. In 
Section V, several classic experiments are taken to compare 
these models. 

II. FUNDAMENTALS OF RBF NETWORKS AND UNITS 

A. RBF networks 

RBF networks have the fixed structure with three layers: 
an input layer, a hidden layer with RBF activation function 
and a linear output layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Radial basis function 

A radial basis function depends only on the distance 
between input(X) and center(C). 

)(),( CXCX                       (1) 

In which   represents Euclidean distance. 

There are different types of RB function like multiquadric, 
inverse quadratic, etc. Most popular used is Gaussian function: 
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In which, X is input vector, C is center vector and   is 

width. )(  represents output of the RBF unit. Figure 2 

shows a 2-dimension example of RBF with center (0,0) and 
width(1). 
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Fig. 1. RBF network structure 
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Fig. 2. RBF (C=(0,0),  =1) 
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C. Network computation 

Because of the fixed three layer structure, it’s very easy to 
compute RBF networks. Consider the network in Figure 1, it 

has N inputs ( 1x , 2x … Nx ), H hidden neurons and one 

output(y). Assume the weight connecting the thi  input to the 

thh  hidden neuron is
in

hiw , , and the weight connecting the thh  

hidden neuron to output neuron is
o

hw . The computation is 

processing in following three steps: 

1) Multiply all the inputs with corresponding weights of 
each hidden neuron. Results will be inputs of each 
RBF neuron.  
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2) Compute output of each hidden RBF neuron ( hO ). 
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3) Multiply all the hidden neuron outputs with output 
weights. 
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III. SIGMOID BASED RBF UNIT AND NETWORK 

From above introduction to RBF networks, the advantages 
of RBF networks over conventional neural networks are 
obvious. Conventional sigmoid neuron can only linearly 
divide space into two categories. Therefore, in order to 
separate one cluster in 2-dimension as shown in Fig. 3, at least 
3 sigmoid neurons are needed; likewise, at least N+1 sigmoid 
neurons are needed to separate the cluster in N-dimension. 
While the same problem in any dimension can always be 
solved with only one RBF neuron. The 2-dimension situation 
is shown in Fig. 4.  

On the other hand, as the property shown in Fig. 2, RBF 
unit only has output value around its center and all the other 
parts will be zero. The single layer structure of RBF networks 
make all the RBF units independent to each other. As a result, 
every unit only cares one part of the function to be 
approximated and doesn’t affect other parts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Except these advantages over traditional neural networks, 
RBF networks are criticized that they behave differently than 
biological neurons since actual neurons cannot compute a 
distance between an input and a stored pattern (center). To 
solve this dilemma, a simple way is to increase the input 
dimension by nonlinear transformation. It can be done in 
several ways [5-8]. But it seems that the most efficient way is 
to project input space into a sphere [4]. Assume inputs are 

( 1X , 2X ,… NX ), an extra input can be calculated as: 
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In which, R represents predefined radius. 
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Fig. 5. Sigmoid neuron 
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Fig. 3. Contour of sigmoid neurons to separate cluster 
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Fig. 4. Contour of RBF neuron to separate cluster 
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 In this way, the problem dimension increases from N to 
N+1. All the input points are mapped onto a half-hyper sphere 
with radius R in the N+1 dimension space. The sigmoid 
function is cutting the half-hyper sphere with a hyper plane 
whose equation is 

0*...** 1122110   NN wXwXwXw    (7) 

The points above this hyper plane tend to be convex while 
those points below it tend to be flat. This property is obviously 
the advantage of RBF unit. 

In this new “RBF” unit, the center would be proportional 

to the weights ( 1w , 2w ,… 1Nw ) and its Euclidean norm is R. 

Gain(k) of the sigmoid function will function like the width of 
traditional RBF unit. Fig. 6 shows an example transform from 

2D to 3D. In which, 10gain  and 
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Fig. 7 shows the final output of the sigmoid neuron. 
Comparing this figure with Fig. 2, all advantages of traditional 
RBF unit can be realized in the sigmoid based “RBF” unit. 

In fact, the sigmoid based RBF neuron is more flexible 
than traditional RBF neuron. Not only the output shown in Fig. 
7 can be achieved, with the proposed sigmoid based RBF 
neuron, we can also get output figure with a flat top when 
adjusting those input weights, as shown in Fig. 8. 

 

 

 

 

 

 

 

 

 

 

 

Another advantage of sigmoid based RBF network 
compared to traditional RBF network is the training cost. 
Review section II, traditional RBF networks training requires 
tuning of input weights, hidden neurons’ centers and widths, 
and output weights. While sigmoid based RBF networks only 
need to train input weights (including bias weights) and output 
weights. Assume for an N-input network, consider the 
traditional RBF network shown in Fig. 1, every time add a 
new neuron, (2*N+2) more parameters (N input weights, N-
dimension center, width and 1 output weight) will be added 
for the network. While for sigmoid RBF network, as Fig. 9 
shows, every increased neuron only needs to add (N+3) more 
parameters (N+2 input weights, including added input and 
bias, 1 output weight) for training. As a result, sigmoid based 
RBF networks training is simpler and more efficient compared 
to traditional RBF networks, especially for multiple-dimension 
problems. 

 

 

 

 

 

 

 

 

 

 

 

IV. TRAINING ALGORITHM 

One of the core problems to train RBF networks is to 
determine the structure and centers for the network. Random 
selection of centers is obviously not an effective option. Many 
attempts were made to find an optimal way. Moody and 
Darken [9] proposed a method to determine the centers and 
widths of receptive fields with self-organized selection. S. 
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Fig. 6. Cutting hypersphere 
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Fig. 7. Output figure 
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Fig. 8. Output figure with flat top 
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Fig. 9. Sigmoid based RBF network 
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Chen, C. F. N. Cowan, and P. M. Grant [10] applied an 
orthogonal least square (LS) algorithm to evaluate the optimal 
number of hidden units. Wu and Chow [11] presented an 
extended self-organizing map to optimize the number of 
hidden units. Orr [12] combined forward subset selection and 
zero-order regularization to select the centers of RBF 
networks. 

In this paper, we use the ErrCor algorithm [13] for network 
construction and use Levenberg-Marquardt (LM) algorithm 
[14] to train the RBF networks. 

ErrCor algorithm is efficient and easy to process. It adds 
the hidden RBF neuron one by one. Every time before adding 
the new neuron, train the whole network and evaluate the error 
of each pattern, then select the pattern with biggest error as 
center of the new neuron. Repeat this process iteratively until 
the desire error arrives. Following shows pseudo code of this 
algorithm: 

 

 

 

 

 

 

 

In the process, we use LM algorithm to train the whole 
network. LM algorithm provides a numerical solution to the 
problem minimizing a function, especially for nonlinear, over 
a space of parameters of the function. It interpolates between 
the Gauss-Newton algorithm (GNA) and the method of 
gradient descent and it’s more robust than GNA and much 
faster than gradient descent. The pseudo code of LM 
algorithm is shown below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Using ErrCor algorithm to construct network and LM 
algorithm to train, RBF networks can work efficient on 
function approximation, classification problems.  

V. EXPERIMENTS 
In this section, parity-N problem and a highly nonlinear 

2D bench peak function are presented to test traditional RBF 
networks and sigmoid based RBF networks. In both 
experiments, ErrCor algorithm is used to train these two types 
of networks and experiments results are given to show 
differences between them. 

The testing environment used for proposed experiments is: 
Windows 7 Professional 64-bit operating system; Intel Core2 
Quad CPU Q8400 @2.66GHz; with 4.00GB RAM.  

A. Peaks function approximation 

Peaks function is a highly nonlinear function of two 
variables obtained by translating and scaling Gaussian 
distributions. As a result, RBF network is the best option to 
approximate the peaks function. In this paper, peaks function 
with following formula is used to test the sigmoid based RBF 
network. Fig. 10 shows the output of peaks function with 
50X50 resolution. 

  

 

 

 

 

 

 

 

 

 

 

 

                  

To approximate peaks function, 15X15 points are used to 
train the RBF networks and 80X80 points are used as test data 
set for validation. With ErrCor algorithm, both traditional 
RBF networks and sigmoid based RBF networks increase 
hidden neurons from 1 to 20. Fig. 11 shows the root mean 
square errors(RMSE) observations of training and validation 
while adding each hidden neuron.  

From the training observation, we can see both types of 
RBF networks work efficient and quite small RMSE (smaller 
than 1e-3) arrived while approximating peaks function. This 
also proves that proposed sigmoid based networks can 
simulate behavior of traditional RBF networks well. Due to 
the advantages in local tuning, traditional RBF networks.  

//  pseudo code of ErrCor algorithm 

while 1 

     Evaluate error of each pattern; 

     Calculate SSE;   // Sum of Squared Errors 

     if SSE<desired SSE 

            break; 

     end; 

     C=pattern with biggest error; 

     Add a new neuron with center=C; 

     Train the whole network; 

end; 

// pseudo code of LM algorithm 

mu=0.1; mu_max=10e20; mu_min=10e-20; 

Rearrange all the parameters(weights) in a vector(W); 

for iter=1:maxiter 

     count=0; 

     calculate Jacobian matrix(J); // derivatives 

gradient=Jacobian’*error; 

hessian=Jacobian’*Jacobian; 

del=inv(hessian+mu*I)*gradient;// change of weights 

W_back=W; 

while 1 

     W=W_back+del; 

     Evaluate SSE(iter); 

     if SSE(iter)<=SSE(iter-1) 

           if mu>mu_min 

                mu=mu/10; 

           end; 

          break; 

      end; 

     if mu<mu_max 

          mu=mu*10; 

     end; 

     count=count+1; 

     if count>5 

           break; 

     end; 

end; 

end; 
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Fig. 10. Peaks function 
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converge faster as number of hidden neurons increases and 
errors decreases 

 

 

 

 

 

 

 

 

 

  

B. Parity-N Problem 

Parity-N problems have been studied deeply in many 
literatures [15-16]. The N-bit parity function can be 

interpreted as a mapping (defined by 
N2  binary vectors) that 

indicates whether the sum of the N elements of every binary 
vector is odd or even. Fig. 12 shows the problem when N is 2. 

 

 

 

 

 

It is shown that threshold networks with one hidden layer 
require N hidden threshold units to solve the parity-N problem 
[17-18]. In this paper, considering RBF networks are more 
powerful, we increase number of hidden neurons to N while 

training parity-N problem. For 
N2  patterns in parity-N 

problem, 70% of them are randomly selected as training data 
set, and the remaining 30% are used to test the trained neural 
network.  Table I shows the training time and errors 
comparisons between traditional RBF networks and sigmoid 
based RBF networks for training parity-N problem while N 
ranges from 5 to 10.   

TABLE I.  TRAIN COMPARISON 

Parity-
N 

Proble
m 

Traditional RBF Sigmoid based RBF 

Trainin
g 

Time(s) 

Train 
RMS

E 

Test 
RMS

E 

Trainin
g 

Time(s) 

Train 
RMS

E 

Test 
RMS

E 

N=5 2.06 0.00 13.94 0.62 0.00 2.09 

N=6 5.24 0.28 11.12 1.44 0.00 0.58 

N=7 13.48 0.40 4.98 6.42 0.00 0.02 

N=8 37.86 0.47 4.83 15.23 0.01 0.25 

N=9 79.27 0.47 4.96 40.71 0.15 0.38 

N=10 228.54 0.49 3.50 146.91 0.00 0.15 

a. For parity-N problem, increase hidden neurons from 1 to N 

b. Every time adding a new neuron, 200 iterations are trained 

As mentioned in section III, sigmoid based RBF networks 
tune less parameters during training compared to traditional 
RBF networks. As a result, as the training time comparison 
shown in Table I, it costs less time to train sigmoid based RBF 
networks than traditional RBF networks. From the training 
and testing root mean square error (RMSE) comparison, it can 
be concluded that sigmoid RBF networks converge and 
generalize much better than traditional RBF networks. Fig. 13 
shows a detailed comparison of training process while training 
parity-10 data set. 

 

 

 

 

 

 

 

 

 

 

VI. CONCLUSION 

This paper implements a sigmoid based RBF neuron, 
which derives from traditional sigmoid neuron but can behave 
similar to RBF neuron. The proposed sigmoid based RBF 
neuron and neural networks composed of it are compared with 
traditional RBF unit and networks in detail. And it is shown 
that the proposed sigmoid based RBF neuron is more flexible 
than traditional RBF neuron. Finally these two types of 
networks are trained on a highly nonlinear peaks function 
approximation and a classic parity-N problem. The 
experiments results show that the sigmoid based RBF 
networks work more efficient than traditional RBF network, 
especially for multi-dimension classification and 
approximation. Traditional RBF networks work better on local 
error tuning in final stage of training. 
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