
Philip Reiner, Bogdan M. Wilamowski, "Nelder-Mead Enhanced Extreme Learning Machine",  17-th IEEE Intelligent 
Engineering Systems Conference, INES 2013, Costa Rica, June 19-21., 2009, pp. 225-230 

 

 

Nelder-Mead Enhanced Extreme Learning 

Machine 

Philip Reiner, Bogdan M. Wilamowski 

Department of Electrical and Computer Engineering, Auburn University, Auburn, USA 

Email: {pdr0001, wilambm}@ auburn.edu 

 

Abstract – Many algorithms such as Support Vector 

Regression (SVR), Incremental Extreme Learning Machine (I-

ELM), Convex Incremental Extreme Learning Machine (CI-

ELM),  and Enhanced random search based Incremental 

Extreme Learning Machine (EI-ELM) are being used in 

current research to solve various function approximation 

problems.  This paper presents a modification to the I-ELM 

family of algorithms targeted specifically at Single Layer 

Feedforward Networks (SLFN) using Radial Basis Function 

(RBF) nodes.  The modification includes eliminating 

randomness in both the center positions of the RBF units as 

well as the widths of the RBF units. This is accomplished by 

assigning the center of each incrementally added node to the 

highest point in the residual error surface and using Nelder-

Mead’s Simplex method to iteratively select an appropriate 

radius for the added node.  Using this technique, the properties 

of I-ELM that allow for universal approximation and 

appropriate generalization are preserved, while the sizes of the 

RBF networks are greatly reduced. 

Index Terms – Neural Networks, Machine Learning, RBF 

Networks, Function Approximation, Radial Basis Function, 

Support Vector Machines. 

I. INTRODUCTION 

Artificial neural networks (ANNs) are widely used as 

universal approximators and have been proven to have good 

approximation capabilities in the form of feedforward 

networks.  ANNs are popular because they can provide 

complex nonlinear mappings directly from input data.  They 

are capable of providing models for highly nonlinear and 

noisy data that is difficult to handle using classical 

parametric techniques.  While there are many different kinds 

of ANN architectures, SLFNs are considered very simple 

and have been thoroughly investigated for approximation 

purposes. 

For this paper, only SLFNs with RBF nodes in the 

hidden layer are investigated.  The output function of a 

SFLN can be described by the following equation: 

 

 ( )  ∑     ( ) 
     (1) 

Where n is the number of nodes in the hidden layer of the 

network, βi is the output weight for hidden node i, and g(x) 

is the RBF, or activation function, for node i. 

If this activation function, g(x), is continuous, has finite 

bounds, and is not constant, then a SFLN architecture is 

capable of producing good approximations of continuous 

mappings [1].  Furthermore, it was shown by Leshno [2] 

that SLFNs constructed incrementally can approximate any 

continuous function with non-polynomial hidden units.  It 

was shown by Park and Sandberg [3] that a network of RBF 

units can provide good approximations of any continuous 

function if the RBF units are carefully chosen. Yu et al, 

demonstrated the feasibility of RBF networks for practical 

purposes in [4]. 

Several algorithms such as Support Vector Regression 

(SVR) [5], [6] and the Extreme Learning Machine (ELM) 

family: I-ELM [7], CI-ELM [8], and EI-ELM [9], can be 

used to create single hidden layer RBF networks for 

approximation.  These algorithms have all been thoroughly 

tested on real world datasets, and it has been shown that 

they are able to achieve good training and validation errors.  

The algorithm presented in this paper attempts to achieve 

similar or better training and validation errors while creating 

a more compact network.  It was shown in [10] that more 

compact networks tend to show better generalization 

properties. 

The rest of this paper is organized in the following way: 

Section II reviews the fundamentals of RBF networks and 

the Simplex method for parameter optimization.  Section III 

outlines the details of the I-ELM algorithm and how the 

proposed NME-ELM algorithm attempts to improve the 

performance. Section IV presents experimental results done 

on real world datasets.  Finally, Section V summarizes and 

concludes the results. 

 

 



Philip Reiner, Bogdan M. Wilamowski, "Nelder-Mead Enhanced Extreme Learning Machine",  17-th IEEE Intelligent Engineering Systems 
Conference, INES 2013, Costa Rica, June 19-21., 2009, pp. 225-230 

 

 

 

 

II. COMPUTATIONAL FUNDAMENTALS 

Let us establish some indices and terms that will be 

used throughout the rest of this paper. 

 p is the index from 1 to P, where P is the number 

of input patterns. 

 n is the index from 1 to N, where N is the number 

of RBF nodes in the network. 

 d is the index from 1 to D, where D is the number 

of dimensions in the input set. 

 Input patterns, x, of dimension, D, are described as 

xp=[xp,1, xp,2, …, xp,D]. 

Other parameters will be explained as needed. 

 

A. Review of RBF Networks 

The standard architecture of a SLFN contains three 

layers.  It consists of P, D, dimensional inputs, N units with 

activation function gn(x) and output weight βn, and a single 

summing unit at the output layer.  Notice that problems with 

multiple outputs can be processed as a combination of single 

output problems. 

Equation (1) given in the introduction indicates the 

output of the constructed network.  The output of each 

individual RBF node is given by: 

  ( )      ( 
‖     ‖

 

  
)  (2) 

Where: cn and σn are the center and width of the RBF 

unit, n, respectively. The Euclidean Norm computation is 

represented by ‖ ‖. 

As with most machine learning algorithms, NME-ELM 

attempts to minimize the error of the problem at each step.  

In order to do this, the error must be described in a way that 

can be evaluated and compared to previous errors at each 

step.  The parameters used in this paper to describe the error 

are: 

         (3) 

Where: ep is the error for pattern, p, and yp is the desired 

output for pattern, p. Equation (3) will allow the error for 

each pattern to be calculated at each training step.   

 To minimize the error, the magnitude of this value must 

be minimized.  In order to describe and minimize all of the 

errors at once, the root mean square error (RMSE) is used. 

     √
∑   

  
   

 
 (4) 

 

B. Nelder-Mead Simplex Algorithm 

The main attempt that NME-ELM makes at improving 

the ELM family of algorithms is to select an appropriate 

width, σn, for each node that minimizes the RMSE. The 

Nelder-Mead algorithm was originally published in [11]. 

Since then it has been widely used in a myriad of 

applications.  Its popularity stems from the fact that it is 

unconstrained and does not require the computation of 

derivatives of the function to be optimized. However, many 

studies such as what is presented in [12] show that the 

Nelder-Mead algorithm has many inefficiencies.  Some of 

these deficiencies were recently corrected in [13].  

Keeping this in mind, the Nelder-Mead algorithm was 

chosen for the task of optimizing the radius of each newly 

added node for the following reasons: the Nelder-Mead 

algorithm tends to produce significant improvement over the 

first few iterations, the Nelder-Mead algorithm does not 

require many calculations of derivatives only a few function 

values at each iteration, and finally, it is easy to understand 

and explain [14].  All of these properties allow the algorithm 

to be used to very quickly change the radius of each node so 

that the error is improved. 

The Nelder-Mead algorithm was proposed as a method 

for minimizing a real-valued function f(x) for     .   

According to [14], four scalar parameters must be specified 

to define a complete Nelder-Mead method: coefficients of 

reflection (ρ), expansion (χ), contraction (γ), and shrinkage 

(α). According to the original publication, these parameters 

should satisfy: 

                             (5) 

In almost all cases (and in this paper) these parameters are 

chosen to be: 

                  
 

 
        

 

 
. (6) 

At the beginning of the k
th

 iteration,    , a non-

degenerate simplex Δk is given, as well as its n+1 vertices, 

each of which is a point in    .  It is always assumed that 

iteration k begins by ordering and labeling these vertices as 

  
        

 , such that   
    

        
 . Where   

  

denotes  (  
 )  The k

th
 iteration generates a set of n+1 

vertices that define a different simplex for the next iteration. 

In terms of minimizing f, we refer to   
  as the best vertex 

and to     
  as the worst vertex.  For explanation purposes 

in this paper, only one iteration of the Nelder-Mead 

algorithm will be described and the superscript k will be 

omitted to avoid confusion.  The algorithm explanation 

shown in this paper was extracted from the explanatory 

publication [14]. 

The result of each iteration is one of two cases: 

(1) A single new vertex – the accepted point – replaces 

the vertex, xn+1 in the set of vertices for the next 

iteration. 



Philip Reiner, Bogdan M. Wilamowski, "Nelder-Mead Enhanced Extreme Learning Machine",  17-th IEEE Intelligent Engineering Systems 
Conference, INES 2013, Costa Rica, June 19-21., 2009, pp. 225-230 

 

 

(2) A shrink is performed and a set of n new points is 

generated that, together with x1, form the simplex 

at the next iteration. 

The steps of a single iteration of the Nelder-Mead 

Algorithm are: 

1. Order the n+1 vertices so that  (  )   (  )    

  (    ). 

2. Reflection.  Compute the reflection point xr from 

    (   ) ̂       ,  (7) 

where  ̂  ∑     
 
    is the centroid of the n best 

points. Then evaluate fr=f(xr).  If f1   fr < fn, accept 

the point and terminate the iteration. 

3. Expansion.  If fr < fn, calculate the expansion point xe,  

    ̂    (    ̂) (8) 

And evaluate f(xe).  If fe < fr, accept xe and 

terminate the iteration. Otherwise, accept xr and 

terminate the iteration. But if fr ≥ fn, move to step 4. 

4. Contraction.  Perform either and outside or inside 

contraction. 

If fn ≤ fr < fn+1 , perform an outside contraction.  

Calculate: 

    (    ̂)   ̂. (9) 

Evaluate f(xc).  If f(xc) < fr, accept xc and terminate 

the iteration. Otherwise, go to step 5. 

If fr ≥ fn+1, perform and inside contraction.  

Calculate: 

     (      ̂)   ̂ (10) 

Evaluate f(xcc).  If f(xcc) < fn+1, accept     and 

terminate the iteration.  Otherwise, go to step five. 

5. Shrink.  Evaluate f at the n points vi = x1 + α(xi – x1),  

i = 2,…, n+1.  The vertices of the simplex at the 

next iteration will consist of x1, v2, …, vn+1.  

Terminate the iteration. 

Typically this process only needs to be repeated 5-10 times 

for it to provide a very large improvement over the starting 

point.  Figures 1 and 2 depict the effects of each step in two 

dimensions, where the simplex is a triangle.  Both figures 

assume the values for the simplex parameters to be equal to 

those given in equation (6).   

 

Fig. 1. Nelder-Mead simplices after a reflection (left) and an expansion 

(right).  The original simplex is shown with a dashed line. 

 

 
Fig. 2. Nelder-Mead simplices after an outside contraction (left), an inside 

contraction (middle), and a shrink (right).  The original simplex is shown 

with a dashed line. 

 

III. I-ELM AND NME-ELM 

A. I-ELM algorithm 

The I-ELM algorithm was originally published in [7], 

and has spawned a family of algorithms known as Extreme 

Learning Machines that includes I-ELM, CI-ELM, and EI-

ELM.  Both CI-ELM and EI-ELM are algorithms that offer 

improvements to the I-ELM algorithm.  For this reason, the 

I-ELM algorithm will be covered, and then the proposed 

improvements will be presented.  For this section, we will 

go back to the indices and variables presented in Section II, 

A. The algorithm shown below was extracted from [7]. 

Given a training set  (     )              

     }, an activation function g(x), a maximum node 

number N, and an expected learning accuracy ε: 

As described before the activation function in equation (2) 

will be used. 

1. Initialize: Let the number of nodes, n = 0 and residual 

error, E = y. 

2. Learning:  

While (n < N) and (RMSE > ε) 

a. Increase the number of hidden nodes by 1. 

b. Assign random center cn and a width σn within an 

acceptable range for the new hidden node. 

c. Based on the random activation function and the 

error, calculate the output weight  n for the node 

   
∑     (  ) 

   

∑   (  )  
   

 (11) 

d. Calculate the residual error after adding the new 

hidden node: 

         ( ) (12) 

Where x and E are the vectors containing all of the 

input patterns and errors for each pattern 

respectively. 

            End while loop 

3. Output is calculated using equation (1). 

This algorithm will give a network consisting of a single 

hidden layer of RBF nodes connected with weights to a 



Philip Reiner, Bogdan M. Wilamowski, "Nelder-Mead Enhanced Extreme Learning Machine",  17-th IEEE Intelligent Engineering Systems 
Conference, INES 2013, Costa Rica, June 19-21., 2009, pp. 225-230 

 

 

summing output node.  It was proven in [7] that this 

network will work as a universal approximator. This 

algorithm allows for a very fast training time as there is only 

one calculation to make per iteration.  Most environments 

allow the calculation of   in matrix form to be very fast.   

 

B. The NME-ELM algorithm 

The goal of the NME-ELM algorithm is to provide 

similarly fast training times and errors, but to also provide a 

more compact network with better generalization properties.  

This is done by adjusting the I-ELM algorithm so that it 

now runs like the following: 

Given the same input data and activation functions that 

were used before: 

1. Initialize: Let the number of nodes, n = 0 and the error, 

E = y. 

2. Learning:  

While (n < N) and (RMSE > ε) 

a. Increase the number of hidden nodes by 1. 

b. Find the index, j, of the maximum error, epmax. 

c. Assign the center cn, of the new node to be the 

input pattern xj. 

d. Assume the initial value of    to be equal to epmax. 

e. Initialize the Nelder-Mead Simplex [11] algorithm: 

(1) Set the Simplex parameters according to 

Equation (6). 

(2) Choose some initial values for σn. 

(3) Calculate: 

    (    )  ∑ (         (  ))  
     

For each     .  These SSE and      values will 

be the initial f values and x values of the 

Simplex respectively.  

f. Perform k iterations of the Simplex algorithm (k is 

typically 5-10). 

g. Re-calculate    using equation (11). 

h. Calculate the residual error, E, using equation (12). 

End While Loop. 

3. Output is calculated using equation (1). 

The proposed algorithm still generates a SLFN that acts 

as a universal approximator.  Instead of a random center and 

width however, the algorithm chooses a center designed to 

eliminate the largest point in the error surface and a radius 

optimized based on this center selection.  In this way, it is 

expected that a more compact network can be generated. 

Let us examine the step by step construction process of 

the NME-ELM algorithm on a simple problem.  The 

problem chosen will be one period of a simple sine wave.  

The desired function is shown in Figure 3.   

 

Fig. 3 Desired sinusoidal function with the first center c1 shown by the red 

asterisk. 

Once the inputs and desired output are fed into the 

algorithm, a center and an initial weight for the first RBF 

node are chosen.  In this case, the center c1 = 1.5678, and is 

depicted in Figure 3 as the red asterisk.  The initial weight 

   = 1.000.  This is from the output of the sine function at 

input equal to c1.  Then the width σn is optimized using the 

Nelder-Mead algorithm.  This eventually gives σ1 = 1.1429.  

Now    is re-calculated using equation (11).  This gives 

    = 1.0714.  The output of the first node is shown in 

Figure 4.  

 
Fig. 4. The output of one node using NME-ELM. 

 

Now the new error is calculated using equation (12) and 

this error is used as the desired surface for the addition of a 

second RBF node.  Figure 5 shows the error surface (new 

desired curve) and the initially chosen center c2. 

 
Fig. 5.  The desired curve for the second node and the center c2. 

 

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1
Desired Curve

x

y

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

1.5
Desired Curve

x

y

 

 

Desired

C1

NME-ELM Out

0 1 2 3 4 5 6
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2
Error Curve

x

y



Philip Reiner, Bogdan M. Wilamowski, "Nelder-Mead Enhanced Extreme Learning Machine",  17-th IEEE Intelligent Engineering Systems 
Conference, INES 2013, Costa Rica, June 19-21., 2009, pp. 225-230 

 

 

Following the same process as before, the parameters 

for the second RBF unit are selected as:  

c2 = 4.7035, σ2 = 0.6797, and    = 1.0260.  Figure 6 shows 

the resulting output for two RBF units and the original 

desired surface.  With only two RBF units, the NME-ELM 

algorithm reaches a RMSE value of 0.0627.  If the algorithm 

is allowed to continue to a total of five RBF units, the 

RMSE value is as low as 0.0266. 

 

 
Fig. 6.  Desired surface and NME-ELM output after 2 RBF units have been 

added to the network.  RMSE = 0.0627. 

 

 

 

 

IV. EXPERIMENTAL RESULTS  

A. Highly Nonlinear Benchmark: Peaks Problem 

The peaks problem is a benchmark problem used to test 

how well the algorithm handles nonlinear data sets.  This 

problem can be described by the equation: 

   

   
   222

2253

22

9961exp7.28.13.0

99exp243276.0

9961exp
30

1
,

yxyxx

yxyxx

yxxyxz







    (13) 

It is used because it is easy to visualize the algorithm’s 

progress as it trains to the peaks problem.  This way it is 

possible to make sure that the algorithm is behaving as 

expected before attempting to solve some real world 

problems.   Figures 7 and 8 show the desired surface of the 

peaks problem and the training results of several algorithms 

on the peaks problem respectively.  

 
Fig 7.  Desired surface for the peaks problem. 

 

 
Fig 8.  Training results for different algorithms on the peaks problem. 

From Figure 8 it can be seen that the NME-ELM 

algorithm converges very quickly to nearly zero error for 

this problem.   

 

B. Real World Data 

In order to prove the robustness of the proposed 

algorithm, it is tested on real world data from the widely 

used UCI Repository of Machine Learning Databases [15].  

The results obtained are then compared to the results from 

the ELM family of algorithms and SVR.  The testing 

environment used consists of Windows 7 Professional 64-

bit operating system, an Intel Core i7-2600 CPU @ 3.4 GHz 

processor, and 8GB RAM.  MATLAB was used for the 

ELM algorithms and LIBSVM for SVR [16].  

For each real world data set that was tested, 20 runs 

were performed with a training set consisting of 70% of the 

data set and a testing set consisting of 30% of the data set.  

For each run, the training and test sets were randomly 

generated out of the original data set.  Then the runs were 

averaged and the standard deviation was calculated.  All 

input sets were normalized to [-1, 1] and all output sets were 

normalized to [0, 1]. 

Figure 9 shows the testing results for the NME-ELM 

algorithm on several real world datasets.  It can be seen that 

0 1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5

 

 

Desired

NME-ELM

-4
-2

0
2

4

-5

0

5
-10

-5

0

5

10

Desired Surface of Peaks Problem

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

Training RMSE for Different Algorithms on Peaks Problem

Number of RBF Units

R
M

S
E

 

 

NME-ELM

I-ELM

CI-ELM

EI-ELM

SVR



Philip Reiner, Bogdan M. Wilamowski, "Nelder-Mead Enhanced Extreme Learning Machine",  17-th IEEE Intelligent Engineering Systems 
Conference, INES 2013, Costa Rica, June 19-21., 2009, pp. 225-230 

 

 

the testing RMSE converges within 50 RBF units for each 

problem.  This RMSE is comparable to the RMSE obtained 

by the ELM algorithms, but in this case only 50 RBF nodes 

are used.   

The data presented in Table I shows that the NME-

ELM algorithm performs very well in terms of testing 

RMSE and network size.  The major shortcoming that 

becomes apparent by examining Table II is that the training 

time is much longer for NME-ELM than the ELM family 

and SVR.  This is probably due to the fact that the Nelder-

Mead algorithm requires the function output to be calculated 

many times per iteration.  

 
 Fig. 9.  Testing RMSE of NME-ELM on several real world datasets. 

V. CONCLUSION 

This paper presents a new algorithm that is designed to 

expand on the work done by the ELM family of algorithms.  

These algorithms generate a SLFN architecture using RBF 

activation functions for universal approximation.  Previous 

research [1]-[4] and [7] proves that RBF networks in a 

SLFN architecture can be used as universal approximators. 

Furthermore, [7] proves that these networks can be 

constructed using random hidden nodes.  This research is 

what created the ELM algorithms which show good 

generalization properties and fast training times. 

The intent of the algorithm presented in this paper 

(NME-ELM) is to achieve similar properties while creating 

a more compact network.   

These goals were realized by modifying the I-ELM 

algorithm in two ways: 

(1) Fix the center of each newly added node at the 

largest magnitude points of error so that this error is 

eliminated quickly.   

(2) Optimize the width of added RBF units to further 

minimize error.  For NME-ELM, this is done by using 

Nelder-Mead’s Simplex algorithm to choose an appropriate 

width for each newly added RBF unit. 

Experimental results, shown in section IV, show that 

the proposed algorithm achieves similar testing errors with 

fewer nodes.  The training time of the NME-ELM algorithm 

is considerably higher than the algorithms to which it was 

compared.  This is undoubtedly because of the way the 

Nelder-Mead Simplex algorithm must calculate the error 

values many times during each iteration.

 

TABLE I 

NME-ELM, EI-ELM, CI-ELM, AND SVR TRAINING TIME, TESTING RMSE, AND NETWORK SIZES ON UCI DATA SETS 

 

 

Problems 

NME-ELM EI-ELM (RBF, k=10) CI-ELM (RBF) SVR (RBF Kernel) 

Mean 

Time(s) 

Mean 

RMSE 

# 

Nodes 

Mean 

Time(s) 

Mean 

RMSE 

# 

Nodes 

Mean 

Time(s) 

Mean 

RMSE 

# 

Nodes 

Mean 

Time(s) 

Mean 

RMSE 

# 

SVs 

Abalone 15.378 0.1208 21 5.9603 0.0927 200 0.6098 0.0845 200 2.9060 0.0771 1121 

Auto Price 0.4331 0.0871 44 0.2571 0.1393 200 0.0299 0.1197 200 0.0912 0.0930 62 

Boston 

Housing 

1.3915 0.1120 50 0.7742 0.1622 200 0.0831 0.1682 200 0.0975 0.0925 145 

California 
Housing 

190.00 0.2141 18 29.920 0.1743 200 3.6035 0.1756 200 109.16 0.1127 7038 

Delta 

Ailerons 

33.686 0.0519 25 9.9601 0.0610 200 1.0091 0.0416 200 6.1117 0.0418 807 

Delta 
Elevators 

56.4552 0.0783 50 13.407 0.0814 200 1.5035 0.0566 200 3.3442 0.0530 2016 

Machine 

CPU 

0.5403 0.0745 24 0.3078 0.0777 200 0.0353 0.0675 200 0.0907 0.0539 31 

 

 

 

REFERENCES 

 

[1] K. Hornik, “Approximation capabilities of multilayer feedforward 
networks,” Neural Networks, vol. 4, no. 2, pp. 251–257, 1991. 

[2] M. Leshno and S. Schocken, “Multilayer feedforward networks 

with a nonpolynomial activation function can approximate any 
function,” Neural Networks, vol. 6, pp. 861–867, 1993. 

[3] J. Park and I. W. Sandberg, “Universal approximation using radial-

basis-function networks,” Neural Comput., vol. 3, no. 2, pp. 246–
257, Jun. 1991. 

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8
NME-ELM Testing RMSE

Number of Units

R
M

S
E

 T
e
s
t

 

 

Auto Price

Boston Housing

Delta Elevators

Machine CPU



Philip Reiner, Bogdan M. Wilamowski, "Nelder-Mead Enhanced Extreme Learning Machine",  17-th IEEE Intelligent Engineering Systems 
Conference, INES 2013, Costa Rica, June 19-21., 2009, pp. 225-230 

 

 

[4] H. Yu, T. Xie, S. Paszczynski, and B. M. Wilamowski, 

“Advantages of Radial Basis Function Networks for Dynamic 
System Design,” IEEE Transactions on Industrial Electronics, vol. 

58, no. 12, pp. 5438–5450, Dec. 2011. 

[5] V. N. Vapnik, Statistical Learning Theory, 1st ed. Wiley-
Interscience, 1998. 

[6] A. J. Smola and B. Schölkopf, “A tutorial on support vector 

regression,” Statistics and computing, vol. 14, no. 3, pp. 199–222, 
2004. 

[7] G.-B. Huang, L. Chen, and C.-K. Siew, “Universal approximation 

using incremental constructive feedforward networks with random 
hidden nodes,” IEEE Transactions on Neural Networks, vol. 17, no. 

4, pp. 879 – 892, Jul. 2006. 

[8] G.-B. Huang and L. Chen, “Convex incremental extreme learning 
machine,” Neurocomputing, vol. 70, no. 16–18, pp. 3056–3062, 

Oct. 2007. 

[9] G.-B. Huang and L. Chen, “Enhanced random search based 
incremental extreme learning machine,” Neurocomputing, vol. 71, 

no. 16–18, pp. 3460–3468, Oct. 2008. 

[10] B. M. Wilamowski, “Neural network architectures and learning 
algorithms,” IEEE Industrial Electronics Magazine, vol. 3, no. 4, 

pp. 56 –63, Dec. 2009. 

[11] J. A. Nelder and R. Mead, “A Simplex Method for Function 
Minimization,” The Computer Journal, vol. 7, no. 4, pp. 308–313, 

Jan. 1965. 

 
 

 

 
[12] E. Boyd, K. W. Kennedy, R. A. Tapia, V. J. Torczon, and V. J. 

Torczon, “Multi-Directional Search: A Direct Search Algorithm for 

Parallel Machines,” Rice University, 1989. 
[13] N. Pham and B. M. Wilamowski, “Improved Nedler Mead’s 

Simplex Method and Applications,” Journal of Computing, vol. 3, 
no. 3, pp. 55–63, Mar. 2011. 

[14] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, 

“Convergence Properties of the Nelder-Mead Simplex Method in 
Low Dimensions,” SIAM Journal of Optimization, vol. 9, pp. 112–

147, 1998. 

[15] A. Asuncion and A. Frank, “UCI Machine Learning Repository.” 
University of California, Irvine, School of Information and 

Computer Sciences, 2010. 

[16] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector 
machines.” ACM Transactions on Intelligent Systems and 

Technology, 2011. 

 


