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Abstract—This paper proposes an offline algorithm for 

incrementally constructing and training radial basis function 

(RBF) networks. In each iteration of the Error Correction 

(ErrCor) algorithm, one RBF unit is added to fit and then 

eliminate the highest peak (or lowest valley) in the error surface. 

This process is repeated until a desired error level is reached. 

Experimental results on real world data sets show that the ErrCor 

algorithm designs very compact RBF networks compared to the 

other investigated algorithms. Several benchmark tests such as 

the duplicate patterns test and the two spiral problem were 

applied to show the robustness of the ErrCor algorithm. The 

proposed ErrCor algorithm generates very compact networks.  

This compactness leads to greatly reduced computation times of 

trained networks. 

 

Index Terms—Radial Basis Function Networks, Incremental 

Design, Error Correction, Levenberg Marquardt Algorithm 

I. INTRODUCTION 

RTIFICIAL neural networks (ANNs) are considered as 

universal approximators and applied to solve various 

problems in industrial fields, such as motor control [1-2], 

robotic manipulators [3-4], nonlinear compensations [5] and 

pattern recognition [6]. 

There are two long-time discussed issues in artificial neural 

networks: 

(1)  How large should the network architecture should be? 

(2)  How is a proper training algorithm created or 

selected? 

Issue (1) coincides with a common mistake in neural 

networks. It is quite easy to get error convergence when 

training larger than required networks, but these networks in 

most cases will respond very poorly to patterns not used for 

training. Therefore, in order to avoid over-fitting problems, the 

networks should be as compact as possible [7]. Also, it is often 

the case that first order gradient methods are not able to find 

solutions for these compact networks. In these situations 

second order algorithms are superior [8-9]. 

For issue (2), there is no doubt that gradient-based methods 

are the most straightforward ways to train neural networks. 

First order gradient methods [10] are very stable if the learning 

constant is small, but a tradeoff for good stability is long 

training time, especially for very accurate approximation. 

Usually, second order algorithms show faster convergence and 

more powerful search ability than first order algorithms 

[11-14].  

For RBF networks, issue (1) becomes more complex than 

neural networks. This is because results depend not on network 

weights but also on the locations and widths of RBF units [15].  

Several strategies and algorithms are proposed to find good 

initializations of RBF units and proper sizes of RBF network 

architectures [16-19]. Huang et al. proposed a generalized 

growing and pruning (GGAP) algorithm [20-21] to find proper 

sizes of RBF networks. Based on the evaluation of 

“significance”, RBF units are added one-by-one with selected 

initial conditions or disregarded if they make little contribution 

to network performance.  However, the GGAP algorithm could 

not properly handle problems with complex and high 

dimensional probability density distribution. This disadvantage 

of the GGAP algorithm was overcome in [22] by introducing 

the Gaussian mixture model (GMM) to approximate the GGAP 

evaluation formula. Compared to the GGAP algorithm, the 

GGAP-GMM algorithm can design RBF networks with less 

complexity for solving the same problem. Other methods also 

attempt to find a correct architecture for practical problems 

while maintaining a desired accuracy [23-25].  

The algorithms mentioned above are primarily developed as 

online algorithms, but they work well as offline algorithms. The 

training time is very important for online training algorithms, 

because networks are being continuously re-trained. However, 

for offline trained systems which use algorithms such as: 

Support Vector Regression (SVR) [26-27], Incremental 

Extreme Learning Machine (I-ELM) [28], Convex I-ELM 

(CI-ELM) [29], Enhanced random search based I-ELM 

(EI-ELM) [30], and Decay RBF Neural Networks (DRNN) 

[31], the execution time of trained networks is much more 

important. All these offline algorithms perform two tests 

simultaneously: building a network with RBF units and training 

it. Notice that the execution time of the trained RBF networks is 

proportional to the number of RBF units used. Meaning that a 

compact network is more important for offline algorithms. 

Most popular offline algorithms for training RBF networks 

are only adjusting the easy to train parameters (such as height of 

RBF units), while other parameters such as locations of RBF 

centers and widths of RBF units are fixed or selected randomly. 

The exception is a recently published ISO algorithm [32].  As a 

consequence, the ISO algorithm is capable of training RBF 

networks with tens rather than hundreds of units to reasonably 

low errors. However, the ISO algorithm requires that a network 

be initialized with a predetermined number of units and a set of 

randomly generated parameters for each unit.  This 

randomization leads to inconsistent training in some situations. 

Consequently, the same problem must be trained many times to 

ensure that a good solution has been reached.  And frequently, 

two or more RBF units are being adjusted to similar locations 

resulting in a larger than minimal network. 
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A common disadvantage of the algorithms mentioned above 

is that before a proper solution is reached, often tens or 

hundreds of experiments are needed with different settings of 

training parameters and random selections of initial conditions.  

However, with the proposed ErrCor algorithm, it is possible to 

reach an acceptable solution just with one try, because there are 

no learning parameters to be adjusted and there is no 

randomness in the process. 

The ErrCor algorithm works like other hierarchical learning 

methods [19-22] and [28-30]. The number of RBF units is 

increased one by one from scratch, and each new RBF unit is 

trained using a second order method as in [32] to compensate 

for residual errors. Once the residual errors reach a desirable 

level the algorithm stops. The prime goal of this research is to 

develop algorithms which can reach a desired error with the 

least number of RBF units. Another benefit of the proposed 

approach is that such small RBF networks, 10 to 100 times 

smaller than obtained with other algorithms, are much easier 

for practical implementation and much faster.  

II. COMPUTATIONAL FUNDAMENTALS 

A. Review of RBF Networks 

Fig. 1 shows the standard three-layer architecture of RBF 

networks. It consists of P, I dimensional inputs                           

xp=[ xp,1,xp,2…xp,I ] in the input layer, H RBF units in the hidden 

layer and a single linear unit in the output layer. Notice that, for 

problems with multiple outputs, they can be processed as the 

combination of several single output sub-problems.  

In this paper, equation (1) is applied as the kernel function of 

RBF units. Therefore, when applying pattern p, the output of 

RBF unit h is calculated as: 
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Where: ch and σh are the center and width of RBF unit h, 

respectively. ||•|| represents the computation of Euclidean 

Norm. 

The network output for pattern p is calculated by 
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Where: wh presents the weight on the connection between RBF 

unit h and network output. w0 is the bias weight of output unit. 

B. ErrCorr Fundamentals 

In order to improve the performance of RBF networks, 

training process is required to adjust parameters, such as 

centers, widths and output weights. In this paper, a 

modification of the Levenberg-Marquardt (LM) algorithm is 

used for parameter adjustment in RBF networks. The LM 

algorithm as described by [11] cannot be used to train problems 

with large numbers of patterns, because the size of the Jacobian 

becomes prohibitively large. Therefore, the algorithm was 

modified [14].  This way the second order algorithm can be 

used with data sets with basically unlimited number of training 

patterns. 

For the LM algorithm, [11] [14], the update rule is given by: 

  kkkkk gIQΔΔ
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Where: vector Δ consists of parameters, including centers c, 

widths σ and weights w; Q is the quasi Hessian matrix; I is the 

identity matrix; μ is the combination coefficient; g is the 

gradient vector. 

 Quasi Hessian matrix Q is calculated as the sum of sub quasi 

Hessian matrix qp 
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and gradient vector g is calculated as the sum of sub gradient 

vector ηp 
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Where: the training error ep is calculated as the difference 

between desired output yp and actual output op (2): 

ppp oye                                 (6) 

and elements of Jacobian row jp is calculated by: 
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 Considering the network parameters wh, ch,i and σh, for a 

given pattern p, elements the Jacobian row can be organized as 
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Fig. 1 RBF network with I inputs, H RBF units and one output unit. 
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Integrating equations (1), (2) and (6), with differential chain 

rule, the Jacobian row elements for pattern p in (8) can be 

rewritten as: 
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With equations (9-11), all elements of Jacobian row jp for the 

given pattern p can be calculated. After applying all patterns, 

quasi Hessian matrix Q and gradient vector g are obtained by 

equations (4-5), so as to apply the update rule (3) for parameter 

adjustment. 

III. ERRCORR DESCRIPTION 

The basic idea of the ErrCor algorithm is to use RBF units 

with kernel function (1) to create a peak/valley shape to 

compensate for the largest error in the error surface at the 

beginning of each iteration. 

In each experiment, for comparison, the Mean Square Error 

(MSE) and the Root Mean Square Error (RMSE) is used:  

  

                                 √
 

 
∑    
 
     (12) 

 

where: P is the number patterns; ep is the training/testing error 

for a pattern p, as given by (6). 

A. Graphical Interpretation of the Algorithm  

In order to illustrate the error correction process, let us 

present an example. ErrCor will be used to approximate the 

sinusoidal function (13) as shown in Fig. 2. 

xy sin                                (13) 

By going through the data of the curve in Fig. 2, the location 

(XA=4.7, YA=-0.9999) of the lowest valley (marked as A) is 

found. Then the first RBF unit can be added with initial center 

(XA=4.7), as shown in Fig. 3a. By applying the LM algorithm 

(section II.B) for parameter adjustment, the trained network is 

shown in Fig. 3b. Based on the training results, the outputs of 

the RBF network (Fig. 3b) are visualized in Fig. 4a and new 

error curve (Fig. 4b) is obtained as the difference between Fig. 

2 and Fig. 4a. Comparing the error curves in Figs. 2 and Fig. 4b, 

one may notice that, the lowest valley (marked as A) in Fig. 2 is 

eliminated from Fig. 4b.  This results in an RMSE of  0.2000. 

By observing the error curve in Fig. 4b, the lowest valley 

(marked as B) with the coordinates (XB=0.0, YB=-0.7238) can 

be found. Then, the second RBF unit is added with initial center 

(XB=0.0) as shown in Fig. 5a. After the training process, the 

network parameters have been adjusted as shown in Fig. 5b. 

Fig. 6 presents the actual outputs and errors obtained from the 

trained network (Fig. 5b). Again, one may notice that, the 

lowest valley (marked as B) in error surface Fig. 4b is 

eliminated from Fig. 6b. 

 Following this procedure, as the size of the RBF network 

grows, the error values in the error curve continuously decrease. 

After two nodes are created in the network, the RMSE becomes 

0.0025.  TABLE I shows the training results as the network is 

constructed up to 5 nodes. 

 
Fig. 2 Desired sinusoidal function 

 

   

              
(a)                                              (b) 

Fig. 3 RBF network with 1 RBF unit: (a) initial RBF network; (b) trained RBF 

network. Yellow RBF unit is newly added 

 

 
(a)                                                       (b) 

Fig. 4 Result curves of the RBF network in Fig. 4b with 1 RBF unit: (a) actual 

output curve; (b) error curve 

 

             
(a)                                              (b) 

Fig. 5 RBF network with 2 RBF units: (a) initial RBF network; (b) trained RBF 

network. Yellow RBF unit is newly added 

 

 
(a)                                              (b) 

Fig. 6 Result curves of the RBF network in Fig. 5b with 2 RBF units: (a) actual 

output curve; (b) error curve 
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TABLE I 

TRAINING RMSE AND #RBF UNITS FOR SINE PROBLEM 

# Units 1 2 3 4 5 

RMSE 0.2000 0.0025 0.0003 5.2e-5 2.5e-5 

B. Algorithm Implementation 

Generally, the proposed ErrCor algorithm can be organized 

as the pseudo code shown in Fig. 7. 

One may notice that, all the parameters are readjusted when 

the network is changed. It turns out that much better results can 

be obtained when the entire network is retrained after each RBF 

unit is added instead of training only the newly added RBF unit. 

Of course this makes training times longer, but the training time 

of off-line algorithms is less important than finding the optimal 

RBF network. 

This algorithm is similar to the ISO algorithm described in 

[32] as both algorithms are trained using a modified version of 

the second order algorithm [14].  The difference, however, lies 

in the fact that the ISO algorithm requires a RBF network 

architecture initially to be specified. Then multiple training 

runs with randomly initialized RBF units are needed to reach 

satisfactory results (Fig. 8).  The ErrCor algorithm, on the other 

hand, creates the network architecture by starting with an 

empty network and then adding RBF units one by one to 

compensate for the largest error at that time.  The initial 

location of a new RBF unit is set at the pattern with the 

maximum error with can be recorded during error surface 

computation.  Of course the algorithm is capable to move RBF 

centers to better location, but selection of location of the pattern 

with max error seems to be a better choice than random 

selection. This creates a network that is as small as possible and 

guarantees convergence with one training run.  Fig. 8 depicts 

this difference in training for the ISO algorithm and the ErrCor 

algorithm.   

IV.  EXPERIMENTS WITH HIGHLY NONLINEAR BENCH TESTS 

Most of the real data sets are not highly nonlinear, and good 

results can be obtained with very few RBF units (see Table V). 

Therefore, in this section, the ErrCor algorithm is applied to 

many well-known nonlinear bench tests to demonstrate the 

power and robustness of the algorithm. Notice that if noise is 

not present, training and validation errors are similar. These 

benchmark tests are organized as follows: Rapidly Changing 

Function, Peaks Problem, and Two Spiral Problem.  

The testing environment of the proposed algorithm consists 

of a Windows 7 64-bit operating system, an Intel Core i7-2600 

CPU @ 3.4 GHz processor, and 8GB RAM. 
 

 
Fig. 8 The ISO algorithm and the ErrCor algorithm on the Peaks problem using 

5 RBF units.  Notice that the ISO algorithm errors vary greatly due to the 

random start points, while ErrCor reaches small error with a single try. 

 

Initialization

for n = 1:NMAX    \\ for all new RBF units

find error vector  using  eq. ( 6)   as a difference of desired and actual outputs

find maximum of abs error  of the error vector e

create a new RBF unit at location of maximum error by setting weight and width of the new RBF unit to 1

calculate  RMSE (iter=1)

for iter = 2:max_iteration

for all patterns

calculate Jacobian vector jp using eq.  (8) and  eqs.  (9),(10),(11)

calculate  sub quasi Hessian matrix   ,  calculate  sub gradient vector  

end (all patterns)

calculate quasi-Hessian matrix Q using  eq. (4);  calculate and gradient vector  g using eq. (5)

update network parameters using eq. (3);  calculate new output value and new error surface 

calculate RMSE(iter)

while error is not reduced

adjust the   parameter in eq. (3)  using the LM scheme [11]

endwhile (error is not reduced)

if RMSE(iter) < desired error then break  (max_iteration loop)

endfor  (max_iterations)

if RMSE(n) < desired_error,  then break  (new RBF unit loop)

endfor (main loop)
 

Fig. 7 Pseudo code of the proposed ErrCor algorithm 
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A. Rapidly Changing Function   

In this experiment, the proposed algorithm is applied to 

design RBF networks to approximate the following rapidly 

changing function this is the same function used to test many 

popular algorithms in [20]. 

The formula for this benchmark problem is the following 

[20]: 

     xxxy 10sin2.0exp8.0                (14) 

In this problem, there are 3000 training patterns with 

x-coordinates uniformly distributed in range [0, 10]. The 

validation data set consists of 1500 patterns with x-coordinates 

randomly generated in the same range [0, 10]. 

Figs. 9 and 10 show the testing results of the proposed ErrCor 

algorithm, with the number of RBF units equal to 10 and 20 

respectively.  Fig. 11 shows the training results of proposed 

ErrCor algorithm and several other algorithms. One may notice 

that the proposed ErrCor algorithm can reach a similar 

training/testing error level with a 3 to 30 times smaller network. 

 
Fig. 9 Testing results of ErrCor algorithm with 10 RBF units; ETrain=7.846×10-3 

and ETest=7.516×10-3 

 

 
Fig. 10 Testing results of ErrCor algorithm with 20 RBF units; 

ETrain=5.428×10-6 and ETest=5.347×10-6 

 

 
Fig. 11 Function approximation problem: training/testing average sum square 

errors vs. average number of RBF units 

Table II presents the comparison of average training time, 

training errors, testing time, and testing error for each 

algorithm. For the proposed ErrCor algorithm, the computation 

time is counted until the RBF network with 20 units (with 

smaller training/testing errors than other algorithms) gets 

trained.  For the ELM algorithms, the centers were generated 

from the input range [0,10] while impact factors were from the 

range (0,0.5]. For GAP-RBF the parameters are fixed at 

                                      . For the 

MRAN algorithm, the threshold for growing and pruning was 

set as     
       , and the appropriate size of the sliding 

window was chosen as      . The parameters for GGAP 

were     
          . For SVR, the parameter C was tuned to 

1000 while γ was set at 1. 

In order to provide a measure independent of physical CPU 

power, a normalized computation time was used to determine 

the efficiency of the constructed networks.  The normalization 

was done by first testing two different data sets on networks of 

different sizes twenty times each.  The average computation 

time per RBF unit per testing input was 1.195μs. 

B. Peaks Problem   

The peaks problem is a problem with a two dimensional 

input that yields an output with many peaks and valleys; the 

peaks problem provides a way to easily visualize the training 

process of the various algorithms.  The peaks problem consists 

of 2000 randomly generated patterns in the range (-1,+1) for 

both x and y directions using the formula : 
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          (15) 

 
Fig. 12 The desired output for the peaks problem. 

 

Another 1000 randomly generated patterns were used for the 

validation.  Fig. 12 depicts the desired surface for the peaks 

problem.  

As can be seen in Fig. 13, the major peaks and valleys of the 

desired output are targeted by the ErrCor algorithm with only 

five RBF units.  This compact network achieves a validation 

RMSE of 0.031. As training continues, the error decreases 

steadily as units are added until the RMSE reaches about 

0.0003 with 20 units.  As was expected, after five RBF units 
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were added to the network, the centers of the RBF units in the 

trained network are located aproximately in the centers of the 

highest peaks and valleys.  What is interesting however, is that 

after twenty RBF units were added, the centers had moved to 

completely different locations. 

In comparison to the other algorithms, ErrCor was able to 

reach a much smaller RMSE with much fewer RBF units.  This 

demonstrates that the ErrCor algorithm is very efficient when 

choosing heights, widths, and centers of the RBF units.  The 

ELM family of algorithms was tested on this problem and was 

able to achieve an RMSE of about 0.03 with one thousand RBF 

units (See Figs. 13d, 14, and 15).  This error is still 100 times 

larger than the error obtained with only 20 RBF units using the 

ErrCor algorithm (RMSE = 0.0003).  The SVR algorithm used 

thirty-six support vectors to achieve an RMSE of 0.031 (See 

Fig. 16). Still, this requires about seven times more units than 

ErrCor for the same error. 

TABLE II 

COMPARISON OF TRAINING TIMES/ERRORS  AND VALIDATION 

TIMES PER PATTERN/ERRORS FOR THE FUNCTION 

APPROXIMATION PROBLEM 
Function Approximation 

Algorithm Train Time 

(s) 

Train 

RMSE 

Test Time 

(µs) 

Test 

RMSE 

GGAP 24.808 0.0265 54.16 0.0265 

MRAN 78.572 0.0458 52.15 0.0490 

RANEKF 105.72 0.0265 106.8 0.0265 

RAN 45.514 0.0671 112.2 0.0686 

SVR 0.2552 0.0346 2496 0.0361 

I-ELM 0.5509 0.0831 239.0 0.0843 

CI-ELM 0.5597 0.1356 239.0 0.1378 

EI-ELM 5.3991 0.0728 239.0 0.0755 

ErrCor 48.530 0.0141 23.90 0.0141 
 

 

                            (a)                                                         (b)  

 

                             (c)                                                       (d) 

Fig. 13 ErrCor output. The yellow contour depicts the desired surface, the 

purple contour depicts the network output, and the red asterisks show where the 

centers of the RBF units are located.  

 
                          (a)                                                           (b) 

Fig. 14 ErrCorr output using 10 nodes, (a) compared to ELM output using 1000 
nodes, (b).  

 

 
Fig. 15 Comparison of the three ELM algorithms on the peaks problem.  All 
three attain similar errors. The random centers for the ELM algorithm were 

generated in the range of inputs [-1,1] while the impact factors were in the range 

(0,0.5]. 

 
Fig. 16 SVR output. The yellow contour depicts the desired surface, the purple 
contour depicts the algorithm output, and the red asterisks show where the 

support vectors are located. The SVR parameters used were: G=0.3, Epsilon = 

0.001, and C=10. 
 

C. Two-Spiral Problem    

The two-spiral problem is primarily used as a benchmark for 

pattern classification. It can also be used as an approximation 

problem where patterns on one spiral should produce +1 

outputs, while patterns on the other spiral should produce -1 

outputs.  

This problem is widely used as a challenging benchmark to 

evaluate the efficiency of learning algorithms and their network 

architectures.  For the purpose of approximation the two-spiral 
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data set needs to be better defined, so in this paper 388 patterns 

were used instead of the typical 194 patterns. 

This problem is widely used as a challenging benchmark to 

evaluate the efficiency of learning algorithms and their network 

architectures.  For the purpose of approximation the two-spiral 

data set needs to be better defined, so in this paper 388 patterns 

were used instead of the typical 194 patterns. 

The RBF-MLP networks proposed in [33] required at least 

74 RBF units to solve the two-spiral problem. It was reported in 

[35] that the two-spiral problem was solved using 70 hidden 

RBF units. Using the ortho-normalization procedure in [34], 

the two-spiral problem can be solved with at least 64 RBF 

kernel functions. 

Applying the ErrCor algorithm, Fig. 17 shows several steps 

in the training process. One may notice that, each newly added 

RBF unit contributes the error reduction during the training 

process. The ErrCorr algorithm constructs the network by 

adding one RBF unit at a time, and with 22 RBF units the 

training error drops below 0.003 (Fig 18). The SVR algorithm 

was tested using the LIBSVM package in [36]. SVR was 

trained to the two spiral problem using the parameters, C=1, 

G=0.5, and epsilon = 0.01. This output can be seen in Fig. 19. 
 

 
Fig. 17 The ErrCor algorithm incrementally solves the two spiral problem.  The 

two classes of patterns are shown as blue and yellow asterisks, while the green 

contour shows the network output. 

 

 
Fig. 18 The RMSE for ErrCor as each node is added to solve the two spiral 

problem. 

 
Fig. 19 The SVR algorithm output for the two-spiral problem. 297 patterns 

were used as support vectors to reach an RMSE of 0.003.  

V. EXPERIMENTS WITH REAL LIFE PROBLEMS 

  This section compares ErrCor with well-known algorithms on 

traditional benchmarks from various repositories, [37]. These 

are real life problems with many dimensions and with number 

of patterns from hundreds to thousands. Table III depicts the 

specifications of the benchmark data sets.  In our experiments, 

all of the inputs have been normalized into the range [-1,1] 

while the outputs have been normalized into [0,1]. 

In each benchmark samples are randomly divided into two 

categories: training samples and validation samples. These 

experiments are repeated with 20 different random selections 

so the average and standard deviation results can be evaluated. 

Tables IV and V and Figs. 20 and 21 present more detailed 

comparisons on the Abalone and Auto-MPG datasets.  These 

comparisons are given to compare the behavior of the ErrCor 

algorithm with other popular algorithms. Table VI presents a 

comparison of validation errors and units required to reach the 

desired errors by currently popular algorithms on all of the 

datasets in Table III. 

The proposed algorithm was compared with other algorithms 

such as: GAP [20], GGAP [21], GGAP-GMM [22], SVR 

[23-24], I-ELM [28], CI-ELM [29], EI-ELM [30], MRAN [38], 

RAN-EKF [39], NME-ELM [40], and RAN [41]. The 

parameters for these algorithms were set based on the data 

presented in the aforementioned papers. For all data sets, the 

ELM algorithm parameters were centers in the range of inputs, 

[-1,1], and impact factors in the range (0, 0.5]. For GAP-RBF 

the parameters are fixed at                       
                . For the MRAN algorithm, the threshold 

for growing and pruning was set as     
         , and the 

appropriate size of the sliding window was chosen as     . 

The parameters for GGAP were     
           and     

   
       for Abalone and Auto-MPG respectively. For 

GGAP-GMM the parameters for the significance threshold are 

    
   

            for Abalone and      
   

        

     for Auto-MPG. The DRNN algorithm used a parameter of 

A=2000 and A=40 for the abalone and fuel consumption 

datasets respectively. The parameters for SVR are mentioned in 

Table V. 

As before, the testing environment of the proposed algorithm 

consists of a Windows 7 64-bit operating system, an Intel Core 

i7-2600 CPU @ 3.4 GHz processor, and 8GB RAM. 
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TABLE III 

SPECIFICATION OF BENCHMARK DATA SETS 

REAL WORLD 

PROBLEM 

# TRAIN 

PATTERNS 

# TEST 

PATTERNS 

INPUT 

DIMENSIONS 

Abalone 2000 2177 8 

Auto-MPG 320 78 7 

Auto-Price 80 79 15 

Bos Housing 250 256 13 

Cal Housing 8000 12640 8 

Delta-Ailerons 3000 4129 5 

Delta-Elevators 4000 5517 6 

Machine CPU 100 109 6 

 

It can be noticed from Figs. 20 and 21 that, the proposed 

ErrCor algorithm reaches smaller training/testing errors with a 

more compact RBF architecture than the other algorithms. 

Longer training with more than four RBF units leads to smaller 

training errors, but greater validation errors due to over-fitting.  

One may notice that other offline algorithms such as ELM, 

SVR, or DRNN give much worse results. DRNN was omitted 

from Fig 20 because the best case yielded a validation error of 

RMSE=0.34. 

A comparison of training times for different algorithms on 

both the Abalone and the Fuel Consumption data sets can be 

seen in TABLE III. Again, the proposed ErrCor algorithm has a 

larger training time than the SVR, I-ELM, and CI-ELM 

algorithms, but a faster training time than the GGAP, MRAN, 

RANEKF, RAN, and EI-ELM algorithms.  Notice that the SVR 

algorithm may show a lower training error than ErrCor because 

ErrCor training was stopped when a very small validation error 

was reached.   

A more important comparison for the purpose at hand is that 

of validation times.  This comparison answers the question, 

“How efficient is the network once it has been trained?”  In 

general, for RBF networks, this will be determined by how 

many units are in the network.  As in section IV, a normalized 

computation time for RBF calculation was used to calculate the 

testing time for each algorithm.  A comparison of computation 

time for testing patterns is shown in TABLE IV.  

 

 
Fig. 20 Abalone age prediction problem: training/testing average sum square 

errors vs. average number of RBF units.  

 

 
Fig. 21 Fuel consumption prediction problem: training/testing average sum 

square errors vs. average number of RBF units.  

 

TABLE IV  

COMPARISON BETWEEN TRAINING TIMES AND TRAINING ERRORS 

FOR ABALONE AND FUEL CONSUMPTION PROBLEM 

 Abalone Fuel Consumption 

Algorithm Time(s) RMSE  Time(s) RMSE  

GAP 14.28 0.0963 0.4524 0.1144 

MRAN 255.8 0.0836 1.4644 0.1086 

RANEKF 15480 0.0738 1.0103 0.1088 

RAN 105.17 0.0931 0.8042 0.2923 

SVR 0.4446 0.0759 0.0210 0.0465 

I-ELM 0.5990 0.0920 0.0593 0.0949 

CI-ELM 0.6635 0.0827 0.0612 0.0929 

EI-ELM 5.732 0.0811 0.5638 0.0930 

DRNN 9.404 0.0820 0.0837 0.3506 

ISO 8.497 0.0747 0.6657 0.0724 

NME-ELM 0.0944 0.0678 0.0118 0.0328 

ErrCor 4.808 0.0758 0.5030 0.0671 

 

TABLE V 

COMPARISON BETWEEN VALIDATION TIMES PER PATTERN AND 

VALIDATION ERRORS FOR ABALONE AND FUEL CONSUMPTION 

PROBLEM  

 Abalone Fuel Consumption 

Algorithm Time(s) RMSE  Time(s) RMSE  

GAP 2.82e-5 0.0966 3.73e-6 0.1404 

MRAN 1.05e-4 0.0837 5.33e-6 0.1376 

RANEKF 4.89e-4 0.0794 6.14e-6 0.1387 

RAN 4.13e-4 0.0978 5.31e-6 0.3081 

SVR 6.75e-4 0.0784 1.15e-4 0.0785 

I-ELM 2.39e-4 0.0938 2.39e-4 0.0970 

CI-ELM 2.39e-4 0.0857 2.39e-4 0.1105 

EI-ELM 2.39e-4 0.0829 2.39e-4 0.0892 

DRNN 2.39e-3 0.3361 3.82e-4 0.3098 

ISO 4.78e-6 0.0770 2.39e-6 0.1445 

NME-ELM 1.20e-4 0.0849 8.37e-5 0.0861 

ErrCor 3.59e-6 0.0765 3.59e-6 0.0792 
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TABLE VII  

VALIDATION ERRORS FOR ErrCor, ELM FAMILY, AND SVR ALGORITHMS ON SEVERAL REAL LIFE PROBLEMS  
(ELM ALGORITHMS WERE RUN USING 200 HIDDEN RBF UNITS) 

REAL WORLD 

PROBLEM 

I-ELM EI-ELM (K=10) SVR (RBF) ErrCor 

RMSE RMSE # 

UNITS 

RMSE PARAMS # 

UNITS 

RMSE 

MEAN DEV MEAN DEV MEAN DEV C, γ MEAN DEV 

Abalone 0.0938 0.0053 0.0829 0.0027 310 0.0846 0.0013 (24, 2-6) 4 0.0765 0.0012 

Auto-MPG 0.0970 0.0142 0.0892 0.0095 96 0.0785 0.0087 (20, 20) 3 0.0792 0.0092 

Auto-Price 0.1261 0.0255 0.1139 0.0189 22 0.1052 0.0040 (28, 2-5) 2 0.0909 0.0275 

Boston Housing 0.1320 0.0126 0.1077 0.0084 47 0.1155 0.0079 (24, 2-3) 4 0.0989 0.0341 

California Housing 0.1731 0.0081 0.1503 0.0022 2189 0.1311 0.0011 (23, 21) 10 0.1223 0.0016 

Delta-Ailerons 0.0632 0.0116 0.0448 0.0065 83 0.0467 0.0010 (23, 2-3) 3 0.0394 0.0007 

Delta-Elevators 0.0790 0.0123 0.0575 0.0047 261 0.0603 0.0005 (20, 2-2) 3 0.0532 0.0005 

Machine CPU 0.0674 0.0177 0.0554 0.0148 8 0.0620 0.0180 (26, 2-4) 1 0.0430 0.0293 

 

VI. CONCLUSION 

This paper presents an algorithm for incrementally 

constructing single layer RBF networks. This algorithm works 

by adding a new RBF unit at the location of the highest error 

peak or lowest error valley.  The widths, heights, and locations 

of the RBF units in the network are then optimized to reduce 

error using a modified second order algorithm [14].  The 

current training error for the problem is then evaluated by the 

difference between the network output and the training data 

output. This process is repeated until a desired level of training 

error is reached. This algorithm takes advantage of both a 

second order optimization process to converge very quickly at 

each step and an incremental network construction process to 

minimize the number of units needed to solve a problem.   

There are three reasons why the ErrCor algorithm 

outperforms other commonly used algorithms to train RBF 

networks: 

  First, our algorithm is capable of solving all problems with 

a smaller number of RBF units than any other algorithm (based 

on our experiments and based on results published by others). 

Our algorithm requires a slightly longer training time than other 

algorithms, but in the case of offline systems, the training time 

is less important.  However, if we make a fair comparison by 

measuring the training time required to reach a given accuracy, 

it turns out that our algorithm requires a shorter training time 

than other algorithms in many cases. 

Second the execution time of a trained RBF network is 

proportional to the number of RBF units used. Because we are 

able to train the network with the smallest number of RBF units, 

our algorithm allows execution times that are tens to hundreds 

of times shorter than other algorithms. In the case of problems  

with a large number of training patterns, our execution is 

significantly faster than algorithms such as SVR (support 

vector regression) or algorithms from the ELM (extreme 

learning machine) family.  

Third, training algorithms need experimentally chosen 

parameters for the best training results. For example, SVR 

needs experimental selection of: soft margin, radius of RBF 

units, or size of insensitive tube. Consequentially, tens or 

hundreds of training processes must be performed before a 

satisfactory solution can be found.  The advantage of our 

algorithm is that there is no need for experimentally selected  

 

 

 

training parameters. Using the ErrCor algorithm, acceptable 

results are obtained with one training attempt. 
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