
 1

Abstract—This paper proposes an offline algorithm for

incrementally constructing and training radial basis function

(RBF) networks. In each iteration of the Error Correction

(ErrCor) algorithm, one RBF unit is added to fit and then

eliminate the highest peak (or lowest valley) in the error surface.

This process is repeated until a desired error level is reached.

Experimental results on real world data sets show that the ErrCor

algorithm designs very compact RBF networks compared to the

other investigated algorithms. Several benchmark tests such as

the duplicate patterns test and the two spiral problem were

applied to show the robustness of the ErrCor algorithm. The

proposed ErrCor algorithm generates very compact networks.

This compactness leads to greatly reduced computation times of

trained networks.

Index Terms—Radial Basis Function Networks, Incremental

Design, Error Correction, Levenberg Marquardt Algorithm

I. INTRODUCTION

RTIFICIAL neural networks (ANNs) are considered as

universal approximators and applied to solve various

problems in industrial fields, such as motor control [1-2],

robotic manipulators [3-4], nonlinear compensations [5] and

pattern recognition [6].

There are two long-time discussed issues in artificial neural

networks:

(1) How large should the network architecture should be?

(2) How is a proper training algorithm created or

selected?

Issue (1) coincides with a common mistake in neural

networks. It is quite easy to get error convergence when

training larger than required networks, but these networks in

most cases will respond very poorly to patterns not used for

training. Therefore, in order to avoid over-fitting problems, the

networks should be as compact as possible [7]. Also, it is often

the case that first order gradient methods are not able to find

solutions for these compact networks. In these situations

second order algorithms are superior [8-9].

For issue (2), there is no doubt that gradient-based methods

are the most straightforward ways to train neural networks.

First order gradient methods [10] are very stable if the learning

constant is small, but a tradeoff for good stability is long

training time, especially for very accurate approximation.

Usually, second order algorithms show faster convergence and

more powerful search ability than first order algorithms

[11-14].

For RBF networks, issue (1) becomes more complex than

neural networks. This is because results depend not on network

weights but also on the locations and widths of RBF units [15].

Several strategies and algorithms are proposed to find good

initializations of RBF units and proper sizes of RBF network

architectures [16-19]. Huang et al. proposed a generalized

growing and pruning (GGAP) algorithm [20-21] to find proper

sizes of RBF networks. Based on the evaluation of

“significance”, RBF units are added one-by-one with selected

initial conditions or disregarded if they make little contribution

to network performance. However, the GGAP algorithm could

not properly handle problems with complex and high

dimensional probability density distribution. This disadvantage

of the GGAP algorithm was overcome in [22] by introducing

the Gaussian mixture model (GMM) to approximate the GGAP

evaluation formula. Compared to the GGAP algorithm, the

GGAP-GMM algorithm can design RBF networks with less

complexity for solving the same problem. Other methods also

attempt to find a correct architecture for practical problems

while maintaining a desired accuracy [23-25].

The algorithms mentioned above are primarily developed as

online algorithms, but they work well as offline algorithms. The

training time is very important for online training algorithms,

because networks are being continuously re-trained. However,

for offline trained systems which use algorithms such as:

Support Vector Regression (SVR) [26-27], Incremental

Extreme Learning Machine (I-ELM) [28], Convex I-ELM

(CI-ELM) [29], Enhanced random search based I-ELM

(EI-ELM) [30], and Decay RBF Neural Networks (DRNN)

[31], the execution time of trained networks is much more

important. All these offline algorithms perform two tests

simultaneously: building a network with RBF units and training

it. Notice that the execution time of the trained RBF networks is

proportional to the number of RBF units used. Meaning that a

compact network is more important for offline algorithms.

Most popular offline algorithms for training RBF networks

are only adjusting the easy to train parameters (such as height of

RBF units), while other parameters such as locations of RBF

centers and widths of RBF units are fixed or selected randomly.

The exception is a recently published ISO algorithm [32]. As a

consequence, the ISO algorithm is capable of training RBF

networks with tens rather than hundreds of units to reasonably

low errors. However, the ISO algorithm requires that a network

be initialized with a predetermined number of units and a set of

randomly generated parameters for each unit. This

randomization leads to inconsistent training in some situations.

Consequently, the same problem must be trained many times to

ensure that a good solution has been reached. And frequently,

two or more RBF units are being adjusted to similar locations

resulting in a larger than minimal network.

An Incremental Design of Compact Radial

Basis Function Networks

Hao Yu, Philip D. Reiner, Tiantian Xie, Tomasz Bartczak, and Bogdan Wilamowski, Fellow, IEEE

A

 2

A common disadvantage of the algorithms mentioned above

is that before a proper solution is reached, often tens or

hundreds of experiments are needed with different settings of

training parameters and random selections of initial conditions.

However, with the proposed ErrCor algorithm, it is possible to

reach an acceptable solution just with one try, because there are

no learning parameters to be adjusted and there is no

randomness in the process.

The ErrCor algorithm works like other hierarchical learning

methods [19-22] and [28-30]. The number of RBF units is

increased one by one from scratch, and each new RBF unit is

trained using a second order method as in [32] to compensate

for residual errors. Once the residual errors reach a desirable

level the algorithm stops. The prime goal of this research is to

develop algorithms which can reach a desired error with the

least number of RBF units. Another benefit of the proposed

approach is that such small RBF networks, 10 to 100 times

smaller than obtained with other algorithms, are much easier

for practical implementation and much faster.

II. COMPUTATIONAL FUNDAMENTALS

A. Review of RBF Networks

Fig. 1 shows the standard three-layer architecture of RBF

networks. It consists of P, I dimensional inputs

xp=[xp,1,xp,2…xp,I] in the input layer, H RBF units in the hidden

layer and a single linear unit in the output layer. Notice that, for

problems with multiple outputs, they can be processed as the

combination of several single output sub-problems.

In this paper, equation (1) is applied as the kernel function of

RBF units. Therefore, when applying pattern p, the output of

RBF unit h is calculated as:

 












 


h

hp

ph




2

exp
cx

x (1)

Where: ch and σh are the center and width of RBF unit h,

respectively. ||•|| represents the computation of Euclidean

Norm.

The network output for pattern p is calculated by

  0
1

wwo
H

h
phhp  



x (2)

Where: wh presents the weight on the connection between RBF

unit h and network output. w0 is the bias weight of output unit.

B. ErrCorr Fundamentals

In order to improve the performance of RBF networks,

training process is required to adjust parameters, such as

centers, widths and output weights. In this paper, a

modification of the Levenberg-Marquardt (LM) algorithm is

used for parameter adjustment in RBF networks. The LM

algorithm as described by [11] cannot be used to train problems

with large numbers of patterns, because the size of the Jacobian

becomes prohibitively large. Therefore, the algorithm was

modified [14]. This way the second order algorithm can be

used with data sets with basically unlimited number of training

patterns.

For the LM algorithm, [11] [14], the update rule is given by:

  kkkkk gIQΔΔ
1

1



   (3)

Where: vector Δ consists of parameters, including centers c,

widths σ and weights w; Q is the quasi Hessian matrix; I is the

identity matrix; μ is the combination coefficient; g is the

gradient vector.

 Quasi Hessian matrix Q is calculated as the sum of sub quasi

Hessian matrix qp





P

p
p

1

qQ p
T
pp jjq  (4)

and gradient vector g is calculated as the sum of sub gradient

vector ηp





P

p
p

1

ηg p
T
pp ejη  (5)

Where: the training error ep is calculated as the difference

between desired output yp and actual output op (2):

ppp oye  (6)

and elements of Jacobian row jp is calculated by:

n

p
np

e
j




, (7)

 Considering the network parameters wh, ch,i and σh, for a

given pattern p, elements the Jacobian row can be organized as


i

pp

H

p

h

ppp
p c

e

c

e

w

e

w

e

w

e

w

e

,11,110

,,



























j


1,,,1,,1 H

p

Ih

p

ih

p

h

p

I

p

c

e

c

e

c

e

c

e

c

e




















 (8)


























H

p

h

pp

IH

p

iH

p eee

c

e

c

e




1,,

,



...

+1 
pH x

 
px2

 
px3

 
px1

1,px

2,px

3,px

Ipx ,

...

po

1w

ipx ,

2w

3w

hw

Hw
0w

Fig. 1 RBF network with I inputs, H RBF units and one output unit.

 3

Integrating equations (1), (2) and (6), with differential chain

rule, the Jacobian row elements for pattern p in (8) can be

rewritten as:

 ph

h

p

w

e
x




 1

0






w

ep
 (9)

  
h

ihipphh

ih

p cxw

c

e



 ,,

,

2 




 x
 (10)

 
2

2

h

hpphh

h

p
we







cxx 





 (11)

With equations (9-11), all elements of Jacobian row jp for the

given pattern p can be calculated. After applying all patterns,

quasi Hessian matrix Q and gradient vector g are obtained by

equations (4-5), so as to apply the update rule (3) for parameter

adjustment.

III. ERRCORR DESCRIPTION

The basic idea of the ErrCor algorithm is to use RBF units

with kernel function (1) to create a peak/valley shape to

compensate for the largest error in the error surface at the

beginning of each iteration.

In each experiment, for comparison, the Mean Square Error

(MSE) and the Root Mean Square Error (RMSE) is used:

 √

∑

 (12)

where: P is the number patterns; ep is the training/testing error

for a pattern p, as given by (6).

A. Graphical Interpretation of the Algorithm

In order to illustrate the error correction process, let us

present an example. ErrCor will be used to approximate the

sinusoidal function (13) as shown in Fig. 2.

xy sin (13)

By going through the data of the curve in Fig. 2, the location

(XA=4.7, YA=-0.9999) of the lowest valley (marked as A) is

found. Then the first RBF unit can be added with initial center

(XA=4.7), as shown in Fig. 3a. By applying the LM algorithm

(section II.B) for parameter adjustment, the trained network is

shown in Fig. 3b. Based on the training results, the outputs of

the RBF network (Fig. 3b) are visualized in Fig. 4a and new

error curve (Fig. 4b) is obtained as the difference between Fig.

2 and Fig. 4a. Comparing the error curves in Figs. 2 and Fig. 4b,

one may notice that, the lowest valley (marked as A) in Fig. 2 is

eliminated from Fig. 4b. This results in an RMSE of 0.2000.

By observing the error curve in Fig. 4b, the lowest valley

(marked as B) with the coordinates (XB=0.0, YB=-0.7238) can

be found. Then, the second RBF unit is added with initial center

(XB=0.0) as shown in Fig. 5a. After the training process, the

network parameters have been adjusted as shown in Fig. 5b.

Fig. 6 presents the actual outputs and errors obtained from the

trained network (Fig. 5b). Again, one may notice that, the

lowest valley (marked as B) in error surface Fig. 4b is

eliminated from Fig. 6b.

 Following this procedure, as the size of the RBF network

grows, the error values in the error curve continuously decrease.

After two nodes are created in the network, the RMSE becomes

0.0025. TABLE I shows the training results as the network is

constructed up to 5 nodes.

Fig. 2 Desired sinusoidal function

(a) (b)

Fig. 3 RBF network with 1 RBF unit: (a) initial RBF network; (b) trained RBF

network. Yellow RBF unit is newly added

(a) (b)

Fig. 4 Result curves of the RBF network in Fig. 4b with 1 RBF unit: (a) actual

output curve; (b) error curve

(a) (b)

Fig. 5 RBF network with 2 RBF units: (a) initial RBF network; (b) trained RBF

network. Yellow RBF unit is newly added

(a) (b)

Fig. 6 Result curves of the RBF network in Fig. 5b with 2 RBF units: (a) actual

output curve; (b) error curve

0 1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5
Desired Curve

x

y
=

s
in

x

A

0 1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5

x

y

First RBF Unit Output

0 1 2 3 4 5 6
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Residual Error

x

y

B

0 1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5

x

y

Two RBF Units Output

0 1 2 3 4 5 6
-10

-5

0

5
x 10

-3 Residual Error

x

y

 4

TABLE I

TRAINING RMSE AND #RBF UNITS FOR SINE PROBLEM

Units 1 2 3 4 5

RMSE 0.2000 0.0025 0.0003 5.2e-5 2.5e-5

B. Algorithm Implementation

Generally, the proposed ErrCor algorithm can be organized

as the pseudo code shown in Fig. 7.

One may notice that, all the parameters are readjusted when

the network is changed. It turns out that much better results can

be obtained when the entire network is retrained after each RBF

unit is added instead of training only the newly added RBF unit.

Of course this makes training times longer, but the training time

of off-line algorithms is less important than finding the optimal

RBF network.

This algorithm is similar to the ISO algorithm described in

[32] as both algorithms are trained using a modified version of

the second order algorithm [14]. The difference, however, lies

in the fact that the ISO algorithm requires a RBF network

architecture initially to be specified. Then multiple training

runs with randomly initialized RBF units are needed to reach

satisfactory results (Fig. 8). The ErrCor algorithm, on the other

hand, creates the network architecture by starting with an

empty network and then adding RBF units one by one to

compensate for the largest error at that time. The initial

location of a new RBF unit is set at the pattern with the

maximum error with can be recorded during error surface

computation. Of course the algorithm is capable to move RBF

centers to better location, but selection of location of the pattern

with max error seems to be a better choice than random

selection. This creates a network that is as small as possible and

guarantees convergence with one training run. Fig. 8 depicts

this difference in training for the ISO algorithm and the ErrCor

algorithm.

IV. EXPERIMENTS WITH HIGHLY NONLINEAR BENCH TESTS

Most of the real data sets are not highly nonlinear, and good

results can be obtained with very few RBF units (see Table V).

Therefore, in this section, the ErrCor algorithm is applied to

many well-known nonlinear bench tests to demonstrate the

power and robustness of the algorithm. Notice that if noise is

not present, training and validation errors are similar. These

benchmark tests are organized as follows: Rapidly Changing

Function, Peaks Problem, and Two Spiral Problem.

The testing environment of the proposed algorithm consists

of a Windows 7 64-bit operating system, an Intel Core i7-2600

CPU @ 3.4 GHz processor, and 8GB RAM.

Fig. 8 The ISO algorithm and the ErrCor algorithm on the Peaks problem using

5 RBF units. Notice that the ISO algorithm errors vary greatly due to the

random start points, while ErrCor reaches small error with a single try.

Initialization

for n = 1:NMAX \\ for all new RBF units

find error vector using eq. (6) as a difference of desired and actual outputs

find maximum of abs error of the error vector e

create a new RBF unit at location of maximum error by setting weight and width of the new RBF unit to 1

calculate RMSE (iter=1)

for iter = 2:max_iteration

for all patterns

calculate Jacobian vector jp using eq. (8) and eqs. (9),(10),(11)

calculate sub quasi Hessian matrix , calculate sub gradient vector

end (all patterns)

calculate quasi-Hessian matrix Q using eq. (4); calculate and gradient vector g using eq. (5)

update network parameters using eq. (3); calculate new output value and new error surface

calculate RMSE(iter)

while error is not reduced

adjust the parameter in eq. (3) using the LM scheme [11]

endwhile (error is not reduced)

if RMSE(iter) < desired error then break (max_iteration loop)

endfor (max_iterations)

if RMSE(n) < desired_error, then break (new RBF unit loop)

endfor (main loop)

Fig. 7 Pseudo code of the proposed ErrCor algorithm

0 5 10 15 20
10

-2

10
-1

10
0

10
1

Training Error for Peaks Problem

Number of Iterations

R
M

S
E

ErrCor

ISO

 5

A. Rapidly Changing Function

In this experiment, the proposed algorithm is applied to

design RBF networks to approximate the following rapidly

changing function this is the same function used to test many

popular algorithms in [20].

The formula for this benchmark problem is the following

[20]:

     xxxy 10sin2.0exp8.0  (14)

In this problem, there are 3000 training patterns with

x-coordinates uniformly distributed in range [0, 10]. The

validation data set consists of 1500 patterns with x-coordinates

randomly generated in the same range [0, 10].

Figs. 9 and 10 show the testing results of the proposed ErrCor

algorithm, with the number of RBF units equal to 10 and 20

respectively. Fig. 11 shows the training results of proposed

ErrCor algorithm and several other algorithms. One may notice

that the proposed ErrCor algorithm can reach a similar

training/testing error level with a 3 to 30 times smaller network.

Fig. 9 Testing results of ErrCor algorithm with 10 RBF units; ETrain=7.846×10-3

and ETest=7.516×10-3

Fig. 10 Testing results of ErrCor algorithm with 20 RBF units;

ETrain=5.428×10-6 and ETest=5.347×10-6

Fig. 11 Function approximation problem: training/testing average sum square

errors vs. average number of RBF units

Table II presents the comparison of average training time,

training errors, testing time, and testing error for each

algorithm. For the proposed ErrCor algorithm, the computation

time is counted until the RBF network with 20 units (with

smaller training/testing errors than other algorithms) gets

trained. For the ELM algorithms, the centers were generated

from the input range [0,10] while impact factors were from the

range (0,0.5]. For GAP-RBF the parameters are fixed at

 . For the

MRAN algorithm, the threshold for growing and pruning was

set as
 , and the appropriate size of the sliding

window was chosen as . The parameters for GGAP

were
 . For SVR, the parameter C was tuned to

1000 while γ was set at 1.

In order to provide a measure independent of physical CPU

power, a normalized computation time was used to determine

the efficiency of the constructed networks. The normalization

was done by first testing two different data sets on networks of

different sizes twenty times each. The average computation

time per RBF unit per testing input was 1.195μs.

B. Peaks Problem

The peaks problem is a problem with a two dimensional

input that yields an output with many peaks and valleys; the

peaks problem provides a way to easily visualize the training

process of the various algorithms. The peaks problem consists

of 2000 randomly generated patterns in the range (-1,+1) for

both x and y directions using the formula :

   

   
   222

2253

22

9961exp7.28.13.0

99exp243276.0

9961exp
30

1
,

yxyxx

yxyxx

yxxyxz







 (15)

Fig. 12 The desired output for the peaks problem.

Another 1000 randomly generated patterns were used for the

validation. Fig. 12 depicts the desired surface for the peaks

problem.

As can be seen in Fig. 13, the major peaks and valleys of the

desired output are targeted by the ErrCor algorithm with only

five RBF units. This compact network achieves a validation

RMSE of 0.031. As training continues, the error decreases

steadily as units are added until the RMSE reaches about

0.0003 with 20 units. As was expected, after five RBF units

10
0

10
1

10
2

10
3

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

MRAN

GGAP

RAN

RANEKF

I-ELM

CI-ELM

EI-ELM

SVR

ErrCor

Function Approximation Problem

Number of Nodes

M
e
a
n
 S

q
u
a
re

 E
rr

o
rs

Testing Error

Training Error

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-0.5

0

0.5

 6

were added to the network, the centers of the RBF units in the

trained network are located aproximately in the centers of the

highest peaks and valleys. What is interesting however, is that

after twenty RBF units were added, the centers had moved to

completely different locations.

In comparison to the other algorithms, ErrCor was able to

reach a much smaller RMSE with much fewer RBF units. This

demonstrates that the ErrCor algorithm is very efficient when

choosing heights, widths, and centers of the RBF units. The

ELM family of algorithms was tested on this problem and was

able to achieve an RMSE of about 0.03 with one thousand RBF

units (See Figs. 13d, 14, and 15). This error is still 100 times

larger than the error obtained with only 20 RBF units using the

ErrCor algorithm (RMSE = 0.0003). The SVR algorithm used

thirty-six support vectors to achieve an RMSE of 0.031 (See

Fig. 16). Still, this requires about seven times more units than

ErrCor for the same error.

TABLE II

COMPARISON OF TRAINING TIMES/ERRORS AND VALIDATION

TIMES PER PATTERN/ERRORS FOR THE FUNCTION

APPROXIMATION PROBLEM
Function Approximation

Algorithm Train Time

(s)

Train

RMSE

Test Time

(µs)

Test

RMSE

GGAP 24.808 0.0265 54.16 0.0265

MRAN 78.572 0.0458 52.15 0.0490

RANEKF 105.72 0.0265 106.8 0.0265

RAN 45.514 0.0671 112.2 0.0686

SVR 0.2552 0.0346 2496 0.0361

I-ELM 0.5509 0.0831 239.0 0.0843

CI-ELM 0.5597 0.1356 239.0 0.1378

EI-ELM 5.3991 0.0728 239.0 0.0755

ErrCor 48.530 0.0141 23.90 0.0141

 (a) (b)

 (c) (d)

Fig. 13 ErrCor output. The yellow contour depicts the desired surface, the

purple contour depicts the network output, and the red asterisks show where the

centers of the RBF units are located.

 (a) (b)

Fig. 14 ErrCorr output using 10 nodes, (a) compared to ELM output using 1000
nodes, (b).

Fig. 15 Comparison of the three ELM algorithms on the peaks problem. All
three attain similar errors. The random centers for the ELM algorithm were

generated in the range of inputs [-1,1] while the impact factors were in the range

(0,0.5].

Fig. 16 SVR output. The yellow contour depicts the desired surface, the purple
contour depicts the algorithm output, and the red asterisks show where the

support vectors are located. The SVR parameters used were: G=0.3, Epsilon =

0.001, and C=10.

C. Two-Spiral Problem

The two-spiral problem is primarily used as a benchmark for

pattern classification. It can also be used as an approximation

problem where patterns on one spiral should produce +1

outputs, while patterns on the other spiral should produce -1

outputs.

This problem is widely used as a challenging benchmark to

evaluate the efficiency of learning algorithms and their network

architectures. For the purpose of approximation the two-spiral

-1
-0.5

0
0.5

1

-1

0

1
-1

-0.5

0

0.5

1

ErrCor Algorithm with 10 RBF units

-1
-0.5

0
0.5

1

-1

0

1
-1

-0.5

0

0.5

1

I-ELM algorithmwith 1000 RBF units

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
SVR with 36 Support Vectors RMSE=0.0308

 7

data set needs to be better defined, so in this paper 388 patterns

were used instead of the typical 194 patterns.

This problem is widely used as a challenging benchmark to

evaluate the efficiency of learning algorithms and their network

architectures. For the purpose of approximation the two-spiral

data set needs to be better defined, so in this paper 388 patterns

were used instead of the typical 194 patterns.

The RBF-MLP networks proposed in [33] required at least

74 RBF units to solve the two-spiral problem. It was reported in

[35] that the two-spiral problem was solved using 70 hidden

RBF units. Using the ortho-normalization procedure in [34],

the two-spiral problem can be solved with at least 64 RBF

kernel functions.

Applying the ErrCor algorithm, Fig. 17 shows several steps

in the training process. One may notice that, each newly added

RBF unit contributes the error reduction during the training

process. The ErrCorr algorithm constructs the network by

adding one RBF unit at a time, and with 22 RBF units the

training error drops below 0.003 (Fig 18). The SVR algorithm

was tested using the LIBSVM package in [36]. SVR was

trained to the two spiral problem using the parameters, C=1,

G=0.5, and epsilon = 0.01. This output can be seen in Fig. 19.

Fig. 17 The ErrCor algorithm incrementally solves the two spiral problem. The

two classes of patterns are shown as blue and yellow asterisks, while the green

contour shows the network output.

Fig. 18 The RMSE for ErrCor as each node is added to solve the two spiral

problem.

Fig. 19 The SVR algorithm output for the two-spiral problem. 297 patterns

were used as support vectors to reach an RMSE of 0.003.

V. EXPERIMENTS WITH REAL LIFE PROBLEMS

 This section compares ErrCor with well-known algorithms on

traditional benchmarks from various repositories, [37]. These

are real life problems with many dimensions and with number

of patterns from hundreds to thousands. Table III depicts the

specifications of the benchmark data sets. In our experiments,

all of the inputs have been normalized into the range [-1,1]

while the outputs have been normalized into [0,1].

In each benchmark samples are randomly divided into two

categories: training samples and validation samples. These

experiments are repeated with 20 different random selections

so the average and standard deviation results can be evaluated.

Tables IV and V and Figs. 20 and 21 present more detailed

comparisons on the Abalone and Auto-MPG datasets. These

comparisons are given to compare the behavior of the ErrCor

algorithm with other popular algorithms. Table VI presents a

comparison of validation errors and units required to reach the

desired errors by currently popular algorithms on all of the

datasets in Table III.

The proposed algorithm was compared with other algorithms

such as: GAP [20], GGAP [21], GGAP-GMM [22], SVR

[23-24], I-ELM [28], CI-ELM [29], EI-ELM [30], MRAN [38],

RAN-EKF [39], NME-ELM [40], and RAN [41]. The

parameters for these algorithms were set based on the data

presented in the aforementioned papers. For all data sets, the

ELM algorithm parameters were centers in the range of inputs,

[-1,1], and impact factors in the range (0, 0.5]. For GAP-RBF

the parameters are fixed at
 . For the MRAN algorithm, the threshold

for growing and pruning was set as
 , and the

appropriate size of the sliding window was chosen as .

The parameters for GGAP were
 and

 for Abalone and Auto-MPG respectively. For

GGAP-GMM the parameters for the significance threshold are

 for Abalone and

 for Auto-MPG. The DRNN algorithm used a parameter of

A=2000 and A=40 for the abalone and fuel consumption

datasets respectively. The parameters for SVR are mentioned in

Table V.

As before, the testing environment of the proposed algorithm

consists of a Windows 7 64-bit operating system, an Intel Core

i7-2600 CPU @ 3.4 GHz processor, and 8GB RAM.

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

SVR

 8

TABLE III

SPECIFICATION OF BENCHMARK DATA SETS

REAL WORLD

PROBLEM

TRAIN

PATTERNS

TEST

PATTERNS

INPUT

DIMENSIONS

Abalone 2000 2177 8

Auto-MPG 320 78 7

Auto-Price 80 79 15

Bos Housing 250 256 13

Cal Housing 8000 12640 8

Delta-Ailerons 3000 4129 5

Delta-Elevators 4000 5517 6

Machine CPU 100 109 6

It can be noticed from Figs. 20 and 21 that, the proposed

ErrCor algorithm reaches smaller training/testing errors with a

more compact RBF architecture than the other algorithms.

Longer training with more than four RBF units leads to smaller

training errors, but greater validation errors due to over-fitting.

One may notice that other offline algorithms such as ELM,

SVR, or DRNN give much worse results. DRNN was omitted

from Fig 20 because the best case yielded a validation error of

RMSE=0.34.

A comparison of training times for different algorithms on

both the Abalone and the Fuel Consumption data sets can be

seen in TABLE III. Again, the proposed ErrCor algorithm has a

larger training time than the SVR, I-ELM, and CI-ELM

algorithms, but a faster training time than the GGAP, MRAN,

RANEKF, RAN, and EI-ELM algorithms. Notice that the SVR

algorithm may show a lower training error than ErrCor because

ErrCor training was stopped when a very small validation error

was reached.

A more important comparison for the purpose at hand is that

of validation times. This comparison answers the question,

“How efficient is the network once it has been trained?” In

general, for RBF networks, this will be determined by how

many units are in the network. As in section IV, a normalized

computation time for RBF calculation was used to calculate the

testing time for each algorithm. A comparison of computation

time for testing patterns is shown in TABLE IV.

Fig. 20 Abalone age prediction problem: training/testing average sum square

errors vs. average number of RBF units.

Fig. 21 Fuel consumption prediction problem: training/testing average sum

square errors vs. average number of RBF units.

TABLE IV

COMPARISON BETWEEN TRAINING TIMES AND TRAINING ERRORS

FOR ABALONE AND FUEL CONSUMPTION PROBLEM

 Abalone Fuel Consumption

Algorithm Time(s) RMSE Time(s) RMSE

GAP 14.28 0.0963 0.4524 0.1144

MRAN 255.8 0.0836 1.4644 0.1086

RANEKF 15480 0.0738 1.0103 0.1088

RAN 105.17 0.0931 0.8042 0.2923

SVR 0.4446 0.0759 0.0210 0.0465

I-ELM 0.5990 0.0920 0.0593 0.0949

CI-ELM 0.6635 0.0827 0.0612 0.0929

EI-ELM 5.732 0.0811 0.5638 0.0930

DRNN 9.404 0.0820 0.0837 0.3506

ISO 8.497 0.0747 0.6657 0.0724

NME-ELM 0.0944 0.0678 0.0118 0.0328

ErrCor 4.808 0.0758 0.5030 0.0671

TABLE V

COMPARISON BETWEEN VALIDATION TIMES PER PATTERN AND

VALIDATION ERRORS FOR ABALONE AND FUEL CONSUMPTION

PROBLEM

 Abalone Fuel Consumption

Algorithm Time(s) RMSE Time(s) RMSE

GAP 2.82e-5 0.0966 3.73e-6 0.1404

MRAN 1.05e-4 0.0837 5.33e-6 0.1376

RANEKF 4.89e-4 0.0794 6.14e-6 0.1387

RAN 4.13e-4 0.0978 5.31e-6 0.3081

SVR 6.75e-4 0.0784 1.15e-4 0.0785

I-ELM 2.39e-4 0.0938 2.39e-4 0.0970

CI-ELM 2.39e-4 0.0857 2.39e-4 0.1105

EI-ELM 2.39e-4 0.0829 2.39e-4 0.0892

DRNN 2.39e-3 0.3361 3.82e-4 0.3098

ISO 4.78e-6 0.0770 2.39e-6 0.1445

NME-ELM 1.20e-4 0.0849 8.37e-5 0.0861

ErrCor 3.59e-6 0.0765 3.59e-6 0.0792

10
0

10
1

10
2

10
3

10
-1

GAP

MRAN

RANEKF

RAN

SVR

GGAP

GGAP-GMM

ISO

ISO

EI-ELM

NME-ELM

NME-ELM

ErrCor

Number of Nodes

R
M

S
E

Abalone Age Prediction

Training Error

Testing Error

10
0

10
1

10
2

10
-1

M
R

A
N

IS
O

IS
O

S
V

R

G
G

A
P

E
I-E

L
M

N
M

E
-E

L
M

ErrCor

Number of Nodes

R
M

S
E

Fuel Consumption Prediction

Training Error

Testing Error

 9

TABLE VII

VALIDATION ERRORS FOR ErrCor, ELM FAMILY, AND SVR ALGORITHMS ON SEVERAL REAL LIFE PROBLEMS
(ELM ALGORITHMS WERE RUN USING 200 HIDDEN RBF UNITS)

REAL WORLD

PROBLEM

I-ELM EI-ELM (K=10) SVR (RBF) ErrCor

RMSE RMSE #

UNITS

RMSE PARAMS #

UNITS

RMSE

MEAN DEV MEAN DEV MEAN DEV C, γ MEAN DEV

Abalone 0.0938 0.0053 0.0829 0.0027 310 0.0846 0.0013 (24, 2-6) 4 0.0765 0.0012

Auto-MPG 0.0970 0.0142 0.0892 0.0095 96 0.0785 0.0087 (20, 20) 3 0.0792 0.0092

Auto-Price 0.1261 0.0255 0.1139 0.0189 22 0.1052 0.0040 (28, 2-5) 2 0.0909 0.0275

Boston Housing 0.1320 0.0126 0.1077 0.0084 47 0.1155 0.0079 (24, 2-3) 4 0.0989 0.0341

California Housing 0.1731 0.0081 0.1503 0.0022 2189 0.1311 0.0011 (23, 21) 10 0.1223 0.0016

Delta-Ailerons 0.0632 0.0116 0.0448 0.0065 83 0.0467 0.0010 (23, 2-3) 3 0.0394 0.0007

Delta-Elevators 0.0790 0.0123 0.0575 0.0047 261 0.0603 0.0005 (20, 2-2) 3 0.0532 0.0005

Machine CPU 0.0674 0.0177 0.0554 0.0148 8 0.0620 0.0180 (26, 2-4) 1 0.0430 0.0293

VI. CONCLUSION

This paper presents an algorithm for incrementally

constructing single layer RBF networks. This algorithm works

by adding a new RBF unit at the location of the highest error

peak or lowest error valley. The widths, heights, and locations

of the RBF units in the network are then optimized to reduce

error using a modified second order algorithm [14]. The

current training error for the problem is then evaluated by the

difference between the network output and the training data

output. This process is repeated until a desired level of training

error is reached. This algorithm takes advantage of both a

second order optimization process to converge very quickly at

each step and an incremental network construction process to

minimize the number of units needed to solve a problem.

There are three reasons why the ErrCor algorithm

outperforms other commonly used algorithms to train RBF

networks:

 First, our algorithm is capable of solving all problems with

a smaller number of RBF units than any other algorithm (based

on our experiments and based on results published by others).

Our algorithm requires a slightly longer training time than other

algorithms, but in the case of offline systems, the training time

is less important. However, if we make a fair comparison by

measuring the training time required to reach a given accuracy,

it turns out that our algorithm requires a shorter training time

than other algorithms in many cases.

Second the execution time of a trained RBF network is

proportional to the number of RBF units used. Because we are

able to train the network with the smallest number of RBF units,

our algorithm allows execution times that are tens to hundreds

of times shorter than other algorithms. In the case of problems

with a large number of training patterns, our execution is

significantly faster than algorithms such as SVR (support

vector regression) or algorithms from the ELM (extreme

learning machine) family.

Third, training algorithms need experimentally chosen

parameters for the best training results. For example, SVR

needs experimental selection of: soft margin, radius of RBF

units, or size of insensitive tube. Consequentially, tens or

hundreds of training processes must be performed before a

satisfactory solution can be found. The advantage of our

algorithm is that there is no need for experimentally selected

training parameters. Using the ErrCor algorithm, acceptable

results are obtained with one training attempt.

REFERENCES

[1] Q. N. Le and J. W. Jeon, "Neural-Network-Based Low-Speed-Damping

Controller for Stepper Motor With an FPGA," IEEE Trans. on Industrial

Electronics, vol. 57, no. 9, pp. 3167-3180, Sep. 2010.
[2] C. Xia, C. Guo and T. Shi, "A Neural-Network Identifier and

Fuzzy-Controller-Based Algorithm for Dynamic Decoupling Control of

Permanent-Magnet Spherical Motor," IEEE Trans. on Industrial
Electronics, vol. 57, no. 8, pp. 2868-2878, Aug. 2010.

[3] H. Chaoui, P. Sicard and W. Gueaieb, "ANN-Based Adaptive Control of

Robotic Manipulators With Friction and Joint Elasticity," IEEE Trans. on
Industrial Electronics, vol. 56, no. 8, pp. 3174-3187, Aug. 2009.

[4] L. Y. Wang, T. Y. Chai and L. F. Zhai, "Neural-Network-Based Terminal

Sliding-Mode Control of Robotic Manipulators Including Actuator
Dynamics," IEEE Trans. on Industrial Electronics, vol. 56, no. 9, pp.

3296-3304, Sep. 2009.

[5] Y. L. Chow, L. L. Frank and etc., "Disturbance and Friction
Compensations in Hard Disk Drives Using Neural Networks," IEEE

Trans. on Industrial Electronics, vol. 57, no. 2, pp. 784-792, Feb. 2010.
[6] S. Ferrari, F. Bellocchio, V. Piuri and N. A. Borghese, "A Hierarchical

RBF Online Learning Algorithm for Real-Time 3-D Scanner," IEEE

Trans. on Neural Networks, vol. 21, issue 2, pp. 275-285, 2010.
[7] B. M. Wilamowski, "Neural Network Architectures and Learning

Algorithms: How Not to Be Frustrated with Neural Networks," IEEE

Industrial Electronics Magazine, vol. 3, no. 4, pp. 56-63, Dec. 2009.
[8] N. Fnaiech, F. Fnaiech, B. W. Jervis and M. Cheriet, "The Combined

Statistical Stepwise and Iterative Neural Network Pruning Algorithm,"

Intelligent Automation and Soft Computing, vol. 15, no. 4, pp. 573-589,
2009.

[9] A. P. Engelbrecht, "A New Pruning Heuristic Based on Variance

Analysis of Sensitivity Information," IEEE Trans. on Neural Networks,
vol. 12, no. 6, pp. 1386 –1399, Nov. 2001.

[10] P. J. Werbos, "Back-propagation: Past and Future," Proceeding of

International Conference on Neural Networks, San Diego, CA, 1,

343-354, 1988.

[11] M. T. Hagan, M. B. Menhaj, "Training Feedforward Networks with the

Marquardt Algorithm," IEEE Trans. on Neural Networks, vol. 5, no. 6,
pp. 989-993, Nov. 1994.

[12] B. M. Wilamowski, N. Cotton, J. Hewlett, and O. Kaynak, “Neural

Network Trainer with Second Order Learning Algorithms”, 11th INES
2007 -International Conference on Intelligent Engineering Systems,

Budapest, Hungary, June 29 2007-July 1 2007, pp. 127-132.

[13] B. M. Wilamowski, H. Yu, "Neural Network Learning without
Backpropgation," IEEE Trans. on Neural Networks, vol. 21, no. 11, pp.

1793-1803, Nov. 2010.

[14] B. M. Wilamowski, H. Yu, "Improved Computation for Levenberg
Marquardt Training," IEEE Trans. on Neural Networks, vol. 21, no. 6, pp.

930-937, June 2010.

http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(hagan%20%20m.%20t.%3cIN%3eau)&valnm=Hagan%2C+M.T.&reqloc%20=others&history=yes

 10

[15] C. Panchapakesan, M. Palaniswami, D. Ralph and C. Manzie, "Effects of

Moving the Centers in an RBF Network," IEEE Trans. on Neural
Networks, vol. 13, no. 6, pp. 1299-1307, Nov. 2002.

[16] B. Fritzke, "Fast Learning with Incremental RBF Networks," Neural

Processing Letters, vol. 1, no. 1, pp. 2-5, 1994.
[17] C. Constantinopoulos, A. Likas, "An incremental training method for the

probabilistic RBF network," IEEE Trans. on Neural Networks, vol. 17,

no. 4, pp. 966- 974, April 2006.
[18] S. Chen, L. Hanzo, S. Tan, "Symmetric Complex-Valued RBF Receiver

for Multiple-Antenna-Aided Wireless Systems," IEEE Trans. on Neural

Networks, vol. 19, no. 9, pp. 1659-1665, Sept 2008.
[19] S. Chen, C.F.N. Cowan, P.M. Grant, "Orthogonal least squares learning

algorithm for radial basis function networks," IEEE Trans. on Neural

Networks, vol. 2, no. 2, pp. 302-309, Feb 1991.
[20] G. B. Huang, P. Saratchandran and N. Sundararajan, "An Efficient

Sequential Learning Algorithm for Growing and Pruning RBF

(GAP-RBF) Networks," IEEE Trans. on System, Man, and Cybernetics,
Part B: vol. 34, no. 6, pp. 2284-2292, Dec. 2004.

[21] G. B. Huang, P. Saratchandran and N. Sundararajan, "A Generalized

Growing and Pruning RBF (GGAP-RBF) Neural Network for Function
Approximation," IEEE Trans. on Neural Networks, vol. 16, no. 1, pp.

57-67, Jan. 2005.

[22] M. Bortman and M. Aladjem, "A Growing and Pruning Method for
Radial Basis Function Networks," IEEE Trans. on Neural Networks, vol.

20, no. 6, pp. 1039-1045, June 2009.

[23] Qiao Junfei, Han Honggui. A repair algorithm for radial basis function
neural network and its application to chemical oxygen demand modeling.

International Journal of Neural Systems, 2010, 20(1):63-74.
[24] Han Honggui, Qiao Junfei. A self-organizing fuzzy neural network based

on growing-and-pruning algorithm, IEEE Transactions on Fuzzy Systems,

2010, 18(6): 1129-1143.
[25] Han Honggui, Chen Qili, Qiao Junfei. An efficient self-organizing RBF

neural network for water quality predicting, Neural Networks, 2011,

24(7): 717-725.
[26] V. N. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.

[27] A. Smola and B. Schölkopf, A tutorial on support vector regression.

NeuroCOLT2 Tech. Rep. NC2-TR-1998-030, 1998.
[28] Guang-Bin Huang; Lei Chen; Chee-Kheong Siew; , "Universal

approximation using incremental constructive feedforward networks with

random hidden nodes," Neural Networks, IEEE Transactions on , vol.17,
no.4, pp. 879- 892, July 2006.

[29] G.-B. Huang and L. Chen, “Convex incremental extreme learning

machine,” Neurocomputing, vol. 70, no. 16–18, pp. 3056–3062, Oct.
2007.

[30] G.-B. Huang and L. Chen, “Enhanced random search based incremental

extreme learning machine,” Neurocomputing, vol. 71, no. 16-18, pp.
3460-3468.

[31] Muzhou Hou; Xuli Han, "Constructive Approximation to Multivariate

Function by Decay RBF Neural Network," Neural Networks, IEEE
Transactions on , vol.21, no.9, pp.1517,1523, Sept. 2010

[32] Tiantian Xie, Hao Yu, Joel Hewlett, Paweł Rózycki, and Bogdan

Wilamowski, “Fast and Efficient Second-Order Method for Training
Radial Basis Function Networks,” IEEE Trans. On Neural Networks and

Learning Systems, vol. 23, no. 4, pp. 609-619, April 2012.

[33] N. Chaiyaratana and A. M. S. Zalzala, "Evolving Hybrid RBF-MLP
Networks Using Combined Genetic/Unsupervised/Supervised Learning,"

UKACC International Conference on Control '98, Swansea, UK, Sep.

01-04, 1998, vol. 1, pp. 330-335.
[34] W. Kaminski and P. Strumillo, "Kernel Orthonormalization in Radial

Basis Function Neural Networks," IEEE Trans. on Neural Networks, vol.

8, no. 5, pp. 1177-1183, Sep. 1997.
[35] R. Neruda and P. Kudová, "Learning Methods for Radial Basis Function

Networks," Future Generation Computer Systems, vol. 21, issue. 7, July

2005, pp. 1131-1142.
[36] Chih-Chung and Chih-Jen Lin, LIBSVM: a library for support vector

machines. ACM Transactions on Intelligent Systems and Technology,

2:27:1—27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[37] C. Blake and C. Merz, UCI Repository of Machine Learning Databases,

Dept. Inform. Comput. Sci., Univ. California, Irvine, 1998.
[38] N. Sundararajan, P. Saratchandran and Y. W. Li, Radial Basis Function

Neural Networks With Sequential Learning: MRAN and Its Applications.

Singapore: World Scientific, 1999.

[39] V. Kadirkamanathan and M. Niranjan, "A Function Estimation Approach

to Sequential Learning With Neural Networks," Neural Computation,
vol. 5, no. 6, pp. 954-975, 1993.

[40] P. Reiner and B. M. Wilamowski, “Nelder-mead enhanced extreme

learning machine,” in 2013 IEEE 17th International Conference on
Intelligent Engineering Systems (INES), 2013, pp. 225–230.

[41] J. Platt, "A Resource-Allocating Network for Function Interpolation,"

Neural Computation, vol. 3, no. 2, pp. 213-225, 1991.

