
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 1

Selection of Proper Neural Network Sizes and
Architectures—A Comparative Study

David Hunter, Hao Yu, Student Member, IEEE, Michael S. Pukish, III, Student Member, IEEE, Janusz Kolbusz, and
Bogdan M. Wilamowski, Fellow, IEEE

Abstract—One of the major difficulties facing researchers using
neural networks is the selection of the proper size and topology
of the networks. The problem is even more complex because often
when the neural network is trained to very small errors, it may not
respond properly for patterns not used in the training process. A
partial solution proposed to this problem is to use the least possible
number of neurons along with a large number of training patterns.

The discussion consists of three main parts: first, different
learning algorithms, including the Error Back Propagation (EBP)
algorithm, the Levenberg Marquardt (LM) algorithm, and the
recently developed Neuron-by-Neuron (NBN) algorithm, are
discussed and compared based on several benchmark problems;
second, the efficiency of different network topologies, including
traditional Multilayer Perceptron (MLP) networks, Bridged
Multilayer Perceptron (BMLP) networks, and Fully Connected
Cascade (FCC) networks, are evaluated by both theoretical anal-
ysis and experimental results; third, the generalization issue is
discussed to illustrate the importance of choosing the proper size
of neural networks.

Index Terms—Architectures, learning algorithms, neural net-
works, topologies.

I. INTRODUCTION

N EURAL networks are currently used in many daily
life applications. In 2007, a special issue of TIE was

published only on their application in industrial practice [1].
Further applications of neural networks continue in various
areas. Neural networks are used for controlling induction mo-
tors [2]–[4] and permanent magnet motors [5]–[7], including
stepper motors [8]. They are also used in controlling other dy-
namic systems [9]–[16], including robotics [17], motion control
[18], and harmonic distortion [19], [20]. They are also used
in industrial job-shop-scheduling [21], networking [22], and
battery control [23]. Neural networks can also easily simulate
highly complex dynamic systems such as oil wells [24] which
are described by more than 25 nonlinear differential equations.
Neural networks have already been successfully implemented
in embedded hardware [25]–[29].

People who are trying to use neural networks in their research
are facing several questions.

Manuscript received October 02, 2011; revised January 23, 2012; accepted
January 31, 2012. Date of publication February 14, 2012; date of current version
nulldate. Paper no. TII-12-0052.

D. Hunter, H. Yu, M. S. Pukish, and B. M. Wilamowski are with the De-
partment of Electrical and Computer Engineering, Auburn University, Auburn,
AL 36849-5201 USA (e-mail: dshunter1996@cableone.net; hzy0004@tiger-
mail.auburn.edu; msp0005@tigermail.auburn.edu; wilam@ieee.org).

J. Kolbusz is with the Department of Distributed Systems, University of In-
formation Technology and Management, Rzeszow 35-225, Poland (e-mail: jkol-
busz@wsiz.rzeszow.pl).

Digital Object Identifier 10.1109/TII.2012.2187914

Fig. 1. Eight neurons in 5-3-4-1 MLP network.

Fig. 2. Six neurons in � � � � � � � BMLP network.

1) What neural network architecture should be used?
2) How many neurons should be used?
3) How many patterns should be used in training?
4) What training algorithm should be used?
Unfortunately, there are no easy answers to these questions.

Various neural network architectures are shown in Figs. 1, –3.
The most popular, Multilayer Perceptron (MLP) architecture is
shown in Fig. 1. The improved version with connections across
layers the Bridged Multilayer Perceptron (BMLP) is shown in
Fig. 2. The most powerful the Fully Connected Cascade (FCC)
architecture is shown in Fig. 3.

A detailed comparison of learning algorithms is given in
Section II. Section III presents a theoretical synthesis of various
neural network architectures such as MLP networks (Fig. 1),
BMLP networks (Fig. 2), and FCC networks (Fig. 3) to solve
various, complex Parity-N problems. At the end of the section, a
comparison of these topologies is given in Fig. 17 and Table III.

Section IV presents an experimental comparison of the ef-
ficiencies of different topologies for various problems. Gener-
alization issues are discussed in Section V. This is a very im-
portant but frequently neglected issue. It turns out that because

1551-3203/$31.00 © 2012 IEEE

2 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

Fig. 3. Four neurons in � � � � � � � � � FCC network.

it is easier to train neural networks with an excessive number
of neurons, many researches are being lured into training large
networks to very small errors, only to discover that these net-
works respond very poorly to patterns never used in the training
process. Section VI presents a brief introduction on other net-
works, including radial basis function networks and deep neural
networks. The final section presents a conclusion.

II. LEARNING ALGORITHMS

Many algorithms for training neural networks have already
been developed. The Error Back Propagation (EBP) [30], [31]
algorithm is the most popular algorithm, but is very inefficient.
Since development of the EBP algorithm, many improvements
have been made to this algorithm [32]–[34]. Some of them are
momentum [35], stochastic learning rate [36], [69], flat-spot
elimination [37], [70], RPROP [38] and QUICKPROP [38].
They can reduce learning errors to small values, but often it
does not mean that such train network has good generalization
abilities.

Another drawback of the EBP algorithm and its modifica-
tions is that the search process follows just the gradient and
can be trapped in local minima. Much better results can be ob-
tained using second-order methods where a Hessian matrix is
applied to evaluate the change of gradient. In this way, informa-
tion about the shape of the error surface is used in the search
process. Several second-order methods were adopted for neural
network training, but the most efficient was the Levenberg Mar-
quardt (LM) algorithm [40], [41]. The LM algorithm is very fast
and efficient, but it has two major problems: 1) it was written
[41] in such way that only MLP network architectures (Fig. 1)
can be trained and 2) only relatively small problems with a lim-
ited number of patterns can be solved using this algorithm.

The training problem becomes even more complex because
most neural network software can only train MLP architectures.
For example, the popular MATLAB Neural Network Toolbox
has both first- and second-order training algorithms, but it can
only train MLP networks. As a consequence, without proper
training software, researchers have no other option but to use
MLP architectures and the obtained results are far from satis-
factory [42], [43]. Both of these problems were solved in the re-
cently developed Neuron by Neuron (NBN) training algorithm
[44]–[47]. Although the NBN algorithm is not perfect, it can
successfully compete with other algorithms in almost all cases,

Fig. 4. Five neurons in �� �� � MLP network.

often producing improved results for the same parametric prob-
lems. It will be shown in this section that EBP is not only slow,
but has difficulty finding solutions for close to optimum archi-
tectures. Let us compare the power of these algorithms with sev-
eral experiments.

A. Parity-4 Problem

In this experiment, the EBP, LM, and NBN algorithms are
compared. Each algorithm will be used to train the Parity-4 pat-
terns using the MLP architecture shown in Fig. 4.

When testing the EBP algorithm, the learning constant is set
to 1. In order to improve performance, the momentum technique
was introduced with the value of 0.5. The maximum number of
iterations is set to 100 000 for the EBP algorithm, and is set to
100 for both the LM and NBN algorithms. The Sum of Square
Error (SSE) is calculated as a method to evaluate the training
process and it is set to 0.001. For each algorithm, the training
process is repeated 100 times with randomly generated initial
weights in the range [, 1].

Fig. 5 presents the training curves of the three different al-
gorithms and Table I presents the comparison result. One can
notice that, for the Parity-4 problem using the given MLP ar-
chitecture, LM and NBN gives similar results, while EBP re-
quires 500 times more iterations and learning time is about 200
times longer. Even improved by momentum, the success rate
of the EBP algorithm is not as good as both the LM and NBN
algorithms.

B. Two-Spiral Problem

One of the key benchmarks to evaluate neural network
training and efficiency of architecture is the two-spiral problem
shown in the Fig. 6. Separation of two groups of twisted points
(green stars and red circles) by neural networks is not an easy
task. Using a BMLP architecture (see Fig. 2), three hidden
layers had to be used in a topology,
requiring at least 16 neurons [48]. Using a standard MLP
network with one hidden layer there are 34 neurons required to
separate the two spirals [49]. The best results for the two-spiral
problem are obtained by using the fully connected cascade
(FCC) network. The well-known cascade correlation algorithm
requires 12–19 hidden neurons in FCC networks [50].

In this experiment, the EBP and NBN algorithms are used
to solve the two-spiral problem with a FCC network. The LM
algorithm is not considered because it cannot handle FCC and

HUNTER et al.: SELECTION OF PROPER NEURAL NETWORK SIZES AND ARCHITECTURES—A COMPARATIVE STUDY 3

Fig. 5. Training curves of different algorithms for Parity-4 problem. (a) EBP
algorithm. (b) LM algorithm. (c) NBN algorithm.

TABLE I
COMPARISON RESULTS OF PARITY-4 PROBLEM

BMLP networks. For the EBP algorithm, the learning constant is
set to 0.005 and momentum is set to 0.5. The maximum number
of iterations is set to 1 000 000 for the EBP algorithm and 1000
for the NBN algorithm. The desired training SSE is 0.01. For
each case, the test is repeated 100 times with randomly selected
initial weights in the range [, 1].

As shown in Fig. 7, the training algorithm chosen affects the
number of neurons required for successful training. Notice that
the NBN algorithm can solve the two-spiral problem using 7
neurons and 44 weights [see Figs. 7(a) and 32(b)], while the
EBP algorithm needs at least 12 neurons (102 weights). It takes
only a few seconds to solve this problem with NBN while EBP
needs about 10 min.

Fig. 6. Two spirals problem.

Fig. 7. Comparison results of the EBP and NBN algorithms for the two-spiral
problem, using different number of neurons in fully connected cascade net-
works. (a) Success rate. (b) Training time.

One can also conclude that the EBP algorithm is only suc-
cessful if an excessive number of neurons are used. Unfortu-
nately, using large sized neural networks may cause an over-fit-
ting problem. This issue will be illustrated with the example
below and will be discussed more in Section V.

C. The Peak Problem

Let us consider the MATLAB peak surface [51] as the re-
quired surface and use equally spaced patterns

4 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

Fig. 8. Surface approximation using neural networks. (a) Training surface:
��� �� � ��� points. (b) Testing surface: ��� �� � ���� points.

[Fig. 8(a)] to train neural networks. The quality of trained net-
works is evaluated using the errors computed for equally spaced

patterns [Fig. 8(b)] in the same range. In order
to make a valid comparison between training and verification
error, the sum squared error (SSE) is divided by 100 and 2500,
respectively.

Again, FCC networks are applied in the experiment and both
EBP algorithm and NBN algorithm are selected for training. LM
algorithm is not considered because of the architecture limita-
tion. For EBP algorithm, learning constant is 0.0005 and mo-
mentum is 0.5. The maximum iteration is 1 000 000 for EBP al-
gorithm and 1000 for LM algorithm. The desired training SSE
is set as 0.5. There are 100 trials for each case. The training re-
sults are presented in Table II.

One may notice that, using the NBN algorithm, it was pos-
sible to find the acceptable solution (Fig. 9) with eight neurons
(52 weights). Using the same network architecture with the EBP
algorithm, the training process cannot converge to desired error
level within 1 000 000 iterations. Fig. 10 shows the best testing
out of the 100 trials using the EBP algorithm. When the network
size was increased from 8 to 13 neurons (117 weights), the EBP
algorithm was able to reach the similar training error as with the
NBN algorithm, but the network lost its ability to respond cor-
rectly for new patterns (between training points). Please notice

TABLE II
TRAINING RESULTS OF THE PEAK PROBLEM

Fig. 9. The best training result in 100 trials, using NBN algorithm, eight
neurons in FCC network (52 weights); maximum training iteration is 1000;
��� � ������ and ��� � ������.

Fig. 10. The best training result in 100 trials, using EBP algorithm, eight neu-
rons in FCC network (52 weights); maximum training iteration is 1 000 000;
��� � ������ and ��� � ����	�.

that indeed with an increased number of neurons (13 neurons),
the EBP algorithm was able to train the network to a small error

, but as one can see from Fig. 11, the re-
sult is unacceptable with verification error
(larger errors between training points).

From the example presented, one may notice that often in
simple (close to optimal) networks, the EBP algorithm cannot
converge to the required training error (Fig. 10). When net-
work size increases, the EBP algorithm can reach the required

HUNTER et al.: SELECTION OF PROPER NEURAL NETWORK SIZES AND ARCHITECTURES—A COMPARATIVE STUDY 5

Fig. 11. The best training result in 100 trials, using EBP algorithm, 13 neu-
rons in FCC network (117 weights); maximum training iteration is 1 000 000;
��� � ������ and ��� � ������.

training error, but the trained networks lose their generaliza-
tion ability and cannot process new patterns well (Fig. 11). On
the other hand, second-order algorithms, such as the NBN al-
gorithm, work not only significantly faster, but can find good
solutions with close to optimal networks (Fig. 9).

As it was shown in the three examples above, the popular
EBP algorithm is 100 to 1000 times slower (depending on
required accuracy) than second-order algorithms. Speeds of
second-order algorithms such as LM or NBN are comparable.
However, the LM algorithm as presented in [41] has several
restrictions in comparison to the NBN algorithm.

• The NBN algorithm can handle any arbitrarily connected
[45], feed forward neural network while the LM algorithm
can only handle MLP networks [41].

• In the NBN algorithm, there is no need to calculate and
store the Jacobian matrix with a size that is proportional to
the number of training patterns. This advantage allows the
NBN algorithm to be used for problems with essentially an
unlimited number of patterns [46].

• The NBN algorithm addresses the “flat spot” problem [52],
[71], resulting in a slightly better success rate than the LM
algorithm.

• The NBN algorithm uses only a single, forward compu-
tational scheme making it more efficient, especially for
neural networks with multiple outputs [47].

• The NBN algorithm makes it easier to find a close to op-
timal architecture by starting with a FCC topology (Fig. 3),
which can then be pruned to a BMLP topology (Fig. 2)
[46].

III. EFFICIENCIES OF NEURAL NETWORK ARCHITECTURES

WITH HARD ACTIVATION FUNCTIONS

Neural network architectures vary in complexity and effi-
ciency. Research has thus far shown that some of the most effi-
cient and reliable networks have fewer neurons, but also require
multiple layers with connections between all layers [53]. When
a hard threshold activation function is assumed, it can be shown
that the popular MLP architecture is less efficient than other ar-
chitectures [54]. Let us compare the performance of various ar-

Fig. 12. MLP with one hidden layer for solving the Parity-7 problem.

chitectures using well know Parity-N benchmarks. Notice that
only the number of inputs is important and their locations are
irrelevant. Therefore, in order to simplify analysis and the net-
work drawing, we will introduce a summing operator in front of
the network, as shown in Fig. 12.

A. MLP—Multilayer Perceptron Architecture With One
Hidden Layer

For the MLP architecture with one hidden layer, a generalized
solution for all Parity-N cases requires neurons

(1)

where is the parity number as well as the number of neu-
rons in the hidden layer [54]–[56]. The output neuron performs
the AND operation on all neuron outputs from the hidden layer.
Fig. 12 shows the unipolar implementation of a Parity-7 MLP
network with one hidden layer. While this particular implemen-
tation is easy to train, it requires an excessive number of neurons
for large Parity-N problems.

B. BMLP—Bridged Multilayer Perceptron Architecture With
One Hidden Layer

For the BMLP architecture using hidden neurons in one
hidden layer, a generalized solution for the largest Parity-N that
can be solved is [55], [56]

(2)

The output neuron performs the AND operation on all neuron
outputs from the hidden layer. Fig. 13 shows the unipolar im-
plementation of a Parity-7 BMP network with one hidden layer.

C. BMLP—Bridged Multilayer Perceptron Architecture With
Two or More Hidden Layers

With two hidden layers, as seen in Fig. 14, the largest Parity-N
problem that can be solved by this network is defined by

(3)

where and are the number of neurons in the first and
second hidden layers, respectively [55]. Fig. 14 shows networks

6 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

Fig. 13. BMLP with one hidden layer for solving the Parity-7 problem.

Fig. 14. BMLP with two hidden layers for solving the Parity-11 problem.
(a) Two neurons in the first hidden layer and one neuron in the second hidden
layer. (b) Two neurons in the second hidden layer and one neuron in the first
hidden layer.

for solving Parity-11 problem. From (3) and Fig. 14, one may
notice that the power of the neural network is the same regard-
less of whether it is the first or the second hidden layer that uses
more neurons.

As shown in [56], (3) can be generalized for hidden layers

(4)

where represents the parity number; is the number of neu-
rons in the first hidden layer; is the number of neurons in the
second hidden layer; and so on; until which is the number of
neurons in the last hidden layer.

Fig. 15. BMLP with two hidden layers for solving the Parity-17 problem.

Fig. 16. FCC architecture for solving Parity-15 problem.

By introducing additional hidden layers in the BMLP net-
work, the power of the network is significantly increased. Larger
Parity-N problems can be solved with fewer neurons, but addi-
tional cross-layer connections are introduced.

Fig. 15 shows a BMLP network in the
configuration. The addition of 1 additional neuron in one of
the hidden layers enables this network to solve the Parity-17
problem. Fig. 15 (right) shows the required network structure
and Fig. 15 (left) shows the concept of operation for the net-
work.

D. FCC—Fully Connected Cascade Architecture

Use of an FCC network can further reduce the number of neu-
rons in the network. One may notice that in the FCC architec-
ture, all neurons in the network are directly connected. When
some of these connections are removed the network will be re-
duced to the BMLP architecture.

The largest Parity-N problem which can be solved with
neurons in the FCC architecture is [55]

(5)

where is the total number of neurons in the network.
Fig. 16 shows the unipolar implementation of a FCC network

for the Parity-15 problem.
One of the difficulties in implementing the FCC network is

the large number of layers.

HUNTER et al.: SELECTION OF PROPER NEURAL NETWORK SIZES AND ARCHITECTURES—A COMPARATIVE STUDY 7

Fig. 17. Efficiency comparison of various neural network architectures.

TABLE III
NEURONS AND WEIGHTS REQUIRED BY VARIOUS ARCHITECTURES

E. Comparison of NN Efficiencies

The three architectures shown so far are capable of solving
the Parity-N problem; however, each of these architectures has
a different level of efficiency. Fig. 17 compares architecture ef-
ficiency.

The MLP architecture is the least efficient of the presented
architectures and requires many neurons, typically, , to
solve the Parity-N problem.

The BMLP architecture with one hidden layer improves upon
the MLP by significantly reducing the number of neurons re-
quired for solving the same Parity-N problem. If we implement
a BMLP with two or three hidden layers, the number of required
neurons for solving the same Parity-N problem is reduced even
further.

The FCC architecture provides additional improvement in ef-
ficiency over the BMLP, requiring even fewer neurons than the
BMLP for the same Parity-N problem.

To better understand the efficiency improvement in each of
the presented architectures, we will use the MLP as our basis
for comparison. Table III shows a summary of the number of
neurons and weights required by different architectures [55].

TABLE IV
EXPERIMENTAL RESULTS FOR MLP ARCHITECTURE WITH ONE HIDDEN

LAYER (IN EACH BOX THE FOLLOWING VALUES ARE LISTED:
SUCCESS RATE, # ITERATIONS, TIME)

Analyzing Fig. 17 and Table III, one may notice that there
is a significant difference in capabilities of neural network ar-
chitectures. For example, with ten neurons, using popular MLP
architecture with one hidden layer, the largest parity problem
which can be solved is the Parity-9. However, if the same ten
neurons are connected in FCC topology, a problem as large as
Parity-1023 can be solved.

IV. EXPERIMENTAL COMPARISONS OF VARIOUS NEURAL

NETWORK ARCHITECTURES

As it was shown in Section II, the NBN algorithm is superior
to other algorithms. Therefore, the NBN algorithm was used in
the following experimental comparison of various neural net-
work architectures.

The results for MLP architecture with one hidden layer are
shown in Table IV. Similar results were generated for MLP with
2 and 3 hidden layers and for BMLP with 1, 2, and 3 hidden
layers. Also, the experiment was done with FCC architectures.
In all experiments, parity problems from 4 to 12 were conducted
and the total number of neurons varied from 3 to 12. For the
given number of neurons, the quantity of neurons in hidden
layers was distributed as equally as possible.

Simulations were run using the same NBN training algo-
rithm, but varying only in the chosen architecture, as presented
in Section II. Per all network interconnections, initial nonzero
weights were randomly generated, and training trials were run
and averaged 100 times up to a maximum number of algorithm
iterations per each time. Parity and total number of neurons were
varied per each experiment, and results were tabulated.

From experimental results, several conclusions could be
drawn.

1) Number of required iterations increases significantly with
increasing parity number.

8 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

Fig. 18. Results for for MLP architecture with one hidden layer.

Fig. 19. Results for for MLP architecture with two hidden layers.

Fig. 20. Results for MLP architecture with three hidden layers.

2) Number of required iterations decreases with increasing
number of neurons used in the network.

3) Computing time increases with number of neurons.
4) Success rate decreases with increasing parity number.
5) Success rate increases with number of neurons used.
Items (1)–(4) seem to be logical. The plots illustrating success

rates for parities 4, 6, 8, 10, and 12 for all investigated architec-
tures are shown in Figs. 18–24.

Fig. 21. BMLP networks with one hidden layer.

Fig. 22. BMLP with two hidden layers.

Fig. 23. BMLP with three hidden layers.

V. GENERALIZATION ISSUES

In order to sustain neural network generalization abilities, the
network should have as few neurons and weights as possible
[42], [43], [47]. The problem is similar to curve fitting using
polynomial interpolation, as illustrated in Fig. 25. Notice that if
the order of the polynomial is too low (first to fifth orders) there
is a poor approximation everywhere. When order is too high
(eighth to tenth orders) there is a perfect fit at the given data

HUNTER et al.: SELECTION OF PROPER NEURAL NETWORK SIZES AND ARCHITECTURES—A COMPARATIVE STUDY 9

Fig. 24. Results for FCC architecture.

Fig. 25. Approximation of measured points by polynomials with different or-
ders starting with first through tenth order.

points, but the interpolation between points is rather poor. Op-
timal results are obtained by sixth or seventh order polynomials.

In the case of neural networks, we observe similar results;
with excessive numbers of neurons, it is easy to train the net-
work to very small output error with a finite set of training data,
but this may lead to very poor and frustrating results when this
trained neural network is used to process new input patterns.

As it can be seen from the experimental data of Sections II
and IV, the success rates for all neural network architectures in-
crease with increased number of neurons. Indeed, such larger
networks can be trained faster and converge to smaller errors,
but this “success” is very misleading. Such networks with ex-
cessive numbers of neurons are most likely losing their general-
ization abilities. It means that they will respond very poorly for
new patterns never used in the training. In order to have good
generalization abilities, the number of neurons in the network
should be as small as possible to obtain a reasonable training
error.

To illustrate the problem with neural networks, let us try to
find neural network architecture to replace a fuzzy controller.
Fig. 26 shows the required control surface and the defuzzifica-
tion rules for the TSK (Tagagi, Sugeno, Ken) [57], [58] fuzzy
controller [5], [29].

Fig. 26. Control surface: determined by dataset used to build fuzzy controller
with � � � � �� points.

Fig. 27. Interpolation result obtained with two neurons in FCC network,
training sum square error is 0.6712.

Let us select the FCC neural network architecture and apply
the NBN algorithm for neural network design. In order to find
solutions, FCC networks consisting of a different number of
neurons are tried. The interpolation results of FCC networks
consisting of two to five neurons are presented as Figs. 27–30,
respectively.

As shown in Fig. 27, the FCC network with two neurons is
not powerful enough to match the training data to small errors
(0.6712). As the number of neurons increased, the training
errors get smaller (0.1119 for three neurons and 0.0366 for
four neurons) and results become more acceptable, as shown
in Figs. 28 and 29. One may notice that the best results were
obtained for the four neuron architecture (Fig. 29). However,
when five neurons were used we were able to reduce the
training error (0.0089), but the neural network begins to lose its
generalization ability (Fig. 30).

The conclusion is that for the best generalization abilities,
neural networks should have as few neurons as possible. The
generalization abilities also depend on the number of training
patterns. With a large number of training patterns, a larger
number of neurons can be used while generalization abilities
are preserved.

10 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

Fig. 28. Interpolation result obtained with three neurons in FCC network,
training sum square error is 0.1118.

Fig. 29. Interpolation result obtained with four neurons in FCC network,
training sum square error is 0.0366.

Fig. 30. Interpolation result obtained with five neurons in FCC network,
training sum square error is 0.0089.

Fig. 31. Architecture of radial basis function networks.

VI. OTHER NETWORKS

A. Radial Basis Function (RBF) Networks

RBF networks have architecture similar to MLP networks
with one hidden layer. The architecture of RBF networks
(Fig. 31) is fixed and consists of three layers: 1) input layer with
pattern data; 2) hidden layer with RBF units for nonlinear map-
ping using Gaussian functions; and 3) output layer (summator)
which performs linear separation. Number of nonlinear hidden
units is usually significantly larger that number of network
inputs, so input space is transformed into higher dimensional
space, where patterns become linearly separable [61]. Recently,
RBF networks became attractive in practical applications [51]
because of simpler design process and improved generalization
ability compared to neural networks [62].

Unlike the randomly generated initial parameters (weights) in
neural networks, it is important in RBF networks to find proper
initial network parameters such as locations of centers of hidden
units [63], [64]. Otherwise, multiple RBF hidden units may be
trapped in the same center and the training may never converge.

Also, because of its fixed one hidden layer architecture, RBF
networks usually require many more units than neural networks
to solve the same problem. Let us use the two-spiral problem
(Fig. 6) as an example to compare the performance of RBF net-
works and neural networks.

Experimental results show that in order to reach the same
training sum square error level (0.001), RBF networks require
at least 30 hidden units; while neural networks can solve the
problem with only seven hidden units using FCC architectures.
However, the generalization abilities of RBF networks are
better than traditional neural networks (Fig. 32). The error
correction (ErrCor) algorithm allows for automatic finding of
best locations of centers of hidden units, while an improved
second-order (ISO) algorithm presented significantly improve
the training process of RBF networks [40]. One should keep in
mind that also RBF networks need to be designed as compact
as possible to secure its generalization abilities.

HUNTER et al.: SELECTION OF PROPER NEURAL NETWORK SIZES AND ARCHITECTURES—A COMPARATIVE STUDY 11

Fig. 32. Generalization results of two-spiral problem. (a) RBF networks with
30 hidden units. (b) Neural networks with seven hidden units.

Fig. 33. Success rates comparison for training the two-spiral patterns, using
different number of hidden layers (from 1 to 10). For each network, all the
hidden layers consist of the same number of neurons (from 3 to 8).

B. Deep Neural Networks

Recently, there is an emerging interest in deep neural net-
works [67], [68] which consist of multiple hidden layers con-
nected in MLP architecture. These deep architectures are attrac-
tive because they provide significantly larger computing power
than shallow neural networks. However, it is very difficult to
train deep neural networks.

We are suggesting another solution. By introducing con-
nections across layers into deep MLP networks (deep BMLP
topologies) the networks become more transparent for the
learning process.

As another example, let us train the deep MLP networks and
deep BMLP networks using the two-spiral problem of Fig. 6.
Each hidden layer consists of seven neurons. Fig. 33 presents the
training success rates using different numbers of hidden layers
from 1 to 10. For a given network, all hidden layers have the
same number of neurons (from 3 to 8). One may notice that tra-
ditional deep neural network architectures (MLP) cannot be ef-
ficiently trained if network become too deep. With connections
across layers (BMLP) the depth of the networks actually makes
training easier.

Also, using Parity-N problems and comparing results for net-
works with three hidden layers (Figs. 20 and 23), one may notice
that much larger success rate and smaller numbers of iterations
are required for BMLP (Fig. 23) in comparison to MLP archi-
tectures (Fig. 20).

One may notice that the connections across layers not only
improve the training process of deep architectures, but also
significantly increase the power of networks (see Fig. 17 and
Table III).

VII. CONCLUSION

This paper focused on the discussion about offline neural
network design. First, the importance of the proper learning
algorithm was emphasized. With advanced learning algorithms,
we can train closer to optimal architectures which cannot be
trained with simple algorithms. The traditional LM algorithm
adopted in the popular MATLAB NN Tool Box [59] can handle
only MLP topology without connections across layers, and
these topologies are far from optimal. The training tool [60]
developed based on the NBN algorithm can handle arbitrarily
connected neural networks. The training tool and computation
engine of the NBN algorithm can be easily and freely down-
loaded from the website: http://www.eng.auburn.edu/~wil-
ambm/nnt/. The offline design of neural networks requires that
all the datasets are known before the training process. In the
applications where networks need to be adjusted dynamically
using time varying datasets, the offline design process is no
longer suitable; instead, online training algorithms should be
applied [65], [66].

Then, it was shown that neural network architectures vary
in complexity and efficiency. The power of neural networks
increases significantly with increased number of connections
across layers. The most powerful are FCC architectures with the
largest number of connections across layers per number of neu-
rons (see Fig. 17 and Table III). However, with increased depth
more nonlinear transformations are made and this may require
higher accuracy of computing and larger sensitivity to noise.

A reasonable compromise is to use BMLP where large power
of the network can be obtained even if number of layers is sig-
nificantly limited. The BMLP network is much easier to train
than traditional deep neural network architectures (MLP).

Since we still have to use the trial and error approach to find
number of layers and number of neuron in each hidden layer, the
major problem is how to reduce the number of trials. With FCC
architectures, there is a single topology precisely defined by the
number of neurons used. Since the power of the FCC network
increases dramatically with the number of neurons, usually not
many trials are required. We have to always remember to select
the architecture with acceptable training error and the smallest
number of neurons. Further optimization of the FCC topology is
possible by pruning some connections between neurons so that
the FCC network is converted to a BMLP network with reduced
depth.

REFERENCES

[1] B. K. Bose, “Neural network applications in power electronics and
motor drives—An introduction and perspective,” IEEE Trans. Ind.
Electron., vol. 54, no. 1, pp. 14–33, Feb. 2007.

[2] T. Orlowska-Kowalska, M. Dybkowski, and K. Szabat, “Adaptive
sliding-mode neuro-fuzzy control of the two-mass induction motor
drive without mechanical sensors,” IEEE Trans. Ind. Electron., vol.
57, no. 2, pp. 553–564, Feb. 2010.

[3] M. Pucci and M. Cirrincione, “Neural MPPT control of wind genera-
tors with induction machines without speed sensors,” IEEE Trans. Ind.
Electron., vol. 58, no. 1, pp. 37–47, Jan. 2011.

12 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

[4] V. N. Ghate and S. V. Dudul, “Cascade neural-network-based fault
classifier for three-phase induction motor,” IEEE Trans. Ind. Electron.,
vol. 58, no. 5, pp. 1555–1563, May 2011.

[5] C. Xia, C. Guo, and T. Shi, “A neural-network-identifier and fuzzy-
controller-based algorithm for dynamic decoupling control of perma-
nent-magnet spherical motor,” IEEE Trans. Ind. Electron., vol. 57, no.
8, pp. 2868–2878, Aug. 2010.

[6] F. F. M. El-Sousy, “Hybri-based wavelet-neural-network tracking
control for permanent-magnet synchronous motor servo drives,” IEEE
Trans. Ind. Electron., vol. 57, no. 9, pp. 3157–3166, Sep. 2010.

[7] F. F. M. El-Sousy, “Hybrid �� based wavelet-neural-network
tracking control for permanent-magnet synchronous motor servo
drives,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 3157–3166,
Sep. 2010.

[8] Q. N. Le and J. W. Jeon, “Neural-network-based low-speed-damping
controller for stepper motor with an FPGA,” IEEE Trans. Ind. Elec-
tron., vol. 57, no. 9, pp. 3167–3180, Sep. 2010.

[9] C.-H. Lu, “Wavelet fuzzy neural networks for identification and pre-
dictive control of dynamic systems,” IEEE Trans. Ind. Electron., vol.
58, no. 7, pp. 3046–3058, Jul. 2011.

[10] R. H. Abiyev and O. Kaynak, “Type 2 fuzzy neural structure for identi-
fication and control of time-varying plants,” IEEE Trans. Ind. Electron.,
vol. 57, no. 12, pp. 4147–4159, Dec. 2010.

[11] M. A. S. K. Khan and M. A. Rahman, “Implementation of a wavelet-
based MRPID controller for benchmark thermal system,” IEEE Trans.
Ind. Electron., vol. 57, no. 12, pp. 4160–4169, Dec. 2010.

[12] A. Bhattacharya and C. Chakraborty, “A shunt active power filter with
enhanced performance using ANN-based predictive and adaptive con-
trollers,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 421–428, Feb.
2011.

[13] J. Lin and R.-J. Lian, “Intelligent control of active suspension systems,”
IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 618–628, Feb. 2011.

[14] Z. Lin, J. Wang, and D. Howe, “A learning feed-forward current con-
troller for linear reciprocating vapor compressors,” IEEE Trans. Ind.
Electron., vol. 58, no. 8, pp. 3383–3390, Aug. 2011.

[15] M. O. Efe, “Neural network assisted computationally simple PI D
control of a quadrotor UAV,” IEEE Trans. Ind. Informat., vol. 7, no. 2,
pp. 354–361, May 2011.

[16] T. Orlowska-Kowalska and M. Kaminski, “FPGA implementation of
the multilayer neural network for the speed estimation of the two-mass
drive system,” IEEE Trans. Ind. Informat., vol. 7, no. 3, pp. 436–445,
Aug. 2011.

[17] C.-F. Juang, Y.-C. Chang, and C.-M. Hsiao, “Evolving gaits of
a hexapod robot by recurrent neural networks with symbiotic
species-based particle swarm optimization,” IEEE Trans. Ind. Elec-
tron., vol. 58, no. 7, pp. 3110–3119, Jul. 2011.

[18] C.-C. Tsai, H.-C. Huang, and S.-C. Lin, “Adaptive neural network con-
trol of a self-balancing two-wheeled scooter,” IEEE Trans. Ind. Elec-
tron., vol. 57, no. 4, pp. 1420–1428, Apr. 2010.

[19] G. W. Chang, C.-I. Chen, and Y.-F. Teng, “Radial-basis-func-
tion-based neural network for harmonic detection,” IEEE Trans. Ind.
Electron., vol. 57, no. 6, pp. 2171–2179, Jun. 2010.

[20] R.-J. Wai and C.-Y. Lin, “Active low-frequency ripple control for
clean-energy power-conditioning mechanism,” IEEE Trans. Ind.
Electron., vol. 57, no. 11, pp. 3780–3792, Nov. 2010.

[21] Yahyaoui, N. Fnaiech, and F. Fnaiech, “A suitable initialization proce-
dure for speeding a neural network job-shop scheduling,” IEEE Trans.
Ind. Electron., vol. 58, no. 3, pp. 1052–1060, Mar. 2011.

[22] V. Machado, A. Neto, and J. D. de Melo, “A neural network multiagent
architecture applied to industrial networks for dynamic allocation of
control strategies using standard function blocks,” IEEE Trans. Ind.
Electron., vol. 57, no. 5, pp. 1823–1834, May 2010.

[23] M. Charkhgard and M. Farrokhi, “State-of-charge estimation for
lithium-ion batteries using neural networks and EKF,” IEEE Trans.
Ind. Electron., vol. 57, no. 12, Dec. 2010.

[24] M. Wilamowski and O. Kaynak, “Oil well diagnosis by sensing ter-
minal characteristics of the induction motor,” IEEE Trans. Ind. Elec-
tron., vol. 47, no. 5, pp. 1100–1107, Oct. 2000.

[25] N. J. Cotton and B. M. Wilamowski, “Compensation of nonlinearities
using neural networks implemented on inexpensive microcontrollers,”
IEEE Trans. Ind. Electron., vol. 58, no. 3, pp. 733–740, Mar. 2011.

[26] A. Gomperts, A. Ukil, and F. Zurfluh, “Development and implemen-
tation of parameterized FPGA-based general purpose neural networks
for online applications,” IEEE Trans. Ind. Informat., vol. 7, no. 1, pp.
78–89, Feb. 2011.

[27] E. Monmasson, L. Idkhajine, M. N. Cirstea, I. Bahri, A. Tisan, and M.
W. Naouar, “FPGAs in industrial control applications,” IEEE Trans.
Ind. Informat., vol. 7, no. 2, pp. 224–243, May 2011.

[28] A. Dinu, M. N. Cirstea, and S. E. Cirstea, “Direct neural-network hard-
ware-implementation algorithm,” IEEE Trans. Ind. Electron., vol. 57,
no. 5, pp. 1845–1848, May 2010.

[29] A. Malinowski and H. Yu, “Comparison of various embedded system
technologies for industrial applications,” IEEE Trans. Ind. Informat.,
vol. 7, no. 2, pp. 244–254, May 2011.

[30] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, pp. 533–536,
1986.

[31] P. J. Werbos, “Back-propagation: Past and future,” in Proc. Int. Conf.
Neural Netw., San Diego, CA, 1988, pp. 343–354, 1.

[32] S. Ferrari and M. Jensenius, “A constrained optimization approach to
preserving prior knowledge during incremental training,” IEEE Trans.
Neural Netw., vol. 19, no. 6, pp. 996–1009, Jun. 2008.

[33] Q. Song, J. C. Spall, Y. C. Soh, and J. Ni, “Robust neural network
tracking controller using simultaneous perturbation stochastic approx-
imation,” IEEE Trans. Neural Netw., vol. 19, no. 5, pp. 817–835, May
2008.

[34] A. Slowik, “Application of an adaptive differential evolution algorithm
with multiple trial vectors to artificial neural network training,” IEEE
Trans. Ind. Electron., vol. 58, no. 8, pp. 3160–3167, Aug. 2011.

[35] V. V. Phansalkar and P. S. Sastry, “Analysis of the back-propagation
algorithm with momentum,” IEEE Trans. Neural Netw., vol. 5, no. 3,
pp. 505–506, Mar. 1994.

[36] A. Salvetti and B. M. Wilamowski, “Introducing stochastic processes
within the backpropagation algorithm for improved convergence,” in
Proc. Artif. Neural Netw. Eng.–ANNIE’94.

[37] B. M. Wilamowski and L. Torvik, “Modification of gradient com-
putation in the back-propagation algorithm,” in Artif. Neural Netw.
Eng.–ANNIE’93.

[38] M. Riedmiller and H. Braun, “A direct adaptive method for faster
backpropagation learning: The RPROP algorithm,” in Proc. Int. Conf.
Neural Netw., San Francisco, CA, 1993, pp. 586–591.

[39] S. E. Fahlman, An Empirical Study of Learning Speed in Backpropa-
gation Networks 1988.

[40] K. Levenberg, “A method for the solution of certain problems in least
squares,” Quart. Appl. Mach., vol. 5, pp. 164–168, 1944.

[41] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with
the Marquardt algorithm,” IEEE Trans. Neural Netw., vol. 5, no. 6, pp.
989–993, Nov. 1994.

[42] B. M. Wilamowski, “Neural network architectures and learning algo-
rithms,” IEEE Ind. Electron. Mag., vol. 3, no. 4, pp. 56–63, Dec. 2009.

[43] B. M. Wilamowski, “Challenges in applications of computational in-
telligence in industrial electronics,” in Proc. Int. Symp. Ind. Electron.-
ISIE’10, Bari, Italy, Jul. 4–7, 2010, pp. 15–22.

[44] N. J. Cotton, B. M. Wilamowski, and G. Dundar, “A neural network
implementation on an inexpensive eight bit microcontroller,” in Proc.
12th Int. Conf. Intell. Eng. Syst.–INES’08, Miami, Florida, USA, Feb.
25–29, 2008, pp. 109–114.

[45] B. M. Wilamowski, N. J. Cotton, O. Kaynak, and G. Dundar, “Com-
puting gradient vector and jacobian matrix in arbitrarily connected
neural networks,” IEEE Trans. Ind. Electron., vol. 55, no. 10, pp.
3784–3790, Oct. 2008.

[46] B. M. Wilamowski and H. Yu, “Improved computation for Levenberg
Marquardt training,” IEEE Trans. Neural Netw., vol. 21, no. 6, pp.
930–937, Jun. 2010.

[47] B. M. Wilamowski and H. Yu, “Neural network learning without back-
propgation,” IEEE Trans. Neural Netw., vol. 21, no. 11, pp. 1793–1803,
Nov. 2010.

[48] J. R. Alvarez-Sanchez, “Injecting knowledge into the solution of the
two-spiral problem,” Neural Comput. Appl., vol. 8, pp. 265–272, Aug.
1999.

[49] S. Wan and L. E. Banta, “Parameter incremental learning algorithm
for neural networks,” IEEE Trans. Neural Netw., vol. 17, no. 6, pp.
1424–1438, Jun. 200.

[50] S. E. Fahlman and C. Lebiere, , D. S. Touretzky, Ed., “The cascade-
correction learning architecture,” in Advances in Neural Information
Processing Systems 2. San Mateo, CA: Morgan Kaufmann.

[51] H. Yu, T. T. Xie, S. Paszczynski, and B. M. Wilamowski, “Advantages
of radial basis function networks for dynamic system design,” IEEE
Trans. Ind. Electron., vol. 58, no. 12, pp. 5438–5450, Dec. 2011.

[52] B. M. Wilamowski and L. Torvik, “Modification of gradient computa-
tion in the back-propagation algorithm,” in Proc. Artif. Neural Netw.
Eng.–ANNIE’93, St. Louis, MO, Nov. 14–17, 1993, pp. 175–180.

[53] B. M. Wilamowski, D. Hunter, and A. Malinowski, “Solving parity-n
problems with feedforward neural network,” in Proc. Int. Joint
Conf. Neural Netw.–IJCNN’03, Portland, OR, Jul. 20–23, 2003, pp.
2546–2551.

HUNTER et al.: SELECTION OF PROPER NEURAL NETWORK SIZES AND ARCHITECTURES—A COMPARATIVE STUDY 13

[54] S. Trenn, “Multilayer perceptrions: Approximation order and neces-
sary number of hidden units,” IEEE Trans. Neural Netw., vol. 19, no.
5, pp. 836–844, May 2008.

[55] D. Hunter and B. M. Wilamowski, “Parallel multi-layer neural net-
work architecture with improved efficiency,” in Proc. 4th Conf. Human
Syst. Interactions–HSI’11, Yokohama, Japan, May 19–21, 2011, pp.
299–304.

[56] B. M. Wilamowski, H. Yu, and K. Chung, “Parity-N problems as a
vehicle to compare efficiency of neural network architectures,” in In-
dustrial Electronics Handbook, 2nd ed. Boca Raton, FL: CRC Press,
2011, vol. 5, Intelligent Systems, ch. 10, pp. 10-1–10-8.

[57] T. Sugeno and G. T. Kang, “Structure identification of fuzzy model,”
Fuzzy Sets and Systems, vol. 28, no. 1, pp. 15–33, 1988.

[58] T. T. Xie, H. Yu, and B. M. Wilamowski, “Replacing fuzzy systems
with neural networks,” in Proc. IEEE Human Syst. Interaction Conf.
–HSI’10, Rzeszow, Poland, May 13–15, 2010, pp. 189–193.

[59] H. B. Demuth and M. Beale, Neural Network Toolbox: For Use With
MATLAB. Natick, MA: Mathworks, 2000.

[60] H. Yu and B. M. Wilamowski, “Efficient and reliable training of neural
networks,” in Proc. IEEE Human Syst. Interaction Conf.–HSI’09,
Catania, Italy, May 21–23, 2009, pp. 109–115.

[61] T. M. Cover, “Geometrical and statistical properties of systems of
linear inequalities with applications in pattern recognition,” IEEE
Trans. Electron. Comput., vol. EC-14, pp. 326–334.

[62] T. T. Xie, H. Yu, and B. M. Wilamowski, “Comparison of traditional
neural networks and radial basis function networks,” in Proc. 20th
IEEE Int. Symp. Ind. Electron.–ISIE’11, Gdansk, Poland, Jun. 27–30,
2011, pp. 1194–1199.

[63] S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal least squares
learning algorithm for radial basis function networks,” IEEE Trans.
Neural Netw., vol. 2, no. 2, pp. 302–309, Mar. 1991.

[64] G. B. Huang, P. Saratchandran, and N. Sundararajan, “A generalized
growing and pruning RBF (GGAP-RBF) neural network for function
approximation,” IEEE Trans. Neural Netw., vol. 16, no. 1, pp. 57–67,
Jan. 2005.

[65] M. Pucci and M. Cirrincione, “Neural MPPT control of wind genera-
tors with induction machines without speed sensors,” IEEE Trans. Ind.
Electron., vol. 58, no. 1, pp. 37–47, Jan. 2011.

[66] Q. N. Le and J. W. Jeon, “Neural-network-based low-speed-damping
controller for stepper motor with an FPGA,” IEEE Trans. Ind. Elec-
tron., vol. 57, no. 9, pp. 3167–3180, Sep. 2010.

[67] K. Chen and A. Salman, “Learning speaker-specific characteristics
with a deep neural architecture,” IEEE Trans. Neural Netw., vol. 22,
no. 11, pp. 1744–1756, 2011.

[68] I. Arel, D. C. Rose, and T. P. Karnowski, “Deep machine learning—A
new frontier in artificial intelligence research,” IEEE Comput. Intell.
Mag., vol. 5, no. 4, pp. 13–18, 2010.

[69] Intelligent Engineering Systems Through Artificial Neural Networks.
New York: ASME, 1994, vol. 4, pp. 205–209.

[70] Intelligent Engineering Systems Through Artificial Neural Networks.
New York: ASME, 1993, vol. 3, pp. 175–180, Also in.

[71] Intelligent Engineering Systems Through Artificial Neural Networks.
New York: ASME, 1993, vol. 3, pp. 175–180.

David Hunter currently is in the Ph.D. program at
Auburn University focusing on development of new
neural network architectures and training methods.
He received his M.S. in computer engineering in
2003 from the University of Idaho. Previously, Mr.
Hunter worked for 15 years in the semiconductor
industry with a focus in photolithography, metrology,
and defects.

Hao Yu (S’10) received the Ph.D. degree in electrical
and computer engineering from Auburn University,
Auburn, AL, in 2011.

He was a Research Assistant with the Department
of Electrical and Computer Engineering, Auburn
University. He is currently working in Lattice Semi-
conductor. His research interests include machine
learning, FPGA development, and EDA.

Dr. Yu serves as Reviewer for the IEEE
TRANSACTIONS ON INDUSTRIAL ELECTRONICS, the
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS,

and the IEEE TRANSACTIONS ON NEURAL NETWORKS.

Michael S. Pukish III (S’07) is currently working
towards the Ph.D. degree at Auburn University,
Auburn, AL, studying neural network architectures
and training methods and applied problems.

He has developed testing suites comprised of
original PCB and FPGA designs for complex
system-in-chip RFICs. Previously, he worked as a
PCB Designer and analytical tools and application
developer for various aerospace, radio astronomy
and auditory technology companies and research
groups.

Janusz Kolbusz received the M.Sc. degree in infor-
matics and automatics engineering from the Rzeszow
University of Technology, Rzeszow, Poland, in 1998,
and the Ph.D. degree in telecommunications from the
University of Technology and Life Sciences, Byd-
goszcz, Poland, in 2010.

Since 1998, he has been working at Informa-
tion Technology and Management, Rzeszow. His
research interests focus on operations systems,
computer networks, architectural systems devel-
opment, quality of service and survivability of the

next-generation optical transport networks.

Bogdan M. Wilamowski (SM’83–F’00) received
the M.S. degree in computer engineering in 1966,
the Ph.D. degree in neural computing in 1970, and
the Dr.Habil. degree in integrated circuit design in
1977, all from Gdansk University of Technology,
Gdansk, Poland.

He was with the Gdansk University of Tech-
nology; the University of Information Technology
and Management, Rzeszow, Poland; Auburn Uni-
versity, Auburn, AL; University of Arizona, Tucson;
University of Wyoming, Laramie; and the University

of Idaho, Moscow. He is currently the Director of the Alabama Micro/Nano
Science and Technology Center, Auburn University.

Dr. Wilamowski was the Vice President of the IEEE Computational Intelli-
gence Society (2000–2004) and the President of the IEEE Industrial Electronics
Society (2004–2005). He served as an Associate Editor in numerous journals.
He was the Editor-in-Chief of the IEEE TRANSACTIONS ON INDUSTRIAL

ELECTRONICS from 2007 to 2010

