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Fast and Efficient Second-Order Method for
Training Radial Basis Function Networks
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Bogdan Wilamowski, Fellow, IEEE

Abstract— This paper proposes an improved second order
(ISO) algorithm for training radial basis function (RBF)
networks. Besides the traditional parameters, including centers,
widths and output weights, the input weights on the connections
between input layer and hidden layer are also adjusted during
the training process. More accurate results can be obtained by
increasing variable dimensions. Initial centers are chosen from
training patterns and other parameters are generated randomly
in limited range. Taking the advantages of fast convergence and
powerful search ability of second order algorithms, the proposed
ISO algorithm can normally reach smaller training/testing error
with much less number of RBF units. During the computation
process, quasi Hessian matrix and gradient vector are accumu-
lated as the sum of related sub matrices and vectors, respectively.
Only one Jacobian row is stored and used for multiplication,
instead of the entire Jacobian matrix storage and multiplication.
Memory reduction benefits the computation speed and allows the
training of problems with basically unlimited number of patterns.
Several practical discrete and continuous classification problems
are applied to test the properties of the proposed ISO training
algorithm.

Index Terms— Levenberg–Marquardt algorithm, radial basis
function networks, second order algorithm.

I. INTRODUCTION

BEING inherited from the concept of biological receptive
fields, radial basis function (RBF) network was proposed

in literatures [1], [2], used for multivariable classification
and interpolation. Followed, Park and Sandberg proved that,
RBF networks were capable to build any nonlinear mappings
between stimulus and response [3]. With this property, RBF
networks are broadly applied to solve practical problems,
such as fault diagnosis [4]–[6], image processing [7], [8], and
adaptive control [9]–[11].

The original RBF networks do not need training process,
but as many RBF units as training patterns are required. This
is not proper for solving practical problems where there are
usually hundreds of training patterns. In order to achieve the
similar approximation/classification accuracy with less RBF
units, the training process was introduced for parameters
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adjusting. One of the oldest training algorithms for RBF
networks design is linear least squares method (also known
as “linear regression”).

This method is simple, but it works only for output weights
adjusting and performs poorly for nonlinear cases. Non-linear
least squares [12] and singular value decomposition [13]
enhance the nonlinear performance of output layer. Based
on gradient decent concept, lots of methods [14], [15] have
developed to perform “deeper” training on RBF networks
because, besides output weights, more parameters, such as
centers, and widths, are adjusted during the learning process.
But first order gradient methods have very limited search
ability and take a long time for convergence. Kalman filter
training algorithm provides similar performance to first order
gradient descent method, but it significantly improves the
training speed [16]. Genetic algorithm [17] is very robust
for training RBF networks. Since it performs global search,
genetic algorithm does not suffer from local minima problem,
but it is very time and computation expensive, especially when
the search space is huge.

In order to design compact RBF networks, many strategies
and algorithms are proposed to grow/prune the number of
RBF units according with instantaneous training information.
Orr et al. [18] introduced a regularized forward selection
method to select proper centers of RBF units. Chen et al.
[19] proposed the orthogonal least squares learning algorithm
which optimally increased the number of RBF units one by one
until reaching required conditions. Huang et al. [20] presented
a generalized growing/pruning strategy for designing compact
RBF networks. Wu et al. [21] developed an extended self-
organizing map to optimize the number of RBF units.

In this paper, the second order gradient method is proposed
to train RBF networks. This method is derived from neuron-
by-neuron (NBN) algorithm [22] and improved Levenberg–
Marquardt algorithm [23] used for traditional neural network
training. Enhancing the training algorithm itself leads to design
compact and well-behaved RBF networks. In the proposed
approach, all the parameters (as shown in Fig. 1), such as input
weights, output weights, centers, and widths, are adjusted by
second order update rule. Furthermore, the proposed algorithm
does not suffer from huge Jacobian matrix storage and its side
effects, when training data is huge. With the proposed training
algorithm, RBF networks can be designed very compactly, at
the same time, the network performances, such as training
speed and approximation accuracy, are improved.

This paper is organized as follows. In Section II, the
basic concepts of RBF networks are introduced, as well as

2162–237X/$31.00 © 2012 IEEE
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Fig. 1. RBF network with I inputs, H hidden units, and M outputs.

Levenberg–Marquardt algorithm. Section III presents the
proposed algorithm for training RBF networks. Section IV
describes a software implementation of the proposed
algorithm. Section V gives several practical examples, as
comparison between the proposed algorithm and other
algorithms for training RBF networks.

II. COMPUTATIONAL FUNDAMENTALS

Before presenting the computation fundamentals of RBF
networks and Levenberg–Marquardt algorithm, let us intro-
duce the commonly used indices in this paper.

1) i is the index of inputs, from 1 to I , where I is the
number of input dimensions.

2) p is the index of patterns, from 1 to P , where P is the
number of input patterns.

3) h is the index of hidden units, from 1 to H , where H
is the number of units in the hidden layer.

4) m is the index of outputs, from 1 to M , where M is the
number of outputs.

5) k is the index of iterations.

Other indices will be interpreted in related places.

A. RBF Networks

For a given problem with I -dimension inputs x= [x1, x2,
x3…xi …xI ], P patterns and M outputs, H RBF units in the
hidden layer are assumed. Fig. 1 shows the standard three-
layer architecture of RBF networks: input layer, hidden layer,
and output layer.

When applying pattern p, each input x p,i is re-scaled by
the input weights ui,h , which represents the weight connection
between the i th input and RBF unit h

yp,h,i = x p,i ui,h . (1)

In the traditional approaches, the elements of weight matrix
u on the input layer are all set as “1.” But in the proposed
training algorithm, they will be treated as variables.

The scaled vector yp,h= [ yp,h,1, yp,h,2…yp,h,i …yp,h,I ] is
mapped into H -dimension by function

ϕh
(
xp

) = exp

(

−
∥
∥yp,h − ch

∥
∥2

σh

)

(2)

where ‖·‖ represents the computation of Euclidean norm, ϕh (·)
is the activation function of RBF unit h, ch and σ h are the
center and width of RBF unit h, respectively. Notice that the
activation function in (2) is not the standard Gaussian function.

The outputs of RBF networks can be calculated as

op,m =
H∑

h=1

wh,mϕh
(
xp

) + w0,m (3)

where wh,m is the output weight on the connection between
hidden unit h and output m, w0,m is the bias weight of
output m.

B. Levenberg–Marquardt Algorithm

The update rule of Levenberg–Marquardt algorithm is [24]

�k+1 = �k +
(

JT
k Jk + μkI

)−1
JT

k ek (4)

where μ is combination coefficient, � is the variable vector,
e is error vector, and J is Jacobian matrix (PM×N) defined as

J =
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(5)

where N is the number of variables, ep,m is the error
calculated by

ep,m = yp,m − op,m (6)

where yp,m is the desired output and op,m is the actual
output, at network output m when training pattern p

In implementation of Levenberg–Marquardt algorithm as
described in [25], the whole Jacobian matrix in (5) is
calculated and stored for further matrix multiplication
using (4). As a consequence, the Levenberg–Marquardt algo-
rithm is not capable of training problems with large number
of patterns [26]. This limitation of Levenberg–Marquardt
algorithm can be practically eliminated by using a differ-
ent matrix multiplication routine, which allows replacing
storage and computation of Jacobian matrix with Jacobian
vector.

III. IMPROVED SECOND ORDER (ISO) ALGORITHM

Following the computation procedure in NBN algorithm
[23], the update rule (4) can be replaced with

�k+1 = �k + (Qk + μkI)−1 gk (7)



XIE et al.: FAST AND EFFICIENT SECOND-ORDER METHOD FOR TRAINING RBF NETWORKS 611

In out
-1 -1 +1
-1 +1 -1
+1 -1 -1
+1 +1 +1

Fig. 2. Data set of XOR problem.

where quasi Hessian matrix Q is directly calculated as the sum
of P×M sub matrices qp,m

Q =
P∑

p=1

M∑

m=1

qp,m qp,m = jT
p,mjp,m (8)

and gradient vector g is calculated as the sum of P×M sub
vectors ηp,m

g =
P∑

p=1

M∑

m=1

ηp,m ηp,m = jT
p,mep,m (9)

where vector jp,m is one row of Jacobian matrix for pattern
p associated with output m calculated by

jp,m =
[

∂ep,m

∂�1
,
∂ep,m

∂�2
· · · ∂ep,m

∂�n
· · · ∂ep,m

∂�N

]
(10)

and the error ep,m is given by (6).
In the proposed algorithm, there are four types of variables:

output weight matrix w, width vector σ , input weight matrix
u, and center matrix c. Therefore, the Jacobian row in (10)
consists of four parts

jp,m =
[

∂ep,m

∂wh,m
· · · ∂ep,m

∂σh
· · · ∂ep,m

∂ui,h
· · · ∂ep,m

∂ch,i
· · ·

]
. (11)

A. Computation of ∂ep,m/∂wh,m

The output weight matrix w presents the weight values
on the connections between hidden layer and output layer,
also including the bias weights on output units. There-
fore, the output weight matrix w has (H + 1) × M
elements.

Using (6), the Jacobian element ∂ep,m/∂wh,m is calculated
as

∂ep,m

∂wh,m
= − ∂op,m

∂wh,m
. (12)

By combining with (3) and (12) is rewritten as

∂ep,m

∂wh,m
= −ϕh

(
xp

)
. (13)

For bias weight w0,m , related Jacobian element is calculated
by

∂ep,m

∂w0,m
= −1. (14)

Fig. 3. RBF network for solving XOR problem.

B. Computation of ∂ep,m/∂σh

The width vector σ consists of the width of each RBF unit,
so the total number of elements is H .

For the RBF unit h, using (6) and the differential chain rule,
the Jacobian element ∂ep,m/∂σ h is calculated as

∂ep,m

∂σh
= −∂op,m

∂σh
= − ∂op,m

∂ϕh
(
xp

)
∂ϕh

(
xp

)

∂σh
. (15)

By combining with (2) and (3), (15) is rewritten as

∂ep,m

∂σh
= −wh,mϕh

(
xp

) ∥
∥yp,h − ch

∥
∥2

σ 2
h

(16)

where the vector yp,h is defined in (1).

C. Computation of ∂ep,m/∂ui,h

The input weight matrix u describes the weights on the
connections between input layer and the hidden layer, so the
total number of elements is I×H.

Using (6) and the differential chain rule, the Jacobian
element ∂ep,m/∂ui,h is calculated as

∂ep,m

∂ui,h
= −∂op,m

∂ui,h
= − ∂op,m

∂ϕh
(
xp

)
∂ϕh

(
xp

)

∂ui,h
. (17)

By combing with (1)–(3), (17) is rewritten as

∂ep,m

∂ui,h
= 2wh,mϕh

(
xp

)
x p,i

(
x p,iui,h − ch,i

)

σh
. (18)

D. Computation of ∂ep,m/∂ch,i

The center matrix c consists of the centers of RBF units,
and the number of elements is H×I.

For RBF unit h, using (6) and the differential chain rule,
the Jacobian element ∂ep,m/∂ch,i is calculated by

∂ep,m

∂ch,i
= −∂op,m

∂ch,i
= − ∂op,m

∂ϕh
(
xp

)
∂ϕh

(
xp

)

∂ch,i
. (19)

By combining with (1)–(3), (19) is rewritten as

∂ep,m

∂ch,i
= −2wh,mϕh

(
xp

) (
x p,i ui,h − ch,i

)

σh
. (20)

With (13), (14), (16), (18), and (20), all the Jacobian
row elements for output m when applying pattern p can be
obtained. Then related sub quasi Hessian matrix qp,m and
sub gradient vector η p.m can be computed by (8) and (9),
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% Initialization
initial w, σ, u and c
build parameter vector Δ based on w, σ, u and c
calculate RMSE(1);
% Training process
for iter = 2:number_of_iterations
flag=0;
calculate quasi Hessian matrix Q;
calculate gradient vector g;
Δ_backup = Δ;
while 1
Δ = Δ_backup-((Q+μI)\gT)T; % Eq. (7)
update w;
update σ;
update u;
update c;
calculate RMSE(iter);
Training Procedure Control (μ adjustment)

end;
if RMSE(iter) < required_training_error;
break;

end;
end;

Q=0; g=0;
for p=1:P %Number of patterns
for h=1:H %Number of hidden units
calculate output of hidden units φh(xp); %Eqs. (1-2)

end;
for m=1:M %Number of outputs
calculate output op,m; %Eq. (3)
calculate error ep,m; %Eq. (6)
for h=1:H %Number of hidden units
calculate ∂ep,m/∂wh,m; %Eqs. (13) & (14)
calculate ∂ep,m/∂σh; %Eq. (16)
calculate ∂ep,m/∂ui,h; %Eq. (18)
calculate ∂ep,m/∂ch,i; %Eq. (20)

end;
build Jacobian row jp,m; %Eq. (11)
calculate sub matrix qp,m; Q=Q+qp,m; %Eq. (8)
calculate sub vector ηp,m; g=g+ηp,m; %Eq. (9)

end;
end;

for p=1:P %Number of patterns
for h=1:H %Number of hidden units
calculate output of hidden units φh(xp); %Eqs. (1-2)

end;
for m=1:M
calculate network output op,m %Eq. (3)
calculate error ep,m %Eq. (6)

end;
calculate root mean square error; %Eq. (21)

(a) (b)

(c)

Fig. 4. Pseudo code (following MATLAB syntax) of the proposed algorithm to train RBF networks. Block (a), is the procedure for weight updating,
block (b), evaluates the root mean square error (RMSE), and block (c) is used for quasi Hessian matrix and gradient vector computation. The underlined steps
are additions to the computation in [23].

respectively, so do the quasi Hessian matrix and gradient
vector. Notice that, all patterns are independent, so the related
memory for jp,m , qp,m , and ηp.m can be reused.

IV. IMPLEMENTATION OF THE ISO ALGORITHM

In order to explain the training process of RBF networks
using the proposed algorithm, let us use the parity-2 (XOR)
classification problem as an illustration vehicle.

Fig. 2 shows the data set of XOR problem. The goal is to
classify the four points (−1,−1), (−1, 1), (1,−1), and (1, 1)
into two groups, which are marked by +1 and −1. Fig. 3
shows the minimum RBF network for solving the parity-2
problem.

Implementing the proposed algorithm on the example, the
training procedure can be organized in the following steps.

A. Initialization

As shown in Fig. 3, the initial conditions are set as: output
weights w = [ w0,1, w1,1, w2,1 ], widths of two RBF units σ
= [ σ1, σ2], input weights u = [ u1,1, u2,1; u1,2, u2,2 ], and
centers of two RBF units c = [ c1,1, c1,2; c2,1, c2,2 ].

In order to apply the update rule in (7), the variable vector
�1 is built by reforming the current parameters w, σ , u,
and c as: �1= [w0,1, w1,1, w2,1, σ 1, σ 2, u1,1, u2,1, u1,2,
u2,2, c1,1, c1,2, c2,1, c2,2 ].

B. Error Evaluation

The root mean square error E is defined to evaluate the
training procedure

E =

√√√
√
√

P∑

p=1

M∑

m=1
e2

p,m

P × M
(21)

where P is the number of patterns and M is the number of
outputs.

Applying the first pattern [−1,−1, 1] to RBF unit 1, the
vector multiplication of x1= [−1,−1] and u1 = [u1,1, u2,1]
is obtained using (1)

y1,1 = [−u1,1,−u2,1]. (22)

With (22), the Euclidean Norm of vector y1,1 and vector c1
is calculated as

∥∥y1,1 − c1
∥∥2 = (−u1,1 − c1,1

)2 + (−u2,1 − c1,2
)2

. (23)

Using (2) and (23), the output of the RBF unit 1 is calculated
by

ϕ1 (x1) = exp

(

−
∥∥y1,1 − c1

∥∥2

σ1

)

. (24)

Then by applying pattern [ −1,−1, 1] to RBF unit 2, using
similar computation with RBF unit 1, y1,2, and ϕ2(x1) are
calculated.
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TABLE I

PERFORMANCE COMPARISON FOR BOSTON HOUSING PROBLEM

Algorithms
CPU Time (s) Training RMSE Testing RMSE Number of RBF

units (mean)
Mean Dev Mean Dev Mean Dev

GGAP 1.2399 0.2812 0.1507 0.0128 0.1418 0.0466 3.5

MRAN 12.731 2.2585 0.1440 0.0108 0.1356 0.0411 13.58

RANEKF 22.572 6.4159 0.1328 0.0086 0.1437 0.0464 19.98

RAN 4.2664 0.4846 0.3449 0.0620 0.3432 0.0770 18.8

ISO 0.6192 0.0591 0.1327 0.0471 0.1403 0.0553 1

ISO 1.1103 0.1596 0.0996 0.0383 0.1018 0.0430 2

ISO 1.5349 0.1688 0.0904 0.0318 0.0926 0.0369 3

Fig. 5. RMS errors versus average number of RBF units for Boston housing
problem.

Following the computation in (3), the network output is
calculated as:

o1,1 = w0,1 + w1,1ϕ1 (x1) + w2,1ϕ2 (x1). (25)

Using (6) and (25), the error e1,1 for the first pattern is
computed by

e1,1 = 1 − o1,1. (26)

Repeating the computation from (22) to (26) for other three
patterns, the errors e2,1, e3,1, and e4,1 are all obtained, then
the root mean square error defined in (21) is calculated as

E1 = 1

2

√
e2

1,1 + e2
2,1 + e2

3,1 + e2
4,1. (27)

C. Computation of Quasi Hessian Matrix and Gradient Vector

First of all, the quasi Hessian matrix Q1 and gradient vector
g1 are initialized as zero

Q1 = 0, g1 = 0. (28)

Applying the first pattern [−1,−1, 1] and going through
the computation from (22) to (26), parameters ϕ1(x1),
ϕ2(x1), o1,1, and e1,1 are all obtained.

Using (13), (14), (16), (18), and (20), all the elements
of Jacobian row for the first pattern can be calculated and
built in the format of (11): j1,1 = [ ∂e1,1/∂w0,1, ∂e1,1/∂w1,1,
∂e1,1/∂w2,1, ∂e1,1/∂σ 1, ∂e1,1/∂σ 2, ∂e1,1/∂u1,1, ∂e1,1/∂u2,1,

∂e1,1/∂u1,2, ∂e1,1/∂u2,2, ∂e1,1/∂c1,1, ∂e1,1/∂c1,2, ∂e1,1/∂c2,1,
∂e1,1/∂c2,2].

Using (8), the sub quasi Hessian matrix q1,1 is calculated
to update the quasi Hessian matrix Q1

q1,1 = jT
1,1j1,1 Q1 = Q1 + q1,1. (29)

Using (9), the sub gradient vector η1,1 calculated to update
the gradient vector g1

η1,1 = jT
1,1e1,1 g1 = g1 + η1,1. (30)

By repeating the computation (29) and (30) for the other
three patterns, the accumulated results of matrix Q1 and vector
g1 are the required quasi Hessian matrix and gradient vector.

D. Parameters Update

After the computation of quasi Hessian matrix Q1 and
gradient vector g1, using (7), the updated parameter vector
�2 can be calculated as

�T
2 = �T

1 + (Q1 + μ1I)−1 g1. (31)

From the new parameter vector �2, the parameters w, σ , u,
and c can be extracted according with the order of constructing
the parameter vector �1 as was done previously.

E. Training Procedure Control

With the updated parameters w, σ , u, and c, new root
mean square error E2 can be evaluated by following the
procedure described in Section IV-B. Then the training process
is controlled by the rules.

1) If E2 is less than the setting value, training converges.
2) If E1≥E2, reduce parameter u1 and keep the current

parameter values (used for E2 calculation). Then go
through Sections IV-B–IV-E for next iteration.

3) If E1<E2, increase parameter u1 and recover previous
parameter values (used for E1 calculation). Then go
through Sections IV-C–IV-E. A counter (variable flag
in Fig. 4) should be added here to help avoid dead loop.

Fig. 4 shows the pseudo code of the proposed algorithm with
links to the equations given in previous sections. The block (1)
in Fig. 4 is the main procedure for weight updating, the
block (2) evaluates the training process according to root mean
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TABLE II

PERFORMANCE COMPARISON FOR ABALONE AGE PREDICTION

Algorithms
CPU time (s) Training RMSE Testing RMSE Number of RBF

units (mean)
Mean Dev Mean Dev Mean Dev

GGAP-GMM / / 0.08 / 0.0850 0.0027 5.13

GGAP 83.784 73.401 0.0963 0.0061 0.0966 0.0068 23.62

MRAN 1500.4 134.08 0.0836 0.0039 0.0837 0.0042 87.571

RANEKF 90806 18193 0.0738 0.0042 0.0794 0.0053 409

RAN 105.17 6.1714 0.0931 0.0091 0.0978 0.0092 345.58

ISO 5.9672 0.7495 0.0792 0.0109 0.0792 0.0101 4

ISO 8.4672 0.9885 0.0778 0.0066 0.0762 0.0085 5

ISO 11.625 1.7499 0.0748 0.0047 0.0738 0.0035 6

/ data not available in the literature [30].

Fig. 6. RMS errors versus average number of RBF units for abalone age
prediction problem.

square error and the block (3) performs quasi Hessian matrix
and gradient vector computation. Normally, the μ parameter
in the proposed algorithm is initialed as 0.01.

One may notice that the proposed ISO algorithm for RBF
network training takes the advantages of the NBN algorithm
introduced in literatures [22], [23] for neural network training.
However, because of the different activation functions, network
architectures and parameters of the two network models, the
Jacobian row computation and parameter update are very
different, as the underlined steps shown in Fig. 4.

V. EXPERIMENTAL RESULTS

Several practical issues are presented to test the performance
of the ISO algorithm, from the point of training speed, required
hidden units, training error, and generalization error. In Section
V-A, the ISO algorithm is compared with several algorithms,
including GGAP [20], MRAN [27], RANEKF [28], RAN
[29], and GGAP-GMM [30]. In Section V-B, four cases
with different training parameters are compared based on
two practical problems. In Section V-C, the proposed ISO
algorithm is compared with first order gradient algorithm and
Gauss–Newton method, based on MATLAB PEAK problem.

The testing environment of the proposed algorithm consists
of: Windows 7 Professional 32-bit operating system, AMD

Fig. 7. RMS errors versus average number of RBF units for fuel consumption
prediction problem.

Athlon (tm) × 2 Dual-Core QL-65 2.10 GHz processor,
3.00GB (2.75GB usable) RAM, MATLAB 2007b platform.
All the attributes in the data set are normalized (divided by the
maximum value of the attribute) in range [0, 1], and 100 trials
are repeated under similar conditions for each study case,
when applying the proposed algorithm for training/testing.

A. Comparing With Other Algorithms

In the performed experiments, three practical problems,
including Boston housing problem, abalone age prediction,
and fuel consumption prediction from [31], are applied to test
the performance of the proposed ISO algorithm, by comparing
with other five algorithms. Each testing case for ISO algorithm
is repeated for 100 trials and testing results of other algorithms
are from [20] and [30].

The Boston Housing problem has total of 506 observations,
each of which consists of 13 input attributes (12 continuous
attributes and one binary-valued attribute) and one continuous
output attribute (the median value of owner-occupied homes).
For each trial, 481 randomly selected observations are going
to be applied for training, and the rest 25 observations will be
used to test the trained RBF network. The experiment results
are shown in Table I. Fig. 5 shows the training/testing RMS
error trajectories when increasing the number of RBF units.
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TABLE III

PERFORMANCE COMPARISON FOR FUEL CONSUMPTION PREDICTION OF AUTOS

Algorithms
CPU Time (s) Training RMSE Testing RMSE Number of RBF

units (mean)
Mean Dev Mean Dev Mean Dev

GGAP-GMM / / 0.11 / 0.1167 0.0134 3.6

GGAP 0.4520 0.0786 0.1144 0.0132 0.1404 0.0270 3.12

MRAN 1.4644 0.2453 0.1086 0.0100 0.1376 0.0226 4.46

RANEKF 1.0103 0.1694 0.1088 0.0117 0.1387 0.0289 5.14

RAN 0.8042 0.1417 0.2923 0.0808 0.3080 0.0915 4.44

ISO 0.2105 0.0107 0.0975 0.0463 0.0995 0.0433 1

ISO 0.3043 0.0248 0.0784 0.0294 0.0817 0.0289 2

ISO 0.5922 0.0683 0.0622 0.0077 0.0645 0.0094 3

/ data not available in the literature [30].

Fig. 8. Boston housing problem: training/testing errors versus number of
RBF units plotting of ISO algorithm for different parameters: 1) normal case
and 2) extended case.

As shown in Fig. 5, for the Boston housing problem, the
ISO algorithm can obtain smaller training/testing errors than
other four algorithms with only 2 RBF units.

The Abalone problem consists of 4177 observations, each
of which consists of seven continuous input attributes and one
continuous output attribute (age in years). For each trial, 3000
randomly selected observations are applied as training data and
the remaining 1177 observations are applied for testing. The
experimental results are presented in Table II. Fig. 6 shows
the relationship between training/testing RMS errors and the
average number of RBF units.

As shown in Fig. 6, the proposed ISO algorithm can reach
similar or smaller training/testing errors with other algorithms
using significantly compact RBF network consisting of 4 RBF
units.

The Auto MPG problem has 398 patterns. Each pattern
consists of seven continuous input attributes and one continu-
ous output attribute (the fuel consumption in mile-per-gallon).
For each trial, 320 randomly selected patterns are applied for
training and the remaining 78 patterns are applied for testing.
The experimental results are shown in Table III. Fig. 7 presents
the changing of training/testing RMS errors as the average
number of RBF unit increases.

As the comparison results shown in Fig. 7, for the fuel
consumption prediction problem, the proposed ISO method

Fig. 9. Abalone age prediction: training/testing errors versus number of RBF
units plotting of ISO algorithm for different parameters: 1) normal case and
2) extended case.

can reach smaller training/testing errors than other algorithms,
with very compact RBF network consisting of 2 RBF units.
One may also notice that the ISO method got better general-
ization ability on this problem, since the differences between
training errors and testing errors are much smaller than other
algorithms.

The comparison results presented in Tables I–III show
that the proposed algorithm can reach similar or smaller
training/testing RMS errors with much less number of RBF
units and less training time than other algorithms.

Furthermore, in order to clarify the contribution of the
second order update rule and the strategy of using extended
parameters to the presented performance, the ISO algorithm
is tested in two cases: 1) normal case: training parameters
consist of output weights, centers, and widths; and 2) extended
case: training parameters consist of input weights, output
weights, centers, and widths. Figs. 8–10 present the results of
training/testing errors for different number of RBF units, in
both normal and extended cases of ISO algorithm. For each
case, from left to right, the first column (blue bar) is training
errors of extended case, the second column (cyan bar) is
training errors of normal case, the third column (yellow bar)
is the testing errors of extended case, and the fourth column
(red bar) is the testing errors of normal case.

As per the results shown in Figs. 8–10, one may also notice
that the good performance of the proposed ISO algorithm
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Fig. 10. Fuel consumption prediction: training/testing errors versus number
of RBF units plotting of ISO algorithm for different parameters: 1) normal
case and 2) extended case.

Fig. 11. Root mean square errors versus number of RBF units for wine
classification problem.

can be mainly ascribed to the powerful search ability of
second order algorithm. By applying the extra input weights
as training parameters, the performance of RBF networks can
be improved for small networks, as the increase of network
size, the improvement becomes less obvious, which means
that, at certain point of network sizes, both the extended
models and the normal models have enough power for good
approximation.

B. Performance With Different Training Parameters

In the experiments conducted, two of the most popular data
sets in [31], wine classification and car evaluation, will be
applied to test the proposed ISO algorithm.

In the wine problem, there are three types of wines required
to be classified according with other 13 attributes. There are
178 observations in total.

In the car evaluation problem, six input attributes are used
to evaluate the degree of satisfaction about the car. String data
are replaced by natural numbers 1, 2, 3…. There are 1728
observations in total.

With the two benchmark problems, the following four cases
with different variables are tested, using the proposed ISO
algorithm.

1) Case 1: Only output weight matrix w is updated.
2) Case 2: Only input weight matrix u is updated.

Fig. 12. Root mean square errors versus number of RBF units for car
evaluation problem.

(a)                                                     (b)

Fig. 13. Peaks function approximation problem: (a) training data, 20×20 =
400 points and (b) testing data, 100 × 100 = 10 000 points.

3) Case 3: Output weight matrix w, width vector σ and
center matrix c are updated.

4) Case 4: Output weight matrix w, width vector σ , input
weight matrix u, and center matrix c are all updated.

All the input weights, output weights, and widths are
randomly generated in range (0, 1). All centers are randomly
selected from the training dataset. The maximum iteration is
100 and each testing case is repeated for 50 trials.

As shown in Figs. 11 and 12, several observations can be
concluded.

1) As the number of RBF unit increases, except the Case 2,
the training errors decrease stably.

2) Case 2 (squares in line) shows the worst performance,
which is mainly depends on the initial conditions. So
adjusting input weights only is not helping for RBF
networks design.

3) For the same number of RBF units, Case 4 (circles in
line) mostly gets smaller training errors than other three
cases.

4) As the number of RBF unit increases, the difference of
training results between Case 3 and Case 4 becomes
small.

C. Training Speed Comparison

In the experiment conducted, the proposed ISO method is
compared with the first order gradient method (with momen-
tum [32]) and enhanced Gauss–Newton method, by solving
the PEAK function approximation problem. Notice that, the



XIE et al.: FAST AND EFFICIENT SECOND-ORDER METHOD FOR TRAINING RBF NETWORKS 617

Fig. 14. Training RMS error trajectories: red solid-line is for first order
gradient method, blue dash-line is for enhanced Gauss–Newton method, and
black dot-line stands for ISO algorithm (ten trials for each algorithm).

Fig. 15. Error surface of the approximating result using first order gradient
method, with ETrain = 0.8911 and ETest = 0.9192.

original Gauss–Newton method seldom converges because
Hessian matrix is mostly not invertible for complex error
surfaces. In the experiment, the Gauss–Newton method is
enhanced by adding a constant value to the diagonal elements
of Hessian matrix when it is not invertible.

The purpose is to approximate the surface in Fig. 13(b)
using the surface in Fig. 13(a). All the data come from MAT-
LAB PEAKS function. RBF network with five hidden units
is applied to do the approximation. The maximum number
of iteration is 200 for ISO algorithm, 10 000 for first order
gradient method and 1000 for the enhanced Gauss–Newton
algorithm. All the parameters, including input weights, out-
put weights, centers, and widths are adjusted by the three
algorithms.

With the same initial centers, widths, and input weights,
but randomly generated output weights, the training RMS
error trajectories of the three algorithms for ten trials each
are shown in Fig. 14. One may notice that the proposed ISO
algorithm (black dot-line) costs significantly less iterations
than first order gradient method (red solid-line) and converges
to much smaller RMS errors than both first order gradient
method and enhanced Gauss–Newton method (blue dash-line),
in the limited iterations (when training errors get saturated).

Fig. 16. Error surface of the approximating result using enhanced Gauss–
Newton method, with ETrain = 0.2769 and ETest = 0.2869.

Fig. 17. Error surfaces of the approximating result using the proposed ISO
method with ETrain = 0.0424 and ETest = 0.0440.

Figs. 15–17 show the best error surfaces of the approxi-
mating results we have tried using first order gradient method
(Fig. 15), enhanced Gauss–Newton method (Fig. 16), and the
proposed ISO algorithm (Fig. 17), respectively.

One may notice that, with the smallest training error, the
proposed ISO algorithm also gets the smaller approximation
errors (better generalization results) than both first order gradi-
ent method and enhanced Gauss–Newton method. Obviously,
because of its limited search ability, first order gradient method
is not able to adjust the centers of RBF units properly.

VI. CONCLUSION

This paper applied the improved Levenberg–Marquardt
algorithm for training RBF networks. Inheriting the high
quality performance of Levenberg–Marquardt algorithm, the
proposed ISO algorithm exhibits its powerful search ability
and fast convergence in the presented examples. The power
of second order algorithms contributes mostly to design more
compact RBF networks than other algorithms. Compact RBF
networks benefit the design in two aspects. First of all,
compact architecture could be more efficient for hardware
implementation. On the other hand, the less number of RBF
units used for design, the better generalization ability, the
trained networks can obtain [26]. Based on the experimental
results presented in Figs. 8–12, it could be empirically con-
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cluded that, variable space with higher dimensions (extended
networks) is helpful to improve the approximating accuracy of
RBF networks when the network size is small, in other words,
the extended networks can be trained to smaller errors, so their
size can be reduced by one or two RBF units in comparison to
normal networks. However, this is not true when network size
was increased. As the size of networks increases, the extended
networks perform very similarly with the normal networks.

During the implementation of the ISO proposed algorithm,
matrix operations were replaced by vector operations, which
lead to significant memory reduction and speed benefit. The
proposed ISO algorithm can be applied to design RBF net-
works for problems with basically unlimited number of train-
ing patterns.

The proposed ISO training algorithm already shows advan-
tages, such as good search ability, fast convergence, and
high network efficiency, even with randomly selected initial
parameters. However, we believe that, by combining with
proper clustering methods for initialization or pruning/growing
strategies to adjust the number of hidden units during training
process, the performance of the proposed algorithm can be
further improved.

The proposed ISO algorithm was implemented in the train-
ing tool and can be downloaded freely from the following web-
site: Available from http://www.eng.auburn.edu/∼wilambm/
nnt/index.htm.
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