
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 58, NO. 3, MARCH 2011 733

Compensation of Nonlinearities Using
Neural Networks Implemented on

Inexpensive Microcontrollers
Nicholas J. Cotton, Member, IEEE, and Bogdan M. Wilamowski, Fellow, IEEE

Abstract—This paper describes a method of linearizing the
nonlinear characteristics of many sensors and devices using an
embedded neural network. The neuron-by-neuron process was
developed in assembly language to allow the fastest and shortest
code on the embedded system. The embedded neural network
also requires an accurate approximation for hyperbolic tangent to
be used as the neuron activation function. The proposed method
allows for complex neural networks with very powerful architec-
tures to be embedded on an inexpensive 8-b microcontroller. This
process was then demonstrated on several examples, including a
robotic arm kinematics problem.

Index Terms—Embedded, microcontroller, neural networks,
nonlinear sensor compensation.

I. INTRODUCTION

N EURAL networks have become a growing area of re-
search over the last few decades and have affected many

branches of industry. The concept of neural networks and a few
types of their applications in industrial electronics are summa-
rized in [1]. In the field of industrial electronics alone, there are
several applications for neural networks, some include motor
drives [14], [17] and power distribution problems dealing with
harmonic distortion. Also, due to the nonlinear nature of neural
networks, they have become an integral part of the field of con-
trols [2]–[4]. The common myth is that neural networks require
relatively significant computation power, and usually, advance
computing architectures are needed. Primarily, fuzzy systems
are implemented on inexpensive microcontrollers [13]–[16],
[20], [21]. There has been also an attempt of implementations of
neural networks on microcontrollers [5]–[7]. Due to the use of
various simplification methods, such as limited bit resolution or
piecewise approximations of activation functions, the obtained
results are not encouraging. The exception is an implementation
of neural networks on a Motorola HC11 microcontroller [8]
where it is shown that neural networks can be superior to fuzzy
system in almost all aspects: smaller errors, smoother surfaces,

Manuscript received July 23, 2010; revised October 15, 2010; accepted
November 15, 2010. Date of publication December 10, 2010; date of current
version February 11, 2011.

N. J. Cotton was with the Department of Electrical and Computer Engineer-
ing, Auburn University, Auburn, AL 36849 USA. He is now with the Naval Sea
Systems Command, Panama, FL 32407-7001 USA (e-mail: cottonj@ieee.org).

B. M. Wilamowski is with the Alabama Micro/Nano Science and Technology
Center, Auburn University, Auburn, AL 36849 USA (e-mail: wilam@ieee.org).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIE.2010.2098377

Fig. 1. Eight neurons in MLP architecture for solving parity-7.

shorter code, and faster operation. This was possible by the
replacement of the traditional tangent hyperbolic function

tanh(net) =
2

1 + exp(−2net)
− 1 (1)

with Elliott function

tanh(net) =
net

1 + |net| . (2)

Unfortunately, most simple microcontrollers lack a hardware
divider, giving no advantage to using the Elliott function. Also,
in most cases, nonlinear approximations of neural networks
using the Elliot function (2) require 30%–40% more neurons
than in the cases when tangent hyperbolic function (1) is used.
In this paper, it is shown that positive results can be obtained
if the tanh activation function is approximated by piecewise
parabolic approximation.

With limited hardware resources, it is important to use
efficient neural network architectures [9], [10]. Fig. 1 shows
the popular multilayer perceptron (MLP) architecture with one
hidden layer, which is limited to solving problems smaller than
parity-7, while Fig. 2 shows an example of a fully connected
cascade (FCC) architecture which also uses eight neurons and
is capable of solving problems as large as parity-255. There are,
of course, other possible architectures which are more powerful
than the popular MLP architecture [18]. The question is: Why
do most researches use the MLP architectures? The simple
answer to this question is that there is no software to efficiently
train neural network architectures other than MLP. For example,

0278-0046/$26.00 © 2010 IEEE

734 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 58, NO. 3, MARCH 2011

Fig. 2. Eight neurons using FCC architecture capable of solving parity-255.

the most efficient second-order Levenberg–Marquardt algo-
rithm was implemented in popular MATLAB Neural Network
Toolbox only for MLP topologies. This situation has been
changed recently when second-order algorithms were devel-
oped for arbitrarily connected neural networks [11], [12].

The approach presented in this paper is taking advantage of
the following:

1) usage of more efficient architectures than popular MLP
architecture;

2) implementation of neuron-by-neuron (NBN) computa-
tion algorithm;

3) efficient quadratic piecewise approximation of activation
function;

4) pseudo floating-point arithmetic taking advantage of spe-
cific computation process.

In the floating-point computation, each number has its own
mantissa and exponent. It turns out that it is possible to simplify
the computation process by using the same exponent (read the
same scaling factors) for all weights of each neuron. These
methods allow for more efficient use of the embedded processor
and memory.

Two approaches of microcontroller programming were in-
vestigated. The most robust method was to use C with IEEE 754
floating-point arithmetic. This method, however, was very inef-
ficient and led to slow operation. In the second approach, the
microcontroller programming was done directly in an assembly
language giving more flexibility to the programmer. The code
was up to ten times faster. The neural network was embedded in
a microchip brand microcontroller PIC18F45J10. To automate
the process of converting the neural network architectures from
a text file used for training to assembly language, a Matlab
cross compiler was created. In order to shorten the code and
to increase the capacity of microcontroller, several special
approaches in assembly programming were used. These ap-
proaches include the following: efficient neural network archi-
tectures and NBN computations discussed in Section II, pseudo
floating arithmetic as described in Section III, 16-b multiplica-
tions using 8-b hardware multiplier is described in Section IV,
and approximate calculation of activation function is described

in Section V. These same techniques could also be translated to
the C domain without the overhead of traditional floating point.

II. TAKING ADVANTAGE OF EFFICIENT

NEURAL NETWORK ARCHITECTURES

As mentioned in the introductory section, the power of neural
networks strongly depends on the neural network architectures
[9]. Popular MLP architectures are not only one of the least
powerful architectures but also have other disadvantages. With
an increased number of layers, the training of such networks
becomes more difficult because the networks become less trans-
parent for error propagation. In other words, the effect of weight
changes on the first layers are disturbed by weight changes of
the subsequent layers. The second disadvantage of multilayer
networks without connections across layers is that inaccuracies
in the first layers are magnified by inaccuracies of subsequent
layers. The most powerful architecture is the FCC architecture
shown in Fig. 2. Due to cross-layer connections, the network is
much more transparent for training and is also less sensitive to
error accumulations from layer to layer. Even for FCC neural
networks with connections across layers, their architectures
should have as small number of layers as possible. For example,
instead of the FCC shown in Fig. 2 with seven hidden layers,
where there are only single neurons in each layer, it would be
more desirable to introduce several neurons in each layer and to
reduce the number of hidden layers. Such architectures, known
as bridged multilayer perceptron (BMLP), are a good com-
promise between MLP and FCC architectures. For example,
the BMLP architecture N = 4 = 4 = 4 = 1 with only three
hidden layers and four neurons in each layer is capable to
solve problems up to parity-249 [9], [10], [18]. In order to be
able to implement the neural networks with arbitrary connected
architecture, a special method of computation scheme had to
be developed. The computation process on microcontroller fol-
lows the neuron-by-neuron algorithm [11], [12]. This method
requires special modifications due to the fact that assembly
language is used with very limited memory resources.

Unfortunately, most of available learning software is not
able to train FCC or BMLP architectures. Only very recently,
adequate and very efficient algorithms for arbitrarily connected
feedforward neural networks have been developed [9], [12],
[22]. In order to implement more powerful neural network
architectures on microcontrollers, the special NBN computing
routine should be used. The NBN routine was described in de-
tail in [11], but its efficient implementation on microcontroller
with simplified arithmetic was another challenge.

This method requires special modifications due to the fact that
assembly language is used with very limited memory resources.

At first, neurons must be numbered starting from inputs to
outputs. Then, the information about neural network topology
is stored in subsequent memory locations using the following
format:

//Weights
Number of inputs; Number of outputs; (8-Bit)
Number of Weights; (8-bit)
Weight(1), Weight(2), Weight(3). . .Weight(K); (16-bit)

COTTON AND WILAMOWSKI: COMPENSATION OF NONLINEARITIES USING NEURAL NETWORKS 735

where K is the number of weights in the network. Notice
that the order that the weights are listed follows the network
architecture described in the first array.

//Architecture (8-bit)
Number of Neurons;
//Neuron 1
Neuron Scale, Number of Inputs, Output Node, Inputs(1 −

M1)
//Neuron 2
Neuron Scale, Number of Inputs, Output Node, Inputs(1 −

M2)
. . .
//NeuronN
Neuron Scale, Number of Inputs, Output Node, Inputs(1 −

MN)

where N is the number of neurons and M1,M2, . . . ,MN

are the number of input weights of each neuron. All weights
are stored in linearity addressed memory using the described
format.

The process is written so that each neuron is calculated
individually in a series of nested loops: main loop, network
loop, and neuron loop [15].

III. PSEUDO FLOATING-POINT ARITHMETIC

The nonconventional part of this floating-point routine is the
way the exponent and mantissa are stored. Essentially, all 16-b
are the mantissa, and the exponent for the entire neuron is stored
in a single location. Such an approach is possible because the
same exponent can be used for all weights of every neuron.
This has several advantages. It allows more significant digits
for every weight using less memory. This pseudo floating-point
protocol is tailored directly around the needs of the neural net-
work forward calculations. This solution requires the analysis
of the weights of each neuron and scales them accordingly and
assigns an exponent for the entire neuron. This scaling is done
offline before programming in order to save valuable processing
time on each forward calculation.

Scaling does two things: First, it prevents overflow by keep-
ing the numbers within operating regions, and second, it auto-
matically filters out inactive weights. For example, if a neuron
has weights that are several orders of magnitudes larger than
others, it will automatically round the smallest weights to zero.
These weights being zero allow the calculations to be optimized
unlike using traditional floating-point arithmetic. However, if
all of the weights have the same magnitude, they are all scaled
to values that allow maximum precision and significant digits.
In other words, the weights are stored in a manner that mini-
mizes error on a system with limited accuracy. In the proposed
approach on the 8-b microcontroller, the net values for each
neuron are calculated with 32-b accuracy. In order to increase
computation, accuracy weights are being scaled separately as
shown in Fig. 3. Before the activation function is applied to
both scales, input scale and weight scales are summed. This
raised to the N power is always the same as shift by N because
of the way the scale factors are calculated. This makes the

Fig. 3. PF stands for pseudo floating-point number. The numbers in brackets
refer to the number of bits that represent that particular value.

scaling process very fast opposed to having to execute the
multiplication instructions. Next, the sign of the net value is
stored, and the absolute value of the net is used for the next
steps. The net value is then examined, and a decision is made.

IV. MULTIPLICATION

The PIC18F45J10 microcontroller has an 8 b × 8 b unsigned
hardware multiplier. Because the hardware multiplier cannot
handle floating-point values or negative numbers, a routine was
needed to allow fast multiplication of fractional values. The
multiply routine has passed two 16-b numbers, consisting of
an 8-b integer and an 8-b fraction portion. The routine returns a
32-b product. The result of the multiplication routine is a 32-b
fixed-point result shown in (3)

A · C · 2562 + 256 · (A · D + B · C) + B · D
2562

. (3)

The hardware multiplier does the multiplication between
bytes in a single instruction. This method does not require any
shifts or division. This simple process allows each neuron to
quickly multiply the weights by the inputs and then use the 32-b
result as an accumulator for all inputs of the neuron.

The inputs are multiplied by the corresponding weights, and
the result is stored in the 32-b net register. This is essentially
a multiply and accumulate register designed for this particular
stage. It is very important to keep all 32-b in this stage for
adding and subtracting. Without the 32-b of precision at this
step, it would be very easy for an overflow to occur during
the summing process that would not be present in the final net
value [19].

V. ACTIVATION FUNCTION

Several approaches were initially considered, such as lookup
tables or linear piecewise approximations, but with these ap-
proaches, it was very difficult to obtain proper accuracy. As
an alternative, an expansion of tanh function into series was
also considered, but with this approach, an acceptable accuracy
is only possible for very small and very large net values. The
accuracy in the middle range of net values was unsatisfactory.
Finally, the second-order piecewise quadratic approximation
was selected as shown in Fig. 4.

736 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 58, NO. 3, MARCH 2011

Fig. 4. (Solid line) Approximation of tangent hyperbolic function: (Dotted
line) Linear, (dashed line) quadratic, and (dash dotted line) quadratic com-
ponent only. Lower graph shows approximation error with excessively large
segments because only four divisions were used for demonstration purposes.
Inside the upper figure, there is a construction illustrating the symbols in (4)
and (5).

Fig. 5. Error comparison using 16 segments for (dotted lines) piecewise linear
and for (dotted lines) piecewise quadratic approximations.

In order to obtain an acceptable accuracy, Δx = 0.25 was
used, and this implies that, in the range from 0 to 4, there
are 16 segments, and four most significant bits of the net
value identify the segment. Error comparison is shown in
Fig. 5. Using piecewise linear approximation, the maximum
error is below 1%. As one may see from Fig. 5, with piecewise
quadratic approximation with 16 segments, the maximum error
was reduced to below 0.03%. If 32 segments are used, then the
maximum error is reduced to 0.003%, as it is shown in Fig. 6.
One may notice that, with 32 segments, when only piecewise
linear approximation is used, the maximum error is about 0.2%,
which can be acceptable for many applications.

In order to utilize 8-b hardware multiplication, the Δx was
represented by 7 b (having an integer range from 0 to 127. This

Fig. 6. Error comparison using 32 segments for (dotted lines) piecewise linear
and for (dotted lines) piecewise quadratic approximations.

way, the division operation in both equations can be replaced
by the right shift operation. Calculation of y1 requires one sub-
traction, one 8-b multiplication, one shift right by 7 b, and one
addition. Calculation of y2 requires one 8-b subtraction, two
8-b multiplications, and shift right by 14 b. More information
on these calculations can be seen in [19].

The approximate value of tanh(net) is found in several
steps.

1) Using the higher bits of the net value, the proper piece-
wise segment is selected between xA and xB . Then,
the corresponding values of yA and yB are found from
memory. In our implementation, four most significant bits
were used to retrieve data for 16 segments.

2) The Δx value is obtained from lower bits of net value.
3) Using xA, xB , yA, and yB , the first-order linear approxi-

mation is computed at first

y1(x) = yA +
(yB − yA) · x

Δx
. (4)

4) Then, the quadratic component is found as

y2(x) =
4 · ΔyA · x · (Δx − x)

Δx2
(5)

where ΔyA values are read from memory. Divisions in (4) and
(5) can be easily replaced by bit shift operations.

VI. APPLICATIONS

In order to demonstrate that the microcontroller neural net-
work is performing correctly, several examples of control prob-
lems were tested. Neural networks have the unique ability to
solve multidimensional problems with many inputs and many
outputs; however, these types of problems are not easy to test
and verify visually. For this reason, the network was tested
mainly with two input and one output problems in order to plot
the output as a function of the inputs.

The process is tested with the microcontroller hardware in
the loop. The sensor data is transmitted via the serial port from

COTTON AND WILAMOWSKI: COMPENSATION OF NONLINEARITIES USING NEURAL NETWORKS 737

Fig. 7. Control surface of TSK fuzzy controller.

Fig. 8. Four neuron cascade architecture for the surface shown in Fig. 7.

Fig. 9. PIC output with 196 test patterns for the trained neural network
in Fig. 8.

Matlab to the microcontroller. The microcontroller, then, calcu-
lates the results and transmits this data via the serial port back
to Matlab. The reason for this simulation is to isolate the errors
in the system to those produced by the microcontroller calcula-
tions. This way, any inaccuracy of the sensors can be avoided.

A. Implementation of TSK Fuzzy System on Neural Networks

The control surface for the Takagi–Sugeno-Kang (TSK)
fuzzy system using triangular membership functions is shown
in Fig. 7. Twenty-five fuzzy rules were used as the training set.
This problem can be solved effectively using a network with
four neurons, as shown in Fig. 8.

Fig. 9 shows the control surface obtained with neural net-
work implemented on PIC microcontroller. One may notice the
ability of neural network to approximate points which were not

Fig. 10. Ten-neuron network for solving forward kinematics problem with
two degrees of freedom.

Fig. 11. Error histogram for the network in Fig. 10 implemented on PIC
microcontroller.

used for training. It is obvious that the neural network produces
much smoother and more reasonable nonlinear approximation
than fuzzy system.

B. Two-Arm Planar Manipulator

The two-link planar manipulator was used as a practical
application for this embedded neural network. In this example,
the embedded neural network calculates the x and y positions
of the arm based on the data read from sensors at the joints.
This problem is known as forward kinematics. The solution
to this problem was already presented in [23]. What is unique
about this approach is that, in order to map for both forward
and reverse kinematics problem, we were able to implement on
PIC neural networks with multiple outputs. In the case of a 2-D
problem, we have used the architecture shown in Fig. 10.

Error histogram for the network in Fig. 10 implemented on
PIC microcontroller is shown in Fig. 11. Most of the errors
are below 1%. This error is a superposition of an error created
during the training process and from an error created by limited
accuracies of computation on PIC microcontroller. In this par-
ticular case, the influences of both errors are in the same range.

738 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 58, NO. 3, MARCH 2011

Fig. 12. Eight-neuron network used for solving the Matlab peaks surface.

Fig. 13. PIC output for the peaks surface using assembly language
programming.

C. MATLAB Peaks Surface

Programming microcontrollers in assembly is time consum-
ing and has limited portability from one microcontroller to
another one. It is much more convenient to use the C lan-
guage because the code can be transposed between different
types of microcontrollers. However, direct implementation of
C language led to much longer program memory and signifi-
cantly slower operation because true floating-point operations
are used, and tangent hyperbolic is computed using sophisti-
cated and slow routine which gives much higher accuracy than
needed. In order to efficiently use the C language, an advantage
of the proposed solutions can be taken such as the following:
NBN computation process, pseudo floating-point concept, and
quadratic piecewise approximation of activation function. With
this approach, it was possible to obtain computation speed
comparable to the assembly programming.

Let us use the popular Matlab function peaks in this ex-
periment. Instead of 11 neurons as was used in [23], it was
possible to solve this problem with eight neurons using BMLP
architecture, which has two hidden layers with all neurons
connected directly to the inputs and all preceding layers as
shown in Fig. 12.

Fig. 13 shows the surface obtained using assembly language
programming, and Fig. 14 shows the surface obtained using the
C-programming.

Fig. 14. Output of the microcontroller using the C version of the embedded
neural network software.

Fig. 15. Histogram of errors between the PIC output and the training data.
The X-axis is the error, and the Y -axis is the number of samples.

Fig. 16. Histogram of errors between ideal neural network and training data.
The X-axis is the error, and the Y -axis is the number of samples.

The difference between the ideal network and the imple-
mented network is insignificant when compared to the error
added by the neural network itself. The error from the mi-
crocontroller is two orders of magnitude smaller than that
generated by the microcontroller itself. For each point, an error
value was calculated as the difference between the training
data and the microcontroller output. These errors are shown
in the form of histograms in Figs. 15 and 16. Notice that the

COTTON AND WILAMOWSKI: COMPENSATION OF NONLINEARITIES USING NEURAL NETWORKS 739

TABLE I
NEURAL NETWORK PERFORMANCE COMPARISON

assembly version has a few more outliers than the C version, but
overall, there errors are comparable and similar in distribution.
The C version more accurately represents the ideal neural net-
work; however, the ideal network does not perfectly represent
the training data which is the root cause of the errors in both
cases. In other words, the system accuracy increase by using
a significantly more accurate neural network representation is
marginal.

D. Experimental Data Summary

After comparing the results of the two different implemen-
tations of neural networks, it was obvious that the C version
can be very accurate. The C version was significantly slower
due to its complexity of calculations created by using IEEE 754
floating-point arithmetic. Due to the increase in variable size,
it becomes necessary to store all weights and nodes in program
memory rather than RAM. The accuracy and speeds can be seen
in Table I.

The C version took approximately ten times longer than the
assembly version, which was predicted based on the number
of calculations. Due to the optimization of the compiler, this
does not hold true for larger networks as in the peaks surface.
The original estimate was significantly slower than it actually
is. This allows the C version to operate faster than anticipated
and still be very accurate which makes it very valuable even on
such a low-end microcontroller. However, when the rms errors
from the final output are compared to the training data, both the
C and assembly have very similar errors. The reason for this is
that the majority of the errors is introduced into the system by
the neural network itself not by the digital implementation of
the network.

VII. CONCLUSION

This paper has presented a method for implementing an
arbitrary neural network on an embedded system. This process
balances speed with accuracy for systems that do not have
floating-point hardware. The operational goal was to create a
neural network that was as fast as possible while introducing

an error that is not greater than the error already introduced by
using a neural network to approximate the original function.
When these very similar errors are combined, they fail to
produce a final product that is closer to the original function
than that of the ideal double precision neural network. This goal
was met and has been a successful compromise between speed
and accuracy for many applications.

This particular application method has been implemented us-
ing assembly language on an 8-b microcontroller. This method,
however, can be easily implemented using C and integer math
in the same manner. The key components are the implemen-
tation of the superior types of neural network architectures
[9], [10], the concept of using an exponent for each neuron, a
custom multiply and accumulate method, and a better activation
function for embedded neural networks. The combination of
these four components creates a functionally practical and
efficient embedded neural network solution for a large variety
of applications. This implementation, being hardware indepen-
dent, allows the user to customize the requirements for his
application. For example, the saturation points in the activation
function could be extended to five from four to produce greater
accuracy. These parameters are completely adjustable for the
user’s application. These concepts have been presented to be
implemented on any embedded system without floating-point
hardware to optimize the balance of speed and accuracy.

The example showing a method of linearizing nonlinear sen-
sor data for nonlinear control problems using neural networks at
the embedded level has been introduced. It has been shown that,
with the correct neural network architectures, even very difficult
problems can be solved with just a few neurons. When using
the NBN training method, these networks can be easily trained.
Then, by using the NBN forward calculation method, networks
with any architecture can be used at the embedded level.
The second-order approximation of tanh in conjunction with
the pseudo floating-point routines allows almost any neural
network to be embedded in a simple low-cost microcontroller.
For very inexpensive and low-end microcontrollers, a floating-
point algorithm has been developed and optimized for neural
networks. This proof of concept on this simple inexpensive mi-
crocontroller can be expanded on any other embedded system.

740 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 58, NO. 3, MARCH 2011

REFERENCES

[1] B. K. Bose, “Neural network applications in power electronics and motor
drives—An introduction and perspective,” IEEE Trans. Ind. Electron.,
vol. 54, no. 1, pp. 14–33, Feb. 2007.

[2] S. S. Ge and C. Wang, “Adaptive neural control of uncertain MIMO
nonlinear systems,” IEEE Trans. Neural Netw., vol. 15, no. 3, pp. 674–
692, May 2004.

[3] E. B. Kosmatopoulos, M. M. Polycarpou, M. A. Christodoulou, and
P. A. Ioannou, “High-order neural network structures for identification
of dynamical systems,” IEEE Trans. Neural Netw., vol. 6, no. 2, pp. 422–
431, Mar. 1995.

[4] F. L. Lewis, A. Yegildirek, and L. Kai, “Multilayer neural-net robot con-
troller with guaranteed tracking performance,” IEEE Trans. Neural Netw.,
vol. 7, no. 2, pp. 388–399, Mar. 1996.

[5] S. Bashyal, G. K. Venayagamoorthy, and B. Paudel, “Embedded neural
network for fire classification using an array of gas sensors,” in Proc. IEEE
SAS, 2008, pp. 146–148.

[6] G. L. Dempsey, N. L. Alt, B. A. Olson, and J. S. Alig, “Control sensor lin-
earization using a microcontroller-based neural network,” in Proc. IEEE
Int. Syst., Man, Cybern. ‘Computational Cybernetics and Simulation’
Conf., 1997, pp. 3078–3083.

[7] U. Farooq, M. Amar, K. M. Hasan, M. Khalil Akhtar, M. U. Asad, and
A. Iqbal, “A low cost microcontroller implementation of neural network
based hurdle avoidance controller for a car-like robot,” in Proc. 2nd
ICCAE, 2010, pp. 592–597.

[8] B. M. Wilamowski and J. Binfet, “Do fuzzy controllers have advantages
over neural controllers in microprocessor implementation,” presented at
the 2nd Int. Conf. Recent Advances Mechatronics, Istanbul, Turkey, 1999.

[9] B. M. Wilamowski, “Neural network architectures and learning algo-
rithms,” IEEE Ind. Electron. Mag., vol. 3, no. 4, pp. 56–63, Dec. 2009.

[10] B. M. Wilamowski, D. Hunter, and A. Malinowski, “Solving parity-N
problems with feedforward neural networks,” in Proc. Int. Neural Netw.
Joint Conf., 2003, pp. 2546–2551.

[11] B. M. Wilamowski, N. J. Cotton, O. Kaynak, and G. Dundar, “Comput-
ing gradient vector and Jacobian matrix in arbitrarily connected neural
networks,” IEEE Trans. Ind. Electron., vol. 55, no. 10, pp. 3784–3790,
Oct. 2008.

[12] B. M. Wilamowski and H. Yu, “Improved computation for Levenberg-
Marquardt training,” IEEE Trans. Neural Netw., vol. 21, no. 6, pp. 930–
937, Jun. 2010.

[13] N. J. Cotton and B. M. Wilamowski, “Compensation of sensors non-
linearity with neural networks,” in Proc. 24th IEEE Int. Conf. AINA,
Apr. 20–23, 2010, pp. 1210–1217.

[14] F. Betin, D. Pinchon, and G.-A. Capolino, “Fuzzy logic applied to speed
control of a stepping motor drive,” IEEE Trans. Ind. Electron., vol. 47,
no. 3, pp. 610–622, Jun. 2000.

[15] W. X. Shen, C. C. Chan, E. W. C. Lo, and K. T. Chau, “Adaptive neuro-
fuzzy modeling of battery residual capacity for electric vehicles,” IEEE
Trans. Ind. Electron., vol. 49, no. 3, pp. 677–684, Jun. 2002.

[16] C. Cecati, A. Dell’Aquila, A. Lecci, and M. Liserre, “Implementation
issues of a fuzzy-logic-based three-phase active rectifier employing only
Voltage sensors,” IEEE Trans. Ind. Electron., vol. 52, no. 2, pp. 378–385,
Apr. 2005.

[17] F. Betin, A. Sivert, A. Yazidi, and G.-A. Capolino, “Determination
of scaling factors for fuzzy logic control using the sliding-mode ap-
proach: Application to control of a DC machine drive,” IEEE Trans. Ind.
Electron., vol. 54, no. 1, pp. 296–309, Feb. 2007.

[18] B. M. Wilamowski, “Challenges in applications of computational intelli-
gence in industrial electronics,” in Proc. IEEE ISIE, Bari, Italy, Jul. 5–7,
2010, pp. 15–22.

[19] N. J. Cotton, “A neural network implementation on embedded systems,”
Ph.D. dissertation, Dept. Elect. Eng., Auburn Univ., Auburn, AL, 2010.

[20] N. J. Medrano-Marques and B. Martin-del-Brio, “Sensor linearization
with neural networks,” IEEE Trans. Ind. Electron., vol. 48, no. 6,
pp. 1288–1290, Dec. 2001.

[21] C. A. Hudson, N. S. Lobo, and R. Krishnan, “Sensorless control of sin-
gle switch-based switched reluctance motor drive using neural network,”
IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 321–329, Jan. 2008.

[22] B. M. Wilamowski and H. Yu, “Neural network learning without back-
propagation,” IEEE Trans. Neural Netw., vol. 21, no. 11, pp. 1793–1803,
Nov. 2010.

[23] N. J. Cotton, B. M. Wilamowski, and G. Dundar, “A neural network
implementation on an inexpensive eight bit microcontroller,” in Proc. 12th
Int. Conf. INES, Miami, FL, Feb. 25–29, 2008, pp. 109–114.

Nicholas J. Cotton (S’07–M’10) received the M.S.
and Ph.D. degrees in electrical engineering from
Auburn University, Auburn, AL, in 2008 and 2010,
respectively.

He is currently a Research Scientist with the
Naval Sea Systems Command for the Naval Surface
Warfare Center Panama City Division, Panama City,
FL. He is also with Dynetics, Inc., Huntsville, AL,
as an Electrical Engineer. He has taught undergrad-
uate courses and was a Research Assistant with the
Department of Electrical and Computer Engineering,

Auburn University. His main interests are computational intelligence, neural
networks, embedded systems, and cooperative robotics.

Dr. Cotton is also a Reviewer for the IEEE TRANSACTIONS ON INDUS-
TRIAL ELECTRONICS.

Bogdan M. Wilamowski (SM’83–F’00) received
the M.S. degree in computer engineering in 1966,
the Ph.D. degree in neural computing in 1970,
and the Dr. habil. degree in integrated circuit design
in 1977.

He was with the Gdansk University of Tech-
nology, Gdansk, Poland; University of Informa-
tion Technology and Management, Rzeszow, Russia;
Auburn University, Auburn, AL; University of
Arizona, Tucson; University of Wyoming, Laramie;
and the University of Idaho, Moscow. He is currently

the Director of the Alabama Micro/Nano Science and Technology Center,
Auburn University.

Dr. Wilamowski was the Vice President of the IEEE Computational Intelli-
gence Society (2000–2004) and the President of the IEEE Industrial Electronics
Society (2004–2005). He served as an Associate Editor in numerous journals.
He was the Editor in Chief of IEEE TRANSACTIONS ON INDUSTRIAL ELEC-
TRONICS from 2007 to 2010, and currently, he serves as the Editor in Chief of
the IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

