
Neural Network Training with Second Order
Algorithms

H. Yu and B.M. Wilamowski

Department of Electrical and Computer Engineering,
Auburn University, Auburn, AL, USA
hzyOO04@auburn. edu, wi lam@ieee. org

Abstract. Second order algorithms are very efficient for neural network training

because of their fast convergence. In traditional Implementations of second order

algorithms [Hagan and Menhaj 1994], Jacobian matrix is calculated and stored,

which may cause memory limitation problems when training large-sized patterns.

In this paper, the proposed computation is introduced to solve the memory limita-

tion problem in second order algorithms. The proposed method calculates gradient

vector and Hessian matrix directly, without Jacobian matrix storage and multipli-

cation. Memory cost for training is significantly reduced by replacing matrix op-

erations with vector operations. At the same time, training speed is also improved

due to the memory reduction. The proposed implementation of second order algo-

rithms can be applied to train basically an unlimited number of patterns.

1 Introduction

As an efficient way of modeling the linear/nonlinear relationships between stimu-

lus and responses, artificial neural networks are broadly used in industries, such as

nonlinear control, data classification and system diagnosis.

The error back propagation (EBP) algorithm [Rumelhart et al. 1986] dispersed

the dark clouds on the field of artificial neural networks and could be regarded as

one of the most significant breakthroughs in neural network training. Still' EBP

algorithm is widely used today; however, it is also known as an inefficient algo-

rithm because of its slow convergence. Many improvements have been made to

overcome the disadvantages of EBP algorithm and some of them, such as momen-

tum and RPROP algorithm, work relatively well. But as long as the first order al-

gorithms are used, improvements are not dramatic.

Second order algorithms, such as Newton algorithm and Levenberg Marquardt

(LM) algorithm, use Hessian matrix to perform better estimations on both step

sizes and directions, so that they can converge much faster than first order algo-

rithms. By combining the training speed of Newton algorithm and the stability of

EBP algorithm, LM algorithm is regarded as one of the most efficient algorithms

for training small and medium sized patterns.

Z.S. Hippe et al. (Eds.): Human - computer systems Interaction, AISC 99, Part tr, pp. 463476.
springeilink.com @ Springer-Verlag Berlin Heidelberg 2012

I

464 H. Yu and B.M. Wilamowski

Table 1 shows the training statistic results of two-spiral problem using both
EBP algorithm and LM algorithm. In both cases, fully connected cascade (FCC)
networks were used for training and the desired sum square effor was 0.01. For
EBP algorithm, the learning constant was 0.005 (largest possible avoiding oscilla-
tion), momentum was 0.5 and iteration limit was 1,000,000; for LM algorithm, the
maximum number of iteration was 1.000.

One may notice that EBP algorithm not only requires much more time than LM
algorithm, but also is not able to solve the problem unless excessive number of
neurons is used. EBP algorithm requires at least 12 neurons and the LM algorithm
can solve it in only 8 neurons.

Neurons Success Rate Iteration Time (s)

8

9

1 0

l t

t z
l -)

1 4

15

t 6

EBP

07o

07o

O7o

07o

63Vo

857o

9ZVo

967o

98Vo

LM

l37o

24Vo

407o

697o

807o

897o

92Va

96Vo

99Vo

EBP

410,254
1 ? < < ? r

266,237

216,064

194,041

LM

287.7

261.4

243.9

231.8

r75 .1

159.7

r37.3
127.7

t t2 .o

EBP LM

/ 0.88

/ 0.98

/ 1.57
I r.62

633.9r r.70

620.30 2.09
605.32 2.40

601.08 2.89

585.74 3.82

Even having such a powerful training ability, LM algorithm is not welcomed by
engineers because of its complex computation and several limitations:

1. Network architecture limitation
The traditional implementation of LM algorithm by Hagan and Menhaj in their

paper was developed only for multilayer perceptron (MLP) neural networks.
Therefore, much more powerful neural networks [Hohil et al. 1999; Wilamowski
20091, such as fully connected cascade (FCC) or bridged multilayer perceptron
GMLP) architectures cannot be trained.

2. Network size limitation
The LM algorithm requires the inversion of Hessian matrix (size: nwxnw) in

every iteration, where nw is the number of weights. Because of the necessity of
matrix inversion in every iteration, the speed advantage of LM algorithm over the
EBP algorithm is less evident as the network size increases.

3. Memory limitation
LM algorithm cannot be used for the problems with many training patterns be-

cause the Jacobian matrix becomes prohibitively too large.
Fortunately, the network architecture limitation was solved by recently devel-

oped neuron-by-neuron (NBN) computation in papers [Wilamowski et al. 2008;

Table I Training results of two-spiral problem

Neural Network Trainine with Second Order Aleorithms

Wilamowski et al. 20101. The NBN algorithm can be applied to train arbitrarily
connected neural networks.

The network size limitation still remains unsolved, so that the LM algorithm
can be used only for small and medium size neural networks.

In this paper, the memory limitation problem of the traditional LM algorithm is
addressed and the proposed method of computation is going to solve this problem
by removing Jacobian matrix storage and multiplication. In this case, second order
algorithms can be applied to train very large-sized patterns [Wilamowski and Yu
20rol.

The paper is organized as follows: Section 2 introduces the computational fun-
damentals of LM algorithm and addresses the memory limitation problem. Section
3 describes the improved computation for both quasi Hessian matrix and gradient
vector in details. Section 4 implements the proposed computation on a simple par-
ity-3 problem. Section 5 gives some experimental results on memory and training
speed comparison between traditional Hagan and Menhaj LM algorithm and the
improved LM algorithm.

2 Computational Fundamentals

Before the derivation. let us introduce some indices which will be used in the
paper:

o p is the index of patterns, from 1 to np, where np is the number of training pat-
terns;

o m is the index of outputs, from I to no, where no is the number of outputs;
o i and 7 are the indices of weights, from 1 to nw, where nw is the number of

weights.
o ft is the index ofiterations and n is the index ofneurons.

Other indices will be explained in related places.
The sum square enor (SSE) E is defined to evaluate the training process. For all

patterns and outputs, it is calculated as:

l n p n on= i i Z 11 , (l)
z p=l m=l

where: ep*is the error at output m when training patten p, defined as

€p6=opa -dpm Q)

where: do^and opmare desired output and actual output, respectively, at output m
for training pattern p.

The update rule of LM algorithm is:

Lwr=(Hr + pl)-t g* (3)

where: p is the combination coefficient, / is the identity matrix, g is the gradient
vector and.E[is the Hessian matrix.

465

F
466

H =

;;
;--
own

H. Yu and B.M. Wilamowski

The gradient vector g and Hessian matix H are de fined as:

(4)

(5)

AE
owt

AE
:-
dwz

a2E
:--t
dwi

a 2 E

a2E azE

0wrdwt

a"E

dwtlw,

d2E
:---
dw;

i;"

dwrdwn*

a2E

Aw2awn*

a'E
:--;-
dwi,dwn*dw1 dw,.dw,

As one may notice, in order to perform the update rule (3), second order deriva-
tives of E in (5) has to be calculated, which makes the computation very complex.

In the Hagan and Menhaj implementation of LM algorithm, Jacobian matrix J
was introduced to avoid the calculation of second order derivatives. The Jacobian
matrix has the format:

dr' di,
d*t d*,
d"r, d"n
d., dr,

d€lno d€lno

A*t ar.,

dc rpl de npl

ar, ar,
denpz d"rpz

d*, dr"

de npno de npno

a\ ar,

d"r,
d,o*

d"r,
dr,*

d€t-

a**
d€np|

ar*
denpz

d*n*

oenpno

Ar*

(6)
J -

By combining (1) and (4), the elements of gradient vector can be calculated as:

aE yg (ae " ^ \
^ =LL l - - ; - eo^ l t z l
dwi p=ln=l\ ctwi)

So the relationship between gradient vector and Jacobian matrix can be pre-
sented by

g=f re (8)

Neural Network Training with Second Order Algorithms 467

By combining (1) and (5), the elements of Hessian matrix can be calculated as

d2E

dwdw,

The relationship between Hessian matrix and Jacobian matrix can be described
by

H = J T J = Q (10)

where: matrix Q is the approximated Hessian matrix, called quasi Hessian matrix.
By integrating equations (3) and (8), (10), the implementation of LM update

rule becomes

Lwo = 11[1 o + pI)- t J l ,e* (1 1)

where: e is the error vector.
Equation (11) is used as the traditional implementation of LM algorithm. Jaco-

bian matrix
"I

has to be calculated and stored at first; then matrix multiplications
(8) and (10) are performed for further weight updating. According to the definition
of Jacobian matrix J in (6), there are npxnoxnw elements needed to be stored. It
may work smoothly for problems with small and medium sized training patterns;
however, for large-sized patterns, the memory limitation problem could be trig-
gered. For example, the MNIST pattern recognition problem [Cao et al. 2006]
consists of 60,000 training patterns, 784 inputs and 10 outputs. Using the simplest
possible neural network (one neuron per each output), the memory cost for entire
Jacobian matrix storage is nearly 35 gigabytes which would be quite an expensive
memory cost for real programming.

3 Improved Computation

The key issue leading to the memory limitation in traditional computation is that
the entire Jacobian matrix has to be stored for further matrix multiplication. One
may think that if both gradient vector and Hessian matrix could be obtained di-
rectly, without Jacobian matrix multiplication, there is no need to store all the ele-
ments of Jacobian matrix so that the problem can be solved.

3.1 Matrix Algebra for Jacobian Matrix Elimination

There are two ways of matrix multiplication. If the row of the first matrix is multi-
plied by the column of the second matrix, then a scalar is obtained, as shown in
Fig. la. If the column of the first matrix is multiplied by the row of the second ma-
trix, then a partiaT matrix q is obtained, as shown in Fig. 1b. The number of scalars
is nwxnw, while the number of partial matrices 4, which later have to be summed,
is noxno.

/ ' ^ r r 2 \ -

= g S l d e p . d e p , * d - € r m o l = g t r
d e r u d (p *

L - | ^ ^
- D n

| ! a a 1

p=tn=t ldwi dwi d r r idw j
) n= tn=t dwi dwi

(e)

H. Yu and B.M. Wilamowski

<-- ftw ------>

468

t.=l a
L

I
npxno J

I
ffi
<-m'v_---->

Jlffiif] lffi]l
ft)

Fig. I Two ways of matrix multiplication: (a) row-column multiplication results in a scalar;
(b) column-row multiplication results in a partial matrix q

When
"Ir

is multiplied by,I using the routine shown in Fig. lb, partial matrices
q (size: nwxnw) need to be calculated npxno times, then all of the npxno matrices
q must be summed together. The routine of Fig. 1b seems complicated; therefore,
almost all matrix multiplication processes use the routine of Fig. la, where only
one element of the resulted matrix is calculated and stored each time.

Even the routine of Fig. lb seems to be more complicated than the routine in
Fig. 1a; after detailed analysis (Table 2), one may conclude that the computation
cost for both methods of matrix multiplication are basically the same.

Row-column (Fig. (n p x n o) x n w x n w

Column-row n w x n w x (n D x

In the specific case of neural network training, only one row of Jacobian matrix
J (column of .If) is known for each training pattern, and there is no relationship
among training patterns. So if the routine in Fig. 1b is used, then the process of
creation of quasi Hessian matrix can be started sooner without necessity of com-
puting and storing the entire Jacobian matrix for all patterns and all outputs.

Table 3 roughly estimates the memory cost in two multiplication methods sepa-
rately.

Table 2 Computation analysis between the two methods of matrix multiplication

(n p x n o) x n w x n w

n w x n w x (n p x n o

TMMII[_-_

Neural Network Training with Second Order Algorithms 469

Table 3 Memory cost analysis between two methods of matrix multiplication

Methods Elements for

Row-column (Fig. 1a)

Column-row (Fig. lb)

Difference

(n p x n o) x n w + n w x n w + n w

n w x n w + n w

x n o) x n w

Notice that the column-row multiplication (Fig. lb) can save a lot of memory.

3.2 Improved Gradient Vector Computation

Let us introduce gradient sub vector Ip* (size: nwxl):

de p.

d*t
de p.

d*,

O€ pm

art

X € p ,
(r2)

4p* =

d, o,-<-e
Dm

dwt

dr r^

dQ"'

d" r . '

dr* " o'

By combininC (7), (8) and (I2), gradient vector g can be calculated as the sum
of gradient sub vectors qpn

np no
g = t > 4 p .

P=l m=l

By introducin g y ector j pm (size: I xnw)

. I dr,, dr,^ dr,^1
J O m | 1 |'

L Owt dwz cJwn]

sub vectors qo^in (I2) can be also written in the vector form

4 p* = if,^e r*

(13)

(r4)

(1s)

One may notice that for the computation of sub vector rypn, only nlr elements of
vectorjpn need to be calculated and stored. All the sub vectors can be calculated
for each pattern p and output m separately, and summed together, so as to obtain
the gradient vector 9,.

Considering the independence among all training patterns and outputs, there is
no need to store all the sub vector rypn. Each sub vector can be summed to a tem-
porary vector after its computation. Therefore, during the direct computation of
gradient vectorg using (13), only memory for jo* (nw elements) and eu- (1 ele-
ment) is required, instead of the whole Jacobian matrix (npxnoxnw elements) and
error vector (npxno elements).

4',70

3.3 Improved Quasi Hessian Matrix Computation

Quasi Hessian sub matrix Ip^ (size: nwxnw) is introduced as

/ 1 \ 2

I o e r , I
I, ar' l

de ,^ de ,^
dw2 dw1

. .
oe pn oe pn

ar* art

By combining (9), (10) and (16), quasi
the sum of quasi Hessian sub matrix qpn

Q = L L q , ,

H. Yu and B.M. Wilamowski

(16)

Hessian matrix O can be calculated as

(17)

Q p ^ =

oe o^ de r^ ...
3n, d" o^

dwy 0w2 dwt dw,,,,
/ \ ' 2 \
1oe, , *) d€p. d€p^
t - " ' - -
\ dwt) dw2 dw,t"

de o . "de ,^ I , " ' , ^ \ "
; - - i - . ' . _ |
dw tw dw) \ow,.)

Using the same vectorJe- defined in (14), quasi Hessian sub matrix can be cal-
culated as

.T
q p* = i;*i p. (18)

Similarly, quasi Hessian sub matrix 1pn ca;r be calculated for each pattern and
output separately, and summed to a temporary matrix. Since the same vectortn is
calculated during the gradient vector computation above, no extra memory is re-
quired.

With the improved computation, both gradient vector g and quasi Hessian ma-
trix Q can be computed directly, without Jacobian matrix storage and multiplica-
tion. During this process, only a temporary vectorjp- with N elements needs to be
stored; in other words, the memory cost for Jacobian matrix storage is reduced by
npxno times. In the MINST problem mentioned in section 2, the memory cost for
the storage of Jacobian elements could be reduced from more than 35 gigabytes to
nearly 30.7 kilobytes.

From (16), one may also notice that all the sub matrix 4pm &re symmetrical.
With this property, only upper or lower triangular elements of those sub matrices
need to be calculated. Therefore, during the improved quasi Hessian matix Q
computation, multiplication operations in (18) and sum operations in (17) can be
both reduced by half approximately.

3.4 Simplified 0eo*/0wiComputation

For the improved computation of gradient vector g and quasi Hessian matrix Q
above, the key point is to calculate vector jpm (defined in (14)) for each training
pattern and each output. This vector is equivalent of one row of Jacobian matrix "I.

Neural Network Training with Second Order Algorithms

By combining (2) and (14), the element of vector jo_can be computed by

d"r,
=0(or.-do) _ do, dnetro

d*, dr, dnet rn Awi

where: net, is the sum of weighted inputs at neuron n, calculated by

net pn = \x riwi (20)

where: xpi z.nd wi arc the inputs and related weights respectively at neuron z.
Inserting (19) and (20) into (14), the vectorjpm can be calculated by

471

(19)

i,-=1ffir,^, ... xp,,..'r ... ffir,,,, ... xp,, r .] (2r)

where: xo,i is the i-th input of neuron n, when training pattern p.
Using the neuron by neuron (NBN) computation, in (21), xpnic?rr be calculated

in the forward computation, while)or.l)netrn is obtained in the backward compu-
tation. Again, since only one vector jo^ needs to be stored for each pattern and
output in the improved computation above, the memory cost for all those tempo-
rary parameters can be reduced by npxno times. All matrix operations are simpli-
fied to vector operations.

4 Implementation

For a better illustration of the improved computation, let us use the parity-3 prob-
lem as an example.Parity-3 problem has 8 patterns, each of which is made up of 3
inputs and I output, as shown inFig.2.

Output
-1
1
I

-1
1

-1
-1
1

Fig.2 Parity-3 problem: 8 patterns, 2 inputs and I output

The structure, 2 neurons in FCC network (Fig 3), is used to train parity-3 patterns.

Inputl

Input2

Input3

Pattern index

1
2
3
4
5
o

8

Inputs
- ' t -1 -1
- 1 - 1 1
- 1 1 - 1
- 1 1 1
1 - 1 - 1
1 - 1 1
1 1 - 1
1 1 1

Fig. 3 Two neurons in fully connected cascade network

472 H. Yu and B.M. Wilamowski

In Fig. 3, all weights are initialed by w={w1,w2,wj,w4,w5,w6,w7,w6,we}. Also, all
elements in both gradient vector and quasi Hessian matrix are set to "0".

Applying the first training pattern (-1, -1, -1, -1), the forward computation is
organized from inputs to output, as

1. net11=lvv71+(-1) xw2+(-1) xw3+(-1) xwa
2. on- f(net11), where f0 is the activation function for neurons
3. net12=l; ',ry5+(-1) xw6+(-1) xw7+(-1) xw8+onxwe
4. op=f(11s1t.1
5 . e1y= -1 -q t ,

Then, the backward computation, from output to inputs, does the calculation of
0 e 1 1 I)ne t 1 1 and 0 e 1 1 I dnet 1 2 in the following steps :

6. Using the results from steps 4) and 5), it could be obtained

dr,, _d(-l-o,r) _ _df (net,r)

dnet,, dnet,, dnet,
(22)

(23)

/? 5\

(26)

7. Using the results from steps I),2) and 3), and the chain-rule in differential, one
can obtain that:

dett _d(- l -or) _ _df
(.netrr) dnet , , dor, _ _df

(netrzt
,_^*df

(netnl

dnet1, 4net,, dnetr2 do1, dnet' dnetr, " dnetl

Using equation (21), the elements in jq can be calculated as

i , r= f j ! r , - r - r - r r i9r ' 1r - r - r - r or r r I
Ldnet I ctnettz I

(24)

By combining equations (15) and (24),the first sub vector q11 can be obtained
AS

4n =lst -,Jr -sl - . t l s2 -s2 -s2 -s2 srorr lxe,

where: sr= derrldnet11 and s2=fett/0net12.
By combining equations (18) and (24), the first quasi Hessian sub matrix 471

can be calculated as

Q t t =

"i
-

"i
-

"i
- ri srJz - r1r2 - r1J2 - r1r2 s1r2o11

tt'
"f

t! - Jrs2 rlr2 rlr2 rlr2 - rlr2ol I

tt 'z tf -srsz J1J2 srs2 srs2 -s1J2r1r

s r ' z -s ls2 J rJ2 J rJ2 J rJ2 -J lJ2o l l

'l - 'l - 'l - 'l '?.o,,
'l 'l 'l -'3o,,

'l sl -r3o,,
'l -s3o,,

"jol'

One may notice that in (26), only upper triangular elements of sub matrix ql1
are calculated, since all quasi Hessian sub matrices are symmetrical. (as analyzed
in section 3.3). This further simplifies the computation.

Neural Network Training with Second Order Algorithms

So far, the first sub gradient vector ryil and quasi Hessian sub matrix e11 zrte
calculated as equations (25) and (26), respectively. Then the last step for training
the pattern (-1, -1, -1, -1) is to add the vector 1111 and matrix q11 to gradient vector
g and quasi Hessian matrix Q separately. After the sum operation, all memory
costs in the computation, such as ju,Itt and q11, can be released.

7o Initialization

Q=o;
9=0
Vo Improv e d c o mputatio n
for p=1;np Vo Numher of patterns

7o Forward computation

io. -=t 'no Vo Number oJ outputs
7o Backward comput at i on

calculate vectorjo.; Vo Eq. (21)
calculate sub vectorqpn; Vo Eq. (15)
calculate sub matrix qp.; Vo Eq. (18)
g-g+qe-; Vo Eq.(13)

Q=Q+qem; Vo Eq. (17)
end;

end:

Fig.4 Pseudo code of the improved computation

The computation above is only for training the first pattern of the parity-3 prob-
lem. For the other 7 patterns, the computation process is almost the same, except
applying different input and output values. During the whole computation process,
there is no Jacobian matrix storage and multiplication; only derivatives and out-
puts of activation functions are required to be computed. All the temporary pa-
rameters are stored in vectors which have no relationship with the number of pat-
terns and outputs. Generally, for the problem with np training patterns and no
outputs, the improved computation can be organized as the pseudo code shown in
Fig.4.

5 Experimental Results

The experiments are designed to test the memory and training time efficiencies of
the improved computation, comparing with traditional computation. They are di-
vided into two parts, memory comparison and time comparison.

5.1 Memory Comparison

Three problems, each of which has a huge number of patterns, are selected to test
the rnemory cost of both the traditional computation and the improved computa-
tion. LM algorithm is used for training and the test results are shown in the tables
below. The actual memory costs are measured by Windows Task Manager.

473

Table 4 Memory comparison for parity-l4 and parity-16 problems

474 H. Yu and B.M. Wilamowski

Problems
Patterns

Structuresx
Jacobian matrix sizes

vector slzes

iteration
Success Rate

Traditional LM
LM

Pattems
Structures

Jacobian matrix sizes
Weisht vector sizes

Traditional LM
LM

Pattems
Neurons
Weights

Average Iterations
Success Rate

Traditional LM

65,536
17 neurons
r06.3Mb
1.7Kb

396.47Mb
l5.90Mb

60,000
784=1 single layer network*

r79.7Mb
3.07Kb

572.8Mb
202.8Mb

16,384
1 5 neurons
20.6Mb
1.3Kb

87.6Mb
l t .8Mb

99.2

l37a

*All neurons are in fully connected neural networks.

For the test results in Tables 4 and 5, it is clear that memory cost for training is
significantly reduced in the improved computation. Notice that, in the MINST pat-
tern recognition problem, higher memory efficiency can be obtained by the im-
proved computation if the memory costs for training patterns storage are removed.

Table 5 Memory comparison for MINST pattern recognition problem

Problems MINST Problem

*In order to perform efficient matrix inversion during training, only one digit is classified
each time.

5.2 Time Comparison

Parity-9, parity-l1 and parity-l3 problems are trained to test the training time for
both traditional and the improved computation, using LM algorithm. For all cases,
fully connected cascade networks are used for testing. For each case, the initial
weights and training parameters are exactly the same.

Table 6 Time comparison for parity-9, parity-l I and parity-l3 problems

Problems

512
8

108
- t l_ I

387o

' , 1)A

l ,078

2,048 8,192
10 15
t65 315
58.1 88.2
l77o 2l7a

time (ms)

73,563 2,868,344
19,990 331,531LM

Neural Network Training with Second Order Algorithms

From Table 6, one may notice that the improved computation can not only han-
dle much larger problems, but it also computes much faster than the traditional
one, especially for large-sized patterns training. The larger the pattern size is, the
more time efficient the improved computation will be. As analyzed above, both
the simplified quasi Hessian matrix computation and reduced memory contributes
to the significantly improved training speed presented in Table 6.

From the comparisons above, one may notice that the improved computation is
much more efficient than traditional computation for training with Levenberg
Marquardt algorithm, not only on memory requirements, but also training time.

6 Conclusion

In this paper, the improved computation is introduced to increase the training effi-
ciency of Levenberg Marquardt algorithm. Instead of storage the entire Jacobian
matrix for further computation, the proposed method uses only one row of Jaco-
bian matrix each time to calculate both gradient vector and quasi Hessian matrix
gradually. In this case, the corresponding memory requirement is decreased by
npxno times approximately, where np is the number of training patterns and no is
the number of outputs. The memory limitation problem in Levenberg Marquardt
training is eliminated. Based on the proposed method, the computation process of
quasi Hessian matrix is further simplified using its symmetrical property. There-
fore, the training speed of the improved Levenberg Marquardt algorithm becomes
much faster than the traditional one, by reducing both memory cost and multipli-
cation operations in quasi Hessian matrix computation. With the experimental re-
sults presented in section 5, one can conclude that the improved computation is
much more efficient than traditional computation, not only for memory require-
ment . but a lso t ra in ing t ime.

The method was implemented in neural network trainer (NBN 2.10) [Yu and
Wilamowski 2009; Yu et al. 20091, and the software can be downloaded from
http ://www.eng. auburn. edu/users/wilamb ml nnt/

References

lCao et aI.20061 Cao, L.J., Keerthi, S.S., Ong, C.I.,Zhang, J.Q., Periyathamby, U., Fu,
X.J., Lee, H.P.: Parallel sequential minimal optimization lbr the training of support vec-
tor machines. IEEE Trans. on Neural Networks l7(4),1039-1049 (2006)

[Hagan and l\{enhaj 1994] Hagan, M.T., Menhaj, M.B.: Training feedforward networks
with the Marquardt algorithm. IEEE Trans. on Neural Networks 5(6),989-993 (1994)

[Hohil et al. 1999] Hohil, M.E., Liu, D., Smith, S.H.: Solving the N-bit parity problem us-
ing neural networks. Neural Networks 12, 132l-1323 (1999)

[Rumelhaft et al. 1986] Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representa-
tions by back-propagating enors. Nature 323, 533-536 (1986)

[Wilamowski 2009] Wilamowski, B.M.: Neural network architectures and learning algo-
rithms: How not to be frustrated with neural networks. IEEE Industrial Electronics
Magazine 3(4), 5 6-63 (2009)

475

I

476 H. Yu and B.M. Wilamowski

[Wilamowski et al. 2008] Wilamowski, 8.M., Cotton, N.J., Kaynak, O., Dundar, G.: Com-
puting gradient vector and jacobian matrix in arbitrarily connected neural networks.
IEEE Trans. on Industrial Electronics 55(10), 3784-3790 (2008)

[Wilamowski et al. 2010] Yu, H., Wilamowski, B,M.: Neural network learning without
backpropagation. IEEE Trans. on Neural Networks 21(11) (2010)

[Wilamowski and Yu 2010] Yu, H., Wilamowski, B.M.: Improved Computation for Leven-
berg Marquardt Training. IEEE Trans. on Neural Networks 2l(6),93V937 (2010)

[Yu and Wilamowski 2009] Yu, H., Wilamowski, B.M.: Effrcient and reliable training of
neural networks. In: Proc. 2nd IEEE Human System Interaction Conf. HSI 2009, Cata-
nia, Italy, pp. 109-115 (2009)

[Yu et al. 2009] Yu, H., Wilamowski, B.M.: C++ implementation of neural networks
trainer. In: Proc. of 13th Int. Conf. on Intelligent Engineering Systems, INES 2009, Bar-
bados (2009)

