

How to not get frustrated with neural networks

Bogdan M. Wilamowski
Auburn University, AMNSTC, Auburn, Alabama, USA

wilam@ieee.org

Abstract, In the presentation major difficulties of designing

neural networks are shown. It turn out that popular MLP (Multi

Layer Perceptron) networks in most cases produces far from

satisfactory results. Also, popular EBP (Error Back

Propagation) algorithm is very slow and often is not capable to

train best neural network architectures. Very powerful and fast

LM (Levenberg- Marquardt) algorithm was unfortunately

implemented only for MLP networks. Also, because a necessity

of the inversion of the matrix, which size is proportional to

number of patterns, the LM algorithm can be used only for

small problems. However, the major frustration with neural

networks occurs when too large neural networks are used and it

is being trained with too small number of training patterns.

Indeed, such networks, with excessive number of neurons, can

be trained to very small errors, but these networks will respond

very poorly for new patterns, which were not used for training.

The most of frustrations with neural network can be eliminated

when smaller, more effective, architectures are used and trained
by newly developed NBN (Neuron-by-Neuron) algorithm.

I. INTRODUCTION

The most popular neural network architecture is the MPL
(Multi Layer Perceptron) topology. It will be shown in this

presentation, the MLP neural network is not very effective.

The MLP architectures require not only more neurons than

other topologies, but it is also more difficult to train than

neural networks where connections across layers are allowed.

Therefore, if people are using not optimal network

architectures then the results are usually not satisfactory. A

comparison of different neural network architectures will be

given in Section II.

 Once a better architecture if found the next problem is how

to train it? The issue is difficult because most of popular of
neural network software can train only MPL architectures.

The SNNS software [1] is the exception and it allows for

training arbitrarily connected feed forward neural networks.

Unfortunately, SNNS uses only first order learning algorithms

such as EBP (Error Back Propagation) [1-3] and its

derivatives. As a result, training is not only slow but often

ineffective. Advanced second order algorithm such as LM

(Levenberg- Marquardt)[4-5] are also implemented in the

MATLAB Neural Network ToolBox [6] can train only MLP

networks. As the consequence without proper learning

software researchers have no other option but to use MLP

architectures and obtained results are far from satisfactory. As
a consequence more and more people are becoming frustrated

with feed forward neural networks and its training process.

Therefore, often researchers are reaching to other techniques

such as fuzzy systems, Radial Basis Function (RBF)

networks, or Support Vector Machines (SVM). Unfortunately

these other approaches have their faults too.

 The good news is that recently developed NBN (Neuron by

Neuron)[7-9] algorithm is not only fast and effective, but it

can train any neural network with feed forward architecture.

A comparison of effectives of various learning algorithm is

given in section III.

 It is known [8, 10,11] that it is always easier to obtain

smaller error if large number of neuron is used in the network.

Therefore many researchers are being trapped here. In order
to speed up the learning process or reduce the training error

an excessive number of neurons are often used and neural

networks are losing their generalization abilities. In other

words networks indeed can be trained to smaller errors, but

such networks are then responding very poorly to new

patterns not used for training. This is probably the main

reason for a frustration with neural networks. The

generalization issue will be discussed in details in Section IV.

II. NEURAL NETWORK ARCHITECTURES

The most common test benches for neural networks
architecture are parity-N problems. The parity-N problems are

considered to be the most difficult benchmark for neural

network training. The simplest parity-2 problem is also

known as the XOR problem. The larger the N, the more

difficult it is to solve it. Even though parity-N problems are

very difficult it is possible to analytically design neural

networks for these problems [9]. As a design example let us

design neural networks for the parity-7 problem using

different neural network architectures with unipolar neurons.

 Fig. 1 shows the MLP architecture with one hidden layer.

In order to properly classify patterns in parity-N problems the
location of zeros and ones in input patterns are not relevant

but it is only important how many ones are in the patterns.

Therefore one may assume identical weights connected to all

inputs equal +1. Depending on number of ones in the pattern

net values of neurons of hidden layer calculated as sum of

inputs times weights may vary from 0 to 7 and it would be

equal to number of ones in an input pattern. In order to

separate these 8 possible cases we need 7 neurons in the

hidden layer with thresholds equal to: 0.5, 1.5, 2.5, 3.5, 4.5,

5.5, 6.5. Let us assign positive (+1) and negative (-1)

weights to outputs of consecutive neuron starting with +1.

One may notice that the net value of the output neuron will be
zero for patterns with odd number of ones and one with even

number of ones. The threshold of +0.5 of the last neuron will

just reinforce the same values on the output. The signal flow

for this network is shown in the table on Fig. 1.

978-1-4244-9066-0/11/$26.00 ©2011 IEEE 5

all weights =1

-1

1

1

1

-1

-1

-1
T=0.5

T=0.5

T=1.5

T=2.5

T=3.5

T=4.5

T=5.5

T=6.5

number of ones in a pattern

net1 through net7 (from inputs only)

out1 T=0.5 w1=1

out3 T=2.5 w3=1

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 1 1 1 1 1 1

0 0 1 1

0 0 0 1 1 0 1 1

1 1 1 1

0 1 0 1 0 1 0 1

out2 T=1.5 w2=-1

out4 T=3.5 w4=-1 0 0 0 0 1 1 1 1

0 0 0 0

1

0 1 1 1out5 T=4.5 w5=1

out6 T=5.5 w6=-1 0 0 0 0 0 0 1

1out7 T=6.5 w7=1 0 0 0 0 0 0 0

net8 = net1 +  


7

1i ii outw

0 1 0 1 0 1 0 1out8 (of output neuron) T=0.5

Fig. 1 Multi Layer Perceptron (MLP) architecture for parity-7 problem. The

computation process of the network is shown in the table.

In the case of MLP neural network the number of neurons in

the hidden layer is equal to N=7 and total number of neurons

is 8. For MLP architecture with n neurons in one hidden layer

maximum value of N of parity-N problem is [12]:

 nN  (1)

Fig. 2 shows solutions with Bridged Multi Layer Perceptron

(BMLP) with connections across layers. With this approach

the neural network can be significantly simplified. Only 3

neurons are needed in the hidden layer with thresholds equal

to 1.5, 3.5, and 5.5. In this case all weights associated with

outputs of hidden neurons must be equal to -2 while all

remaining weights in the network equal to +1

 Fig. 2 shows solutions with Bridged Multi Layer
Perceptron (BMLP) with connections across layers. With this

approach the neural network can be significantly simplified.

Only 3 neurons are needed in the hidden layer with thresholds

equal to 1.5, 3.5, and 5.5. In this case all weights associated

with outputs of hidden neurons must be equal to -2 while all

remaining weights in the network equal to +1.

all weights =1

T=0.5

weights =-2

T=1.5

T=3.5

T=5.5

number of ones in a pattern

net1 (from inputs only)

out1 T=1.5

out3 T=5.5

net1 = ne1 - 2*(out1+out2+out3)

out4 (of output neuron) T=0.5

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 0 1 1 1 1 1 1

0 0 0 0

0 0 0 0 0 0 1 1

0 1 0 1 0 1 0 1

1 1 1 1

0 1 0 1 0 1 0 1

out2 T=3.5

Fig. 2 Bridged Multi Layer Perceptron (BMLP) architecture for parity-7

problem. The computation process of the network is shown in the table.

 Signal flow in this BMLP network is shown in the table

on Fig. 2. With bridged connections across layers the number

of hidden neurons was reduced to (N-1)/2=3 and total number

of neurons is 4. For BMLP architecture with n neurons in one

hidden layer maximum value of N of parity-N problem is
[12]:

   112  nN (2)

Fig. 3 shows solution for Fully Connected Cascade (FCC)

architecture for the same parity-7 problem. In this case only 3

neurons are needed with thresholds 3.5, 1.5, and 0.5. The first

neuron with threshold 3.5 is inactive (out=0) if number of

ones in an input pattern is less than 4. If number of ones in

input pattern is 4 or more then the first neuron becomes active

and with -4 weights attached to its output it subtracts -4 from

nets of neurons 2 and 3. Instead of [0 1 2 3 4 5 6 7] these

neurons will see [0 1 2 3 0 1 2 3]. The second neuron with

threshold of 1.5 and the -2 weight associated with its output

makes that the last neuron will see [0 1 0 1 0 1 0 1] instead [0

1 2 3 0 1 2 3]. For other parity-N problems and FCC
architecture:

 12  nN (3)

where n is number of neurons used in the FCC network.

6

weights = +1

-2

-4

-4

T=0.5

T=1.5

T=3.5

number of ones in a pattern

net1 (from inputs only)

out1 (of first neuron) T=3.5

net2 = net1 - 4*out1

out2 (of second neuron) T=1.5

net3 = net2 - 2*out2

out3 (of output neuron) T=0.5

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 0 0 0 1 1 1 1

0 1 2 3

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 1 2 3

0 1 0 1 0 1 0 1

Fig. 3 Fully Connected Cascade (FCC) architecture for parity-7 problem. The

computation process of the network is shown in the table.

 A similar analysis for BMLP networks with various

number of hidden layers. For BMLP network with two hidden

layers the maximum value of N is:

   1112  mnN (4)

where n and m are the number of neurons in two consecutive

hidden layers.

 For BMLP network with three hidden layers the
maximum value of N is:

    11112  kmnN (5)

where n, m and k are the number of neurons in three

consecutive hidden layers. Table I shows comparisons of

minimum number of neurons required for these several

architectures and various parity-N problems.

 Fig. 4 shows comparisons of the efficiency of various

neural network architectures [12-14]. By looking on Fig. 4

one may notice that the most commonly used architecture of

MLP with one hidden layer gives worst results. For example

with 10 neurons it is possible to solve only Parity-9 problem.
With the same 10 neurons, when FCC architecture is used it is

possible to solve as large problems as Parity-1023. Various

BMLP networks depending on the depth of the network

entertain a powers between MLP and FCC networks.

 One may withdraw the conclusion that with BMLP

architectures the capabilities of neural networks rapidly

increase with the depth of the network and that the FCC

architecture is the most powerful. Unfortunately most

researchers are using MLP networks with one hidden layer

which is the least powerful architecture. One reason why

more powerful architectures are not used in the practice is that

TABLE I. Minimum number of neurons required for various parity-N

problems

 Parity-8 Parity-16 Parity-32 Parity-64

inputs 8 16 32 64

patterns 256 65536 4.294e+9 1.84e+19

MLP 8 16 32 64

BMLP-1 5 9 17 33

BMLP-2 4 5 8 11

BMLP-3 4 5 7 8

FCC 4 5 6 7

2 3 4 5 6 7 8 9 10
10
0

10
1

10
2

10
3

MLP with 1hidden layer

BMLP with 1hidden layer

BMLP with 2 hidden layer

BMLP with 3 hidden layer

FCC

Number of neurons

V
a

lu
e

 o
f
N

 i
n

 P
a

ri
ty

-N
 p

ro
b

le
m

Fig. 4. Abilities of solving Parity-N problems as function of number of

neurons.

all popular neural network software is not able to train

efficiently these more powerful neural networks.

III. LEARNING ALGORITHMS

The Error Back Propagation (EBP)[2,3] algorithm is the

most popular algorithm but it is very slow and seldom gives

good results. The EBP training process requires significantly

more iterations and more time than more advanced algorithms

such as Levenberg- Marquardt (LM) [4,6] or Neuron by
Neuron (NBN) [6-8,14-16] algorithms. (see Table II) and

Figure 5) What is most important is that EBP is not only slow

but it is not able to find solutions for close to optimum

architectures (see Fig. 4 and Table III). Figure 5 shows the

training errors as a function of number of iterrations for three

algoritms: EBP, LM, and NBN. In the case of EBP and NBN

optimal FCC neural network architecture were used with two

neurons. Since the LM algorithm was not implemented for

this optimal architecture the MLP topology with one hidden

layer with three neurons was used.

TABLE II Average data for parity-3 training

 EBP LM NBN

Number of iterations 658.1 8.7 6.8

Training time[ms] 898.37 21.67 16.6

Success rate 100% 100% 100%

7

(a)

(b)

(c)

Fig. 5. Learning error as function of number of iterations for three algorithms

(a) EBP, (b) LM, (c) NBN. Because LM algorithm is not able to train BMLP

architecture with 2 neurons in the case (b) the MLP with 4 neurons were

used.

The two-spiral problem is considered as a good
evaluation of training algorithms [14-17]. Depending on the

neural network architecture, different numbers of neurons are

required for successful training. For example, using standard

MLP networks with one hidden layer, 34 neurons are required

for two-spiral problem [18]; while with FCC architecture, it

can be solved with only 8 neurons. Second order algorithms

are not only much faster but they can train reduced size

networks which can’t be handled by the EBP algorithm (See

Table III). Notice that the LM algorithm was not used in this

comparison because it is not capable to train FCC or BMLP

neural networks.

Table III presents the training results of the two-spiral
problem using FCC networks with different number of

neurons [11]. NBN algorithm can solve the two-spiral

problem, using 8 neurons (52 weights) in nearly 290 iterations

(Fig. 6(a)). The EBP algorithm can solve the two-spiral

problem only when larger networks are used. When the

number of neurons is increased to 12 (102 weights), EBP

TABLE III. Training results of two-spiral problem.

Neurons

Success
Rate

Average
Iteration

Average Time
(s)

EBP NBN EBP NBN EBP NBN

8 0% 13% / 287.7 / 0.88

9 0% 24% / 261.4 / 0.98

10 0% 40% / 243.9 / 1.57
11 0% 69% / 231.8 / 1.62

12 63% 80% 410,254 175.1 633.91 1.70

13 85% 89% 335,531 159.7 620.30 2.09

14 92% 92% 266,237 137.3 605.32 2.40

15 96% 96% 216,064 127.7 601.08 2.89

16 98% 99% 194,041 112.0 585.74 3.82

(a)

(b)

Fig. 6. Best results of two-spiral problem in 100 trails: (a) 8 neurons in FCC

network (52 weights), using NBN algorithm and training time=0.82 s; (b) 12

neurons in FCC network (102 weights), using EBP algorithm and training

time=694.32 s

algorithm can solve it in about 400,000 iterations. The

result (the best one in 100 trials), shown in Fig. 6(b), is not as

good as the result (Fig. 6(a)) from NBN algorithm with much

simpler architecture. One can conclude that the EBP

algorithm is only successful if excessive number of neurons is

used, but then the neural network generalization abilities are

lost (poor response for patterns not used in training)

8

 As one can see from the 2 spiral example that the EBP

algorithm can’t converge to required training error unless a

significant number of excessive neurons are used. When the

size of networks increase, the EBP algorithm can reach the

required training error, but trained networks lose their

generalization ability and can’t process new patterns well The
newly developed NBN algorithm [7-9, 14-17] works not only

significantly faster than EBP (or even faster than LM

algorithm) and it can find good solutions with close to

optimal networks which are very difficult to train. The

NBN algorithm eliminates most deficiencies of the LM

algorithm; it can be used to train neural networks with arbitrarily

connected neurons (not just MLP architecture). It does not

require to compute and to store large Jacobians so it can train

problems with basically an unlimited number of patterns [8].

Error derivatives are computed only in forward pass, so

backward computation process is not needed. It is equally fast,

but in the case of networks with multiple outputs faster than LM
algorithms. It can train close to optimal feed forward networks

which are impossible to train with other algorithms.

IV. THE GENERALIZATION ISSUE

With increased number of neurons it is easy to train neural

networks. The most common mistake made by many

researchers is to increase number of neurons in the system to

secure faster convergence. Indeed such larger networks can be

trained faster and to smaller errors, but this "success" is very

misleading. Such networks with excessive number of neurons
are most likely losing their generalization abilities. It means

that that will respond very poorly for new patterns never used

in the training.

 The problem is similar to curve fitting using polynomial

interpolation as illustrated in Fig. 7. Notice that if the order of

polynomial is too low there is a poor approximation

everywhere. When order is too high there is a perfect fit at the

given data points, but the interpolation between points is

rather poor. In the case of neural networks we have a similar

situations with excessive number of neurons it is easy to train

the network to very small error at the training data, but this

may lead to very poor and frustrating results when this trained
neural network is used for to process a new patterns.

 In order to have good generalization abilities the number

of neurons in the network should be as small as possible to

obtain a reasonable training error.

 The generalization abilities also depend on the number of

training patterns. With a large number of training patterns a

larger number of neurons can be used, while generalization

abilities are preserved To illustrate the problem with neural

networks let us try to find the best neural network architecture

to replace a fuzzy controller. Fig. 8 shows the required control

surface and the defuzzyfication rules for the TSK (Tagagi,
Sugeno, Ken) fuzzy controller [10, 19, 20].

 In order to train the developed neural controller we may

use TSK defuzzyfication rules as the training patterns. Let us

select FCC neural network architecture and try to find

solutions for different number of neurons used. Fig. 9 (a)

shows results for neural network with 3 neurons (12 weights)

0 1 2 3 4 5 6 7 8
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Fig. 7 Approximation of measured points by polynomials with a different

orders stating with first through 9-th order.

.

-10

-5

0

5

10

-10

-5

0

5

10

-10

-5

0

5

10

Fig. 8. Control surface of TSK fuzzy controller with 8*6=48 defuzzyfication

rules

and Fig. 9 (b) shows results for 4 neurons and 18 weights.

However, when the size of the network increases, the results

become worse instead of better, even learning errors decrease

with the increase of the neural network size.

 One may notice that the best results were obtained for the
4 neuron architecture (Fig. 9(b)) With more neurons we

obviously are able to reduce the training error, but the neural

network loses its generalization ability (see Fig. 10).

 The conclusion is that for optimum performance neural

networks should have as few neurons as possible. The

software which uses NBN algorithm can be downloaded from

[19].

V CONCLUSION

There are several reasons for frustration with neural networks:

[1] In most cases the relatively inefficient MLP architectures

with one hidden layer are used instead of more powerful

topologies with connections across layers.

[2] When popular first order learning software is used, such

as EBP, the training process is not only very time

consuming, but frequently the correct solution is not
obtained. EBP algorithm often is not able to find

solutions for small and close to optimal neural networks.

9

-10

-5

0

5

10
-10

-5

0

5

10

-10

-5

0

5

10

(a)

-10

-5

0

5

10
-10

-5

0

5

10

-10

-5

0

5

10

(b)

Fig. 9 Control surface obtained with neural networks (a) 3 neurons in

cascade (12 weights) Error=0.21049 (b) 4 neurons in cascade (18 weights)

Error=0.049061

(3) With increased complexity of neural network (often

needed so EBP algorithm can converge) the neural

network loses its ability of generalization; therefore, it is
not able to process correctly new patterns which were not

used for training.

(4) In order of find solutions for close to optimal

architectures the second order algorithms such as NBN or

LM should be used. Unfortunately, LM algorithm

adopted in popular Matlab NN Tool Box [6] can handle

only MLP topology without connections across layers

and these topologies are far from optimal.
The importance of the proper learning algorithm was

emphasized because with advanced learning algorithm we can

train these networks, which cannot be trained with simple

algorithms. When simple training algorithms, such as EBP are

used, neural networks with larger number of neurons must be

used to fulfill the task and often generalization abilities of

neural networks are lost.

REFERENCES

[1] Stuttgart Neural Network Simulator SNNS

http://www.ra.cs.uni-tuebingen.de/SNNS/

[2] Rumelhart, D. E., Hinton, G. E. and Wiliams, R. J,

“Learning representations by back-propagating errors”,

Nature, vol. 323, pp. 533-536, 1986

-10

-5

0

5

10
-10

-5

0

5

10

-10

-5

0

5

10

(a)

-10

-5

0

5

10
-10

-5

0

5

10

-10

-5

0

5

10

(b)

Fig. 10 Control surface obtained with neural networks (a) 5 neurons in

cascade (25 weights) Error=0.023973 (b) 8 neurons in cascade (52 weights)

Error=1.118e-005

[3] Scott E. Fahlman. Faster-learning variations on back-

propagation: An empirical study. In T. J. Sejnowski G. E.

Hinton and D. S. Touretzky, editors, 1988 Connectionist
Models Summer School, San Mateo, CA, 1988. Morgan

Kaufmann.

[4] K. Levenberg, “A method for the solution of certain

problems in least squares”. Quarterly of Applied

Machematics, 5, pp. 164-168, 1944.

[5] Hagan, M. T. and Menhaj, M., “Training feedforward

networks with the Marquardt algorithm”, IEEE

Transactions on Neural Networks, vol. 5, no. 6, pp. 989-

993, 1994

[6] MATLAB Neural Network ToolBox

http://www.mathworks.com/products/neuralnet/

[7] B. M. Wilamowski, N. J. Cotton, O. Kaynak, G.

Dundar, "Computing Gradient Vector and Jacobian

Matrix in Arbitrarily Connected Neural Networks," IEEE
Trans. on Industrial Electronics, vol. 55, no. 10, pp.

3784-3790, Oct 2008

[8] B. M. Wilamowski, H. Yu, “Improved Computation for

Levenberg Marquardt Training,” IEEE Trans. on Neural

Networks, vol. 21, no. 6, pp. 930-937, June 2010

[9] B. M. Wilamowski and H. Yu, “Neural Network

Learning Without Backpropagation," IEEE Trans. on

Neural Networks, vol. 21, no.11, pp. 1793 - 1803 Nov.

2010

10

[10] B. M. Wilamowski, ” Neural Network Architectures and

Learning algorithms”, IEEE Industrial Electronics

Magazine, vol 3, no 4, pp.56-63, (2009)

[11] Bogdan M. Wilamowski “Efficient Neural Network

Architectures and Advanced Training Algorithms”,

Gdańsk University of Technology Faculty of ETI Annals,
Vol 18, pp. 345-352, 2010

[12] B. Wilamowski, D. Hunter, A. Malinowski, "Solving

Parity-n Problems with Feedforward Neural Network,"

Proc. of the IJCNN'03 International Joint Conference on

Neural Networks, pp. 2546-2551, Portland, Oregon, July

20-23, 200.

[13] B. M. Wilamowski, Hao Yu, and Kun Tao Chung

“Parity-N Problems as a Vehicle to Compare Efficiency

of Neural Network Architectures” Industrial Electronics

Handbook, vol. 5 – Intelligent Systems, 2nd Edition,

chapter 10, pp. 10-1 to 10-8, CRC Press 2011.

[14] B. M. Wilamowski, " Challenges in Applications of

Computational Intelligence in Industrial

Electronics" ISIE10 - International Symposium on

Industrial Electronics, Bari, Italy, July 4-7, 2010, pp.

15-22.

[15] B. M. Wilamowski, N. J. Cotton, O. Kaynak,, and G.

Dundar, “Method of computing gradient vector and

Jacobean matrix in arbitrarily connected neural
networks” ISIE 2007- IEEE International Symposium on

Industrial Electronics, Vigo, Spain, 4-7 June 2007, pp.

3298-3303

[16] B. M. Wilamowski, N. Cotton, J. Hewlett, and O.

Kaynak, “Neural Network Trainer with Second Order

Learning Algorithms”, 11th INES 2007 -International

Conference on Intelligent Engineering Systems,

Budapest, Hungary, June 29 2007-July 1 2007, pp. 127-

132H.
[17] Yu and B. M. Wilamowski, “Fast and efficient and

training of neural networks,” in Proc. 3nd IEEE Human

System Interaction Conf. HSI 2010, Rzeszow, Poland,

May 13-15, 2010, pp. 175-181

[18] Jian-Xun Peng, Kang Li, G.W. Irwin, "A New Jacobian

Matrix for Optimal Learning of Single-Layer Neural

Networks," IEEE Trans. on Neural Networks, vol. 19,

no. 1, pp. 119-129, Jan 2008.

[19] Sugeno and G. T. Kang, “Structure Identification of

Fuzzy Model,” Fuzzy Sets and Systems, Vol. 28, No. 1,

pp. 15-33, 1988.

[20] T. Takagi and M. Sugeno, “Fuzzy Identification of
Systems and Its Application to Modeling and Control,”

IEEE Transactions on System, Man, Cybernetics, Vol.

15, No. 1, pp. 116-132, 1985.

[21] NBN training software

http://www.eng.auburn.edu/~wilambm/nnt/NBNTrainer2

10.zip

11

