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Abstract,  In the presentation major difficulties of designing 

neural networks are shown. It turn out that popular MLP (Multi 

Layer Perceptron) networks in most cases produces far from 

satisfactory results. Also, popular EBP (Error Back 

Propagation) algorithm is very slow and often is not capable to 

train best neural network architectures. Very powerful and fast 

LM (Levenberg- Marquardt) algorithm was unfortunately 

implemented only for MLP networks. Also,  because a necessity 

of the inversion of the matrix, which size is proportional to 

number of patterns, the LM algorithm  can be used only for 

small problems. However, the major frustration with neural 

networks occurs when too large neural networks are used and it 

is being trained with too small number of training patterns. 

Indeed, such networks, with excessive number of neurons,  can 

be trained to very small errors, but these networks will respond 

very poorly for new patterns, which were not used for training. 

The most of frustrations with neural network can be eliminated 

when smaller, more effective, architectures are used and trained 
by newly developed NBN (Neuron-by-Neuron) algorithm.  

I. INTRODUCTION 

The most popular neural network architecture is the MPL 
(Multi Layer Perceptron) topology.  It will be shown in this 

presentation, the MLP neural network is not very effective. 

The MLP architectures require not only more neurons than 

other topologies, but it is also more difficult to train than 

neural networks where connections across layers are allowed. 

Therefore, if people are using not optimal network 

architectures then the results are usually not satisfactory.  A 

comparison of different neural network architectures will be 

given in Section II. 

    Once a better architecture if found the next problem is how 

to train it?  The issue is difficult because most of popular of 
neural network software can train only MPL architectures. 

The SNNS software [1] is the exception and it allows for 

training arbitrarily connected feed forward neural networks.  

Unfortunately, SNNS uses only first order learning algorithms 

such as EBP (Error Back Propagation) [1-3]  and its 

derivatives. As a result, training is not only slow but often 

ineffective.  Advanced second order algorithm such as LM 

(Levenberg- Marquardt)[4-5] are also implemented in the 

MATLAB Neural Network ToolBox [6] can train only MLP 

networks. As the consequence without proper learning 

software researchers have no other option but to use MLP 

architectures and obtained results are far from satisfactory. As 
a consequence more and more people are becoming frustrated 

with feed forward neural networks and its training process. 

Therefore, often researchers are reaching to other techniques 

such as fuzzy systems, Radial Basis Function (RBF) 

networks,  or Support Vector Machines (SVM). Unfortunately 

these other approaches have their faults too. 

   The good news is that recently developed NBN (Neuron by 

Neuron)[7-9] algorithm is not only fast and effective, but it 

can train any neural network with feed forward architecture. 

A comparison of effectives of various learning algorithm is 

given in section III. 

     It is known [8, 10,11] that it is always easier to obtain 

smaller error if large number of neuron is used in the network. 

Therefore many researchers are being trapped here. In order 
to speed up the learning process or reduce the training error 

an excessive number of neurons are often used and neural 

networks are losing their generalization abilities. In other 

words networks indeed can be trained to smaller errors, but 

such networks are then responding very poorly to new 

patterns not used for training. This is probably the main 

reason for a frustration with neural networks. The 

generalization issue will be discussed in details in Section IV. 

 

II. NEURAL NETWORK ARCHITECTURES 

 

The most common test benches for neural networks 
architecture are parity-N problems. The parity-N problems are 

considered to be the most difficult benchmark for neural 

network training. The simplest parity-2 problem is also 

known as the XOR problem. The larger the N, the more 

difficult it is to solve it.   Even though parity-N problems are 

very difficult it is possible to analytically design neural 

networks for these problems [9]. As a design example let us 

design neural networks for the parity-7 problem using 

different neural network architectures with unipolar neurons. 

    Fig. 1 shows the MLP architecture with one hidden layer.  

In order to properly classify patterns in parity-N problems the 
location of zeros and ones in input patterns are not relevant 

but it is only important how many ones are in the patterns. 

Therefore one may assume identical weights connected to all 

inputs equal +1. Depending on number of ones in the pattern 

net values of neurons of hidden layer calculated as sum of 

inputs times weights may vary from 0 to 7 and it would be 

equal to number of ones in an input pattern. In order to 

separate these 8 possible cases we need 7 neurons in the 

hidden layer with thresholds equal to: 0.5,  1.5,  2.5,  3.5,  4.5,  

5.5,  6.5.  Let us assign positive (+1) and negative (-1) 

weights to outputs of consecutive neuron starting with +1. 

One may notice that the net value of the output neuron will be 
zero for patterns with odd number of ones and one with even 

number of ones. The threshold of +0.5 of the last neuron will 

just reinforce the same values on the output. The signal flow 

for this network is shown in the table on Fig. 1.  
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Fig. 1 Multi Layer Perceptron (MLP) architecture for parity-7 problem. The 

computation process of the network is shown in the table.  

 

In the case of MLP neural network the number of neurons in 

the hidden layer is equal to N=7 and total number of neurons 

is 8. For MLP architecture with n neurons in one hidden layer 

maximum value of N of parity-N problem is [12]: 

 

 nN   (1) 

 

Fig. 2 shows solutions with Bridged Multi Layer Perceptron 

(BMLP) with connections across layers.  With this approach 

the neural network can be significantly simplified. Only 3 

neurons are needed in the hidden layer with thresholds equal 

to 1.5, 3.5, and 5.5. In this case all weights associated with 

outputs of hidden neurons must be equal to -2 while all 

remaining weights in the network equal to +1 

     Fig. 2 shows solutions with Bridged Multi Layer 
Perceptron (BMLP) with connections across layers.  With this 

approach the neural network can be significantly simplified. 

Only 3 neurons are needed in the hidden layer with thresholds 

equal to 1.5, 3.5, and 5.5. In this case all weights associated 

with outputs of hidden neurons must be equal to -2 while all 

remaining weights in the network equal to +1.  

all weights =1

T=0.5

weights =-2

T=1.5

T=3.5

T=5.5

 

number of ones in a pattern

net1 (from inputs only)

out1                 T=1.5

out3                 T=5.5

net1 = ne1 - 2*(out1+out2+out3)

out4 (of output neuron)   T=0.5

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 0 1 1 1 1 1 1

0 0 0 0

0 0 0 0 0 0 1 1

0 1 0 1 0 1 0 1

1 1 1 1

0 1 0 1 0 1 0 1

out2                 T=3.5

 
Fig. 2 Bridged Multi Layer Perceptron (BMLP) architecture for parity-7 

problem. The computation process of the network is shown in the table.  

 

      Signal flow in this BMLP network is shown in the table 

on Fig. 2. With bridged connections across layers the number 

of hidden neurons was reduced to (N-1)/2=3 and total number 

of neurons is 4.  For BMLP architecture with n neurons in one 

hidden layer maximum value of N of parity-N problem is 
[12]: 

   112  nN  (2) 

 
Fig. 3 shows solution for Fully Connected Cascade (FCC) 

architecture for the same parity-7 problem. In this case only 3 

neurons are needed with thresholds 3.5, 1.5, and 0.5. The first 

neuron with threshold 3.5 is inactive (out=0) if number of 

ones in an input pattern is less than 4. If number of ones in 

input pattern is 4 or more then the first neuron becomes active 

and with -4 weights attached to its output it subtracts -4 from 

nets of neurons 2 and 3. Instead of [0 1 2 3 4 5 6 7] these 

neurons will see [0 1 2 3 0 1 2 3]. The second neuron with 

threshold of 1.5 and the -2 weight associated with its output 

makes that the last neuron will see [0 1 0 1 0 1 0 1] instead [0 

1 2 3 0 1 2 3]. For other parity-N problems and FCC 
architecture: 

 

 12  nN  (3) 

 

where n is number of neurons used in the FCC network. 
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Fig. 3 Fully Connected Cascade (FCC) architecture for parity-7 problem. The 

computation process of the network is shown in the table.  

 

      A similar analysis for BMLP networks with various 

number of hidden layers. For BMLP network with two hidden 

layers the maximum value of N is: 

   1112  mnN                          (4) 

where n and m are the number of neurons in two consecutive 

hidden layers. 

      For BMLP network with three hidden layers the 
maximum value of N is: 

    11112  kmnN                    (5) 

where n, m and k are the number of neurons in three 

consecutive hidden layers.  Table I shows comparisons of 

minimum number of neurons required for these several 

architectures and various parity-N problems. 

     Fig. 4 shows comparisons of the efficiency of various 

neural network architectures [12-14].  By looking on Fig. 4 

one may notice that the most commonly used architecture of 

MLP with one hidden layer gives worst results.  For example 

with 10 neurons it is possible to solve only Parity-9 problem. 
With the same 10 neurons, when FCC architecture is used it is 

possible to solve as large problems as  Parity-1023. Various 

BMLP networks depending on the depth of the network 

entertain a powers between MLP and FCC networks.  

     One may withdraw the conclusion that with BMLP 

architectures the capabilities of neural networks rapidly 

increase with the depth of the network and that the FCC 

architecture is the most powerful.   Unfortunately most 

researchers are using MLP networks with one hidden layer 

which is the least powerful architecture.  One reason why 

more powerful architectures are not used in the practice is that  
 

TABLE I. Minimum number of neurons required for various parity-N 

problems 

 Parity-8 Parity-16 Parity-32 Parity-64 

# inputs 8 16 32 64 

# patterns 256 65536 4.294e+9 1.84e+19 

MLP 8 16 32 64 

BMLP-1 5 9 17 33 

BMLP-2 4 5 8 11 

BMLP-3 4 5 7 8 

FCC 4 5 6 7 
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Fig. 4. Abilities of solving Parity-N problems as function of number of 

neurons.  

 

all popular neural network software is not able to train 

efficiently these more powerful neural networks. 

III. LEARNING ALGORITHMS 

 

The Error Back Propagation (EBP)[2,3] algorithm is the 

most popular algorithm but it is very slow and seldom gives 

good results. The EBP training process requires significantly 

more iterations and more time than more advanced algorithms 

such as Levenberg- Marquardt (LM) [4,6] or Neuron by 
Neuron (NBN) [6-8,14-16] algorithms.  (see Table II) and 

Figure 5) What is most important is that EBP is not only slow 

but it is not able to find solutions for close to optimum 

architectures (see Fig. 4 and Table III). Figure 5 shows the 

training errors as a function of number of iterrations for three 

algoritms: EBP, LM, and NBN. In the case of EBP and NBN 

optimal FCC neural network architecture were used with two 

neurons. Since the LM algorithm was not implemented for 

this optimal architecture the MLP topology with one hidden 

layer with three neurons was used. 

 

TABLE II Average data for parity-3 training  

 EBP LM NBN 

Number of iterations 658.1 8.7 6.8 

Training time[ms] 898.37 21.67 16.6 

Success rate 100% 100% 100% 
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(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 5. Learning error as function of number of iterations for three algorithms 

(a) EBP, (b) LM, (c) NBN. Because  LM algorithm is not able to train BMLP 

architecture with 2 neurons in the case (b) the MLP with 4 neurons were 

used. 

 

The two-spiral problem is considered as a good 
evaluation of training algorithms [14-17]. Depending on the 

neural network architecture, different numbers of neurons are 

required for successful training. For example, using standard 

MLP networks with one hidden layer, 34 neurons are required 

for two-spiral problem [18]; while with FCC architecture, it 

can be solved with only 8 neurons. Second order algorithms 

are not only much faster but they can train reduced size 

networks which can’t be handled by the EBP algorithm (See 

Table III).  Notice that the LM algorithm was not used in this 

comparison because it is not capable to train FCC or BMLP 

neural networks. 

Table III presents the training results of the two-spiral 
problem using FCC networks with different number of 

neurons [11]. NBN algorithm can solve the two-spiral 

problem, using 8 neurons (52 weights) in nearly 290 iterations 

(Fig. 6(a)). The EBP algorithm can solve the two-spiral 

problem only when larger networks are used. When the 

number of neurons is increased to 12 (102 weights), EBP  

 
TABLE  III.  Training results of two-spiral problem.  

 

Neurons 
 

Success 
Rate 

Average 
Iteration 

Average Time 
(s) 

EBP NBN EBP NBN EBP NBN 

8 0% 13% / 287.7 / 0.88 

9 0% 24% / 261.4 / 0.98 

10 0% 40% / 243.9 / 1.57 
11 0% 69% / 231.8 / 1.62 

12 63% 80% 410,254 175.1 633.91 1.70 

13 85% 89% 335,531 159.7 620.30 2.09 

14 92% 92% 266,237 137.3 605.32 2.40 

15 96% 96% 216,064 127.7 601.08 2.89 

16 98% 99% 194,041 112.0 585.74 3.82 
 

 

 
(a) 

 
(b) 

 

Fig. 6. Best results of two-spiral problem in 100 trails: (a) 8 neurons in FCC 

network (52 weights), using NBN algorithm and training time=0.82 s; (b) 12 

neurons in FCC network (102 weights), using EBP algorithm and training 

time=694.32 s 

 
algorithm can solve it in about 400,000 iterations.  The 

result (the best one in 100 trials), shown in Fig. 6(b), is not as 

good as the result (Fig. 6(a)) from NBN algorithm with much 

simpler architecture. One can conclude that the EBP 

algorithm is only successful if excessive number of neurons is 

used, but then the neural network generalization abilities are 

lost (poor response for patterns not used in training) 
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     As one can see from the 2 spiral example that the EBP 

algorithm can’t converge to required training error unless a 

significant number of excessive neurons are used.   When the 

size of networks increase, the EBP algorithm can reach the 

required training error, but trained networks lose their 

generalization ability and can’t process new patterns well The 
newly developed NBN algorithm [7-9, 14-17] works not only 

significantly faster than EBP (or even faster than LM 

algorithm) and it can find good solutions with close to 

optimal networks which are very difficult to train.        The 

NBN algorithm eliminates most deficiencies of the LM 

algorithm; it can be used to train neural networks with arbitrarily 

connected neurons (not just MLP architecture).  It does not 

require to compute and to store large Jacobians so it can train 

problems with basically an unlimited number of patterns [8].  

Error derivatives are computed only in forward pass, so 

backward computation process is not needed.  It is equally fast, 

but in the case of networks with multiple outputs faster than LM 
algorithms.  It can train close to optimal feed forward networks 

which are impossible to train with other algorithms.   

 

IV. THE GENERALIZATION ISSUE 

 

With increased number of neurons it is easy to train neural 

networks. The most common mistake made by many 

researchers is  to increase number of neurons in the system to 

secure faster convergence. Indeed such larger networks can be 

trained faster and to smaller errors, but this "success" is very 

misleading.  Such networks with excessive number of neurons 
are most likely losing their generalization abilities. It means 

that that will respond very poorly for new patterns never used 

in the training.  

    The problem is similar to curve fitting using polynomial 

interpolation as illustrated in Fig. 7. Notice that if the order of 

polynomial is too low there is a poor approximation 

everywhere. When order is too high there is a perfect fit at the 

given data points, but the interpolation between points is 

rather poor.  In the case of neural networks we have a similar 

situations with excessive number of neurons it is easy to train  

the network to very small error at the training data, but this 

may lead to very poor and frustrating results when this trained 
neural network is used for to process a new patterns. 

      In order to have good generalization abilities the number 

of neurons in the network should be as small as possible to 

obtain a reasonable training error.  

      The generalization abilities also depend on the number of 

training patterns. With a large number of training patterns a 

larger number of neurons can be used, while generalization 

abilities are preserved   To illustrate the problem with neural 

networks let us try to find the best neural network architecture 

to replace a fuzzy controller. Fig. 8 shows the required control 

surface and the defuzzyfication rules for the TSK (Tagagi, 
Sugeno, Ken) fuzzy controller [10, 19, 20].  

     In order to train the developed neural controller we may 

use  TSK defuzzyfication rules as the training patterns.  Let us 

select FCC neural network architecture and try to find 

solutions for different number of neurons used. Fig. 9 (a) 

shows results for neural network with 3 neurons (12 weights) 
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Fig. 7 Approximation of measured points by polynomials with a different 

orders stating with first through 9-th order. 
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Fig. 8. Control surface of TSK fuzzy controller  with  8*6=48 defuzzyfication 

rules  

 

and Fig. 9 (b) shows results for 4 neurons and 18 weights. 

However, when the size of the network increases, the results 

become worse instead of better, even learning errors decrease 

with the increase of the neural network size. 

     One may notice that the best results were obtained for the 
4 neuron architecture (Fig. 9(b)) With more neurons we 

obviously are able to reduce the training error, but the neural 

network loses its generalization ability (see Fig. 10). 

   The conclusion is that for optimum performance neural 

networks should have as few neurons as possible.  The 

software which uses NBN algorithm can be downloaded from 

[19]. 

 
V    CONCLUSION 

 

There are several reasons for frustration with neural networks: 

[1] In most cases the relatively inefficient MLP architectures 

with one hidden layer are used instead of more powerful 

topologies with connections across layers. 

[2] When popular first order learning software is used, such 

as EBP, the training process is not only very time 

consuming, but frequently the correct solution is not 
obtained. EBP algorithm often is not able to find 

solutions for small and close to optimal  neural networks. 
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(b) 

Fig. 9  Control surface obtained with neural networks (a) 3 neurons in 

cascade (12 weights) Error=0.21049 (b) 4 neurons in cascade (18 weights) 

Error=0.049061 

 

(3) With increased complexity of neural network (often 

needed so EBP algorithm can converge) the neural 

network loses its ability of generalization; therefore, it is 
not able to process correctly new patterns which were not 

used for training. 

(4) In order of find solutions for close to optimal 

architectures the second order algorithms such as NBN or 

LM should be used. Unfortunately, LM algorithm 

adopted in popular Matlab NN Tool Box [6] can handle 

only MLP topology without connections across layers 

and these topologies are far from optimal. 
The importance of the proper learning algorithm was 

emphasized because with advanced learning algorithm we can 

train these networks, which cannot be trained with simple 

algorithms. When simple training algorithms, such as EBP are 

used, neural networks with larger number of neurons must be 

used to fulfill the task and often generalization abilities of 

neural networks are lost. 
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