
HSI2011 Yokohama. Japan. May 19-21. 2011 

Can computers be more intelligent 
than humans? 

Bogdan M. Wilamowski 
Auburn University 

Abstract - Humans are not perfect and they make mistakes. 

For example, humans without computer aided tools would 
not be able to design VLSI chips larger than 100 
transistors. Computers are assisting humans in many 
aspects of their life. For many years already computers 

were used for number crunching, office related jobs, etc. 
More recently computers are used for making intelligent 

decisions. The methods of computational intelligence are 

relatively successful, but these methods have to be used 
with great care. In this presentation advantages and 
disadvantages of fuzzy and neural networks are presented. 
It turns out that often popular training algorithms are not 

capable of tuning neural networks to proper accuracy 
without losing generalization abilities. Also, abilities of 

neural networks strongly depend on the used architecture, 
and surprisingly the most popular architectures usually 
are least powerful. 

I. INTRODUCTION 

Humans are capable not only of solving many scientific 
problems, but also in the process they are making mistakes. 
Without computer aided tools humans were not able to design 
chips larger than 100 transistors. By replacing humans by 
computer in the design process we can now successfully 
design chips with over 10 billion transistors. Humans are also 
the weakest links in communication control processes. Notice 
that an airplane may fly smoothly only when it is on autopilot. 
With the help of expert systems and computational 
intelligence, the role of humans are being steadily eliminated. 
The methods of computational intelligence are relatively 
successful, but they have to be used with great care [1][2]. In 
this presentation advantages and disadvantages of fuzzy and 
neural networks are presented. It turns out that often popular 
training algorithms are not capable of tuning neural networks 
to proper accuracy without losing generalization abilities 
[2][3]. Also, abilities of neural networks strongly depend on 
the used architecture, and surprisingly the most popular 
architectures are usually are least powerful [3][4]. 

II. NEURAL NETWORKS 

The fascination of artificial neural networks started in the 
middle of the previous century. First artificial neurons were 
proposed by McCulloch and Pitts [5] shown in Fig. 1. This 
very simplistic model of a neuron has tremendous 

978-1-4244-9640-2/111$26.00 ©2011 IEEE 22 

computational ability. In the contrast traditional digital design, 
a different logic function can be obtained without changing the 
network topology but only by changing threshold and weights. 
Fig. 2 shows several of different logic functions implemented 
with a single neuron with different weights. 

n {I ifnet � T net= LWiXi out = 

�: ':=1 oul riO 
ifn,1 <T 

n'i! 
X4� T=t 
X5 

Fig. I. Simple McCulloch and Pitts neuron with hard activation 
function 

A +3 

A 
B 
C 

+ 

A+B+C 
T=2.5 

ABC T=2.5 "">---

A +1.5 

T=2.5 AB+BC+CA 

T=2.5 AB+C 

Fig. 2. Different logic functions obtained with the same topology and 
with different weights. 

The McCulloch and Pitts neurons exhibited a incredible 
power, but for many years people were not able to design 
neural networks for required logic function. Today we can 
design very simple neural networks, but we still are not able to 
design more complex neural networks. Instead, to design these 
networks, we have developed many algorithms to train them. 
The most known is the Error-Back-Propagation (EBP) 
algorithm [6],[7]. the success of this algorithm was not that 
much due to its computation scheme, but to the assumption 
that for the training purpose the activation function cannot be 
as hard as in Fig. 1, but soft as shown in Fig. 3 

Soft activation functions make neural network transparent 
for training [8]. In other words changes in weight values 
always produce changes on the network outputs. This would 
not be possible when hard activation functions are used. 
Having many learning algorithms, it was possible to train 
various Multi Layer Perceptron (MLP) neural network 
architectures shown in Fig. 4. 



out= f(nef) 

net 

I 
out = f.m;(net) = ..J k ) l +exl-\- net 

Fig. 3. Soft activation function of unipolar neuron 

input 
layer 

hidden 
layer #1 

hidden 
layer #2 output 

layer 

Fig. 4. Four layers MLP neural network architecture 

The MPL neural networks were used, and the main neural 
network topologies for several decades and many difficult 
problems were solved with this approach. 

Parity-N problems are difficult to be solved using 
traditional digital design and neural networks. Figure 5 shows 
a solution for Parity-3 problem using digital design, and Fig. 
6 shows the Parity-3 problem solved with MLP neural 
network. 

A ...-----. 01 11 10 
1 0 1 
0 1 0 

Br----< 

-----"D-
Fig. 5. Digital implementation of Parity-3 problem 

It turns out that if instead of MLP architecture as shown in 
Figs. 4 and 6, another feed forward architecture is used, 
where connections across layers are allowed then much 
smaller neural network can be used to solve the same problem. 
Fig. 7 shows the Fully Connected Cascade (FCC) architecture 
for the solution of the Parity-3 problem. 

23 

B 

c 

T=2.5 
Fig. 6. MLP neural network implementation of Parity-3 problem 

C \./=+1 
Fig. 7. FCC neural network implementation of Parity-3 problem. 

If connections across layers are allowed in FCC or in Bridged 
Multi Layer Perceptron (BMLP), then neural networks are 
gaining a tremendous power. Fig. 8 shows how large Parity N 
problems can be solved with limited number of neurons. For 
example, with 10 neurons the MLP neural network with one 
hidden layer is the largest problem the network can solve in 
Parity-9. While with the same 10 neurons using FCC neural 
network it is possible to solve as large as Parity-l023 problem 
[9-12]. One may see that abilities of neural networks strongly 
depend on the used topology, and that with connections across 
layers neural networks are gaining incredible power. 

Unfortunately neural networks with connections across 
layers are seldom used because until recently there were no 
efficient training software for such neural networks. 

103.--�_��_�_��_�---, 
• MLP with 1 hidden layer 

E 0 BMLP with 1hidden layer 
Q) 

� 0 BMLP with 2 hidden layer 
� 1(f Do BMLP with 3 hidden layer 
b x FCC 
.� 
a. 
.!: Do 0 
Z A 0 

o 1d 0 0 Q) • 0 
:J 0 c;; > 0 

10° 
2 3 4 5 6 

Do 
o 

0 

Number of neurons 

Do 
o 

0 

8 

o 

0 

9 10 

Fig. 8. Abilities of solving Parity-N problems as function of number 
of neurons. 

Neural Networks can be used not only as classifiers but also as 
nonlinear approximators. For example, control surfaces, 
obtained with neural networks for the required surface shown 
in Fig. 9 are shown in Fig. 10. 



Fig. 9. Required nonlinear function 

0 0 

(a) 

(b) 
Fig. 10. Control surfaces obtained with neural controller using (a) 3 

neuron network, (b) 4 neuron network 

Many algorithms for training neural networks were 
already developed. The Error Back Propagation (EBP)[ 6][7] 
algorithm is the most popular algorithm, but it is very slow. 
The EBP training process requires significantly more 
iterations (Fig. II) and more time than more advanced 
algorithms such as Levenberg- Marquardt (LM) [13][14] or 
Neuron by Neuron (NBN) [15-20] algorithms. Also it can 
handle much easier the MLP architecture than neural networks 
with arbitrarily connected neurons (Fig. II). What is most 
important is that EBP is not only slow but it is has difficulties 
to fmd solutions for close to optimum architectures. 

Second order algorithms are much faster (Fig. 12). Figs. 
12 (a) and (b) show training results for MLP architectures 

24 

using both LM (Fig. 12.a) and NBN (Fig. 12b) algorithms. 
Since the LM algorithm was not implemented for this optimal 
architectures like FCC, the training results for this architecture 
are shown only for NBN algorithm. One may notice that for 
MLP architectures, LM and NBN algorithms show similar 
results. In the contrast to the EBP the NBN algorithm can 
handle advanced neural network architectures even better than 
traditional MLP architectures (see Figs. 12b and 12c) 

loOE-OO 

1.OE-Ol 

1.OE-03 

1.OE-04 
0 

loDE+Ol 

1.DE-00· 

1.DE-Ol 

1.DE-02· 

1.DE-03 

1.DE-04 
0 

. . 

iterations r=1304:5 
time = 32� ms 

2 3 

ite1"!ltions = 356.6 
time = 90.3 ms 

2 3 

:EBP 
4 5 6 7 8 10 
Iteration (x 100 ) 

(a) 

EBP 
4 5 6 7 8 9 11 
Iteration (x 100) 

(b) 
Fig. I I  Parity-3 problem solved with the Error-Back Propagation 
algorithms (a) using MLP architecture with 3 neurons in hidden layer 
(b) using FCC architecture with 2 neurons 

The most important feature of neural networks is their 
generalization abilities. This means that neural networks 
should correctly respond to new patterns which were never 
used in the training [ I ]. The number of neurons in such 
networks should be as small as possible. Unfortunately it is 
very difficult to train neural networks with good 
generalization abilities. In order to reduce the number of 
neurons, special network architectures have to be used. Also, 
more advanced learning algorithms than popular EBP 
algorithm [I] should be used. 

It is relatively easy to fmd neural network architectures, so 
they can be trained to very small errors. However, it is more 
important to find an architecture, which after training, will 
respond correctly to patterns which were not used for training. 
Let us illustrate this problem using an example with the peak 
surface [1][ 17]] shown in Fig. 9 as is required . 



1.0E+Ol _-..;.;o�iIii!!!!!!!!!�!!::c, �,�, ,�,c�,,�,�,,��,�, ,�c�,�, ��.�.c ��.�.. c •.• � • •• c • • • • • . •  c 

1.OE·OO 

1.OE-Ol 

1.OE-02 LM 
1.OE-03 iterations =7.56. 

time = 3.1ms 
1.0E-04 . �  ... . . .  . 

o 1 2 3 4 
_ . _  • • - __ 0 .  __ _ ___ _ _ _ _ _  _ 

5 6 7 8 9  
Iteration (x 1 I 

(a) 
1.DE +011. � -- _. _ .  � - - - - - _ . 1. _______ , _ _ _ _  - _ .  L __ ___ _ .1. ___ ___ _ L _ _ _____ � ____ _ _ L _ _____ � 

1.OE-OO � ... . � 

1.OE-Ol c ••••••• '- •• • • • • •• ' -. � 

1.OE-02 ,.NBN ...... ' .. .... . .. .. . 

1.OE-03 �jt�!I�on!>.:=7!�.6.c -- . - - � 
time = 2.52ms 

1 .OE-04 � - - --. ------------------------. � . - - --------- - -- - ------ -- - -------- -- --. 
0 1 2 3 4 5 6 7 8 9  

Iteration r x 1 I 

1.OE-OO • .  

1.OE-Ol � � 

1.0E-02 �N � . . 
1.OE-03 : itel'aqons = �6.04 

: time i= 1.28:ms 
1.OE-04 . : 

0 2 3 

(b) 

4 5 
Iteration (x 1 I 

(C) 

6 7 8 9 

Fig. 12 Parity-3 problem solved with the second order algorithms (a) 
using L M  algorithm and MLP architecture with 3 neurons in hidden 
layer, (b) using NBN algorithm and MLP architecture with 3 
neurons in hidden layer, (c) using NBN algorithm and FCC 
architecture with 2 neurons 

Fig. 13 Required control surface 

25 

(b) 

Fig. 14 Training results using 100 trials with (a) NBN algorithm, 8 
neurons in FCC network (52 weights); with maximum number of 
iterations of 1,000; SSETrain=0.0044, SSEVerify=O.0080 and training 
time=O.3 7 s, (b) EBP algorithm, 13 neurons in FCC network (l17 
weights); with maximum number of iterations of 1,000,000; 
SSETr•in=0.0018, SSEVerify=0.4909 and training time=635.72 s, 

As the training results are shown using the NBN algorithm [ 15-
17], which can handle arbitrarily connected neural networks, 
it was possible to fmd the acceptable solution (Fig. 14a). The 
best result out of the 100 trials using EBP algorithm is shown 
in Fig. 14b. When the network size was significantly increased 
from 8 to 13 neurons (117 weights), the EBP algorithm was 
able to reach a similar training error as with NBN algorithm, 
but the network lost its ability to respond correctly for new 
patterns (between training points). 

· . 4 --. -- . .  · i · ·  --- --- �. -- . .  -- . � ------.. j--. --... j----.. --�. --.. --. j --. -- . 
, , • , I • , 
· . . , , . . 
· , " " 3 -- ----. · t · ·  --.. --�. --.. --.� -- . .  -- . .  i--· -- . .  · i · ·  --.. --�. --.. --. i -- .--. , . . . 
, , , , 
, , , , 
· . . . , . , , , , , 

---;--------)- --------!- -_ .. _--- +--------+ .. _----_ ! _- ---- -----, . . , , 
, , 
· . 
· . 
, , 

, , , , , , ·2 --------;--------; ------. , ------.; --------;--------; --------; ------. 
. 30L---�---2L---�--�4----5L---�6----�7 --� 

Fig. 15. Approximation of data by different orders of polynomials 



One may notice that in order to sustain neural network 
generalization abilities the network should have as few 
neurons/weights as possible [1 ][21 ][22]. This problem is very 
similar to function approximation by polynomials. If too high 
order of polynomial is used, then errors for training points and 
values between points cannot be evaluated correctly. In the 
example on Fig. 11, only 5th, 6th, and 7th order of 
polynomials are giving adequate results, while higher order 
polynomials can be tuned to smaller errors for given points; 
they are useless to predict evaluated new points which were 
not used for training. We are facing a similar problem with 
neural network training. If more neurons are used then 
actually, a worse result can be obtained if number of training 
patterns are limited. 

III. Fuzzy SYSTEMS 

Interestingly, fuzzy logic has a more general nature and it 
works equally well as Boolean logic. Fig. 16 shows fuzzy 
logic operations on zero-one Boolean variables (Fig. 16.a) and 
on fuzzy variables (Fig. 16.b). 

AB A+B 
o 0 

o 1 

1 0 

1 1 

o 

o 

o 

1 

(a) 
MIN(A,8) 

0.2 0.3 0.2 

0.2 0.8 0.2 

0.7 0.3 0.3 

0.7 0.8 0.7 

(b) 

o 0 

o 

1 0 

1 

o 

MAX(A,8) 
0.2 0.3 0.3 

0.2 0.8 0.8 

0.7 0.3 0.7 

0.7 0.8 0.8 

Fig. 16. Comparison of (a) Boolean and (b) Fuzzy logic. 

Fuzzy systems similar to neural networks may also process 
analog values in the range of 0 to 1, but the issue is how to 
handle analog inputs within much wider range (simple scaling 
will not work). Two slightly different approaches were 
proposed: one by Mamdani [23] and second by Takagi­
Sugeno-Kang (TSK) [24][25]. 

The Mamdani concept follows the rule of ROM and 
PLA digital structures where AND operators are selecting 
specified addresses and then OR operators are used to fmd the 
output bits from the information stored at these addresses. 
Also, in the case of the fuzzy system, as presented in Fig. 17, 
first MIN and then MAX operators are used. 

At the left side of the diagram, analog inputs are converted 
by fuzzifiers into sets of fuzzy variables. For each analog input 
several fuzzy variables typically are generated. Each fuzzy 
variable has an analog value between zero and one. 

26 

en en 
L- L-
a a L-

.- a> .- m m L- 'i= L- a> ·N out a> 
a. a. N 
a a :::J 

-

Z � a> 
0 

� � 

Fig. 17. Block diagram of a Mamdani type fuzzy controller. 

More recently Mamdani architecture was replaced by TSK 
[19][20] (Takagi, Sugeno, Kang) architecture where the 
defuzzification block was replaced with normalization and 
weighted average [21 ][26][27]. The block diagram of TSK 
approach is shown in Fig. 18. The TSK architecture does not 
require MAX operators, but a weighted average is applied 
directly to regions selected by MIN operators. What makes 
the TSK system really simple is that the output weights are 
proportional to the average function values at the selected 
regions by MIN operators. The TSK fuzzy system works as a 
lookup table. 

Rule selection cells 
min nn�'r"'tlnns 

Fig. 18. TSK (Takagi-Sugeno-Kang) fuzzy architecture. 

(a) 

o .. :
� 

0.' 

°
0 2 .. tI II '0 '2 ,.. Ie ,. :zo 

(b) 
Fig. 19. Membership functions for various fuzzification methods: (a) 
triangular, (b) trapezoidal. 



Various types of fuzzification methods can be used as shown in 
Fig. 19. Each point of the input analog variable should belong 
to at least one and preferably no more than two membership 
functions. For overlapping functions the sum of two 
membership functions must not be larger than one. This also 
means that overlap must not cross the points of maximum 
values (ones). For higher accuracy more membership functions 
should be used. 

Let us use the concept of fuzzy systems to approximate 
function shown in Fig. 9. Fig. 20 shows results obtained with 
Mamdani and TSK approaches. Depending on if triangular or 
trapezoidal fuzzifiers are used, results are also slightly different 
as shown in Fig. 21. In most cases triangular fuzzifiers are 
giving better results than trapezoidal ones. 

(a) (b) 
Fig. 20. Control surface obtained with fuzzy controllers (a) required 
surface, (b) Mamdani controller with trapezoidal membership 
functions, ( c) TSK controller with trapezoidal membership functions 

(a) (b) 
Fig. 21. Different control surfaces obtained with different 
fuzzification methods: (a) triangular, (b) trapezoidal using TSK 
approach 

IV . COMPARISON OF NEURAL AND FUZZY SYSTEMS 

The major advantage of fuzzy logic based systems is their 
ability to utilize expert knowledge and perception based 
information. Currently, fuzzy controllers are the most popular 
choice for hardware implementation of complex control 
surfaces because they are easy to design [21]. 

Artificial neural networks are well known by their properties 
of complex nonlinear mappings and they are outperforming 
fuzzy systems. Neural controllers are more complex and 
harder to train, but provide an outstanding control surface with 
much less error than that of a fuzzy controller [21]. 

A drawback of neural controllers is that the design process 
is more complicated than that of fuzzy controllers. However, 

27 

this difficulty can be easily overcome with proper design 
tools. One severe disadvantage of a fuzzy system is its limited 
ability of handling problems with multiple inputs. In the case 
of neural networks such a limitation does not exist [3]. 
Advantages and disadvantages of fuzzy and neural networks 
are compared in the Fig. 22 

Comparison of Fuzzy Systems and Neural Networks 
Fuzzy Neural 

Number of inputs Limited to 3 or 4 Unlimited 

Analog implementation Difficult Easy 

Microcontroller implementation Easy More difficult 

FPGA implementation Easy More difficult 

Speed Resonable Faster 

Smoothens of the surface Poor Supperb 

Errors Large Small 

Design complexity Simple Difficult 

Fig. 22. Comparison of neural and fuzzy systems 

V. SUPREMACY OF COMPUTATIONAL INTELLIGENCE 

It is common knowledge that computers are much superior 
to humans in number crunching, but it is believed that humans 
are superior to computers in areas of image recognition. 

Let us consider a relatively complex problem of image 
recognition. In this problem there is 7*8=56 inputs and also 
56 outputs. An intelligent system reads noisy left columns. On 
Fig. 23 pairs of columns have different levels of noise 
introduced, starting from 10% noise for the first pair of 
columns to the 60% of noise for the most right pair of columns. 
Since in this example there are only 9 letters to be recognized 
the system can be simplified and, instead of 56 outputs only 9 
outputs can be used. This is possible because once the proper 
letter is recognized then it is trivial to produce an image for 
this letter. 

Obviously 56 inputs is too many for a practical 
implementation of fuzzy systems, and neural networks can 
handle this problem relatively easily. Fig. 24 shows correctly 
recognized letters by neural networks. The same letter 
recognition was already tested on more than 1000 humans and 
in all cases humans failed a proper recognition. 

There are many similar problems where neural networks 
can recognize complex patterns better than humans. These 
may include: recognition of stock market trends [27], 
prediction of seat occupancy for airliners [28], military target 
recognitions, etc. 

The experiment of character recognition was carried on in 
the following scheme [29-31]. Original characters were 
distorted by six levels of noise. Then the neural networks were 
used to recognize noise characters (left columns) and to 
retrieve the original character (right columns). 



Fig. 23. Result of pattern retrieval using neural networks 

Fig. 24. Correctly recognized letters by neural networks. 

II 
I 
I 
I 
I 
I 
II 
I 

Fig. 24 shows samples of correctly recognized letters by 
neural networks. One may notice that artificial neural 
networks were able to correctly recognize noisy characters 
while humans may have difficulty in fulfilling the same task. 

With overwhelming information humans may have 
difficulty extracting proper information. The problem is that 
humans have difficulty in analyzing data in more than 3 
dimensions. Fig. 25 shows a 4-dimensional data set with 76 
patterns. These patterns are organized in clusters. Humans 
may have difficulty in finding how many clusters are there and 

28 

where they are located. Using methods of computational 
intelligence, this problem can be easily solved following a 
simple scheme [30][31]. 

4 ·3 4 7 ·5 6 6 ·3 ·4 4 5 ·2 8 4 ·4 3 
4 ·3 4 8 7 4 ·3 4 5 ·3 5 7 6 6 ·5 2 
2 ·5 3 6 ·3 6 5 ·3 4 ·4 3 8 ·5 6 7 ·2 
4 ·4 6 7 ·5 6 8 ·1 3 -6 5 8 7 6 ·5 4 

·4 5 6 ·4 3 ·5 6 7 4 ·3 5 6 3 ·4 5 7 
9 6 ·3 4 -6 4 7 ·1 9 7 ·3 2 5 ·4 6 9 
2 ·5 3 9 3 ·5 6 8 3 ·5 4 6 4 ·4 4 6 
3 ·3 5 6 -4 4 5 ·4 ·4 6 6 ·2 ·5 6 7 ·1 
5 ·4 6 8 4 ·5 5 7 ·5 4 7 ·3 9 5 ·4 2 
7 7 ·2 3 ·5 5 6 ·2 7 4 ·2 4 ·5 7 5 ·1 

·5 5 6 ·3 9 7 ·2 3 9 6 ·4 4 ·5 5 7 ·2 
9 6 ·5 3 7 6 ·4 2 ·6 7 5 ·1 8 5 ·2 3 
3 ·5 6 8 8 5 ·3 4 8 6 ·3 3 7 6 ·5 5 
3 ·5 3 8 ·5 4 7 ·4 ·4 7 7 ·2 ·4 6 7 ·3 
4 ·6 5 7 9 5 ·4 2 8 5 ·4 4 6 5 ·3 5 

·5 6 5 ·4 8 6 ·2 3 ·4 5 8 ·1 ·5 6 5 ·3 
3 ·3 6 7 ·3 5 7 ·2 ·3 4 7 ·2 8 4 ·2 4 
6 5 ·5 4 3 ·6 3 7 ·4 5 6 ·2 ·4 5 7 ·4 

·5 7 7 ·3 4 ·5 4 9 ·5 5 5 ·2 3 ·5 3 8 

Fig. 25. 76 patterns in 4-dimensional space 

VI. CONCLUSION 

With time there are more and more cases where computers 
exhibits superior to human performance. Recently they are 
able to make many intelligent decisions. This is primarily to 
advanced neural networks architectures and learning 
algorithms. Neural networks exhibit superior performance in 
comparison to fuzzy systems, but there are several reasons for 
frustration of people trying to adapt neural networks for their 
research: 
• Neural networks can be easily over-trained if excessive 

number of neurons are used. This way the network is 
losing its ability for generalization, and it is not able to 
correctly process new patterns which were not used for 
training. 

• In most cases the relatively inefficient MLP architecture 
is used instead of more powerful topologies with 
connections across layers. As a result, full power of 
neural networks is not utilized. 

• In order to fmd solutions for close to optimal architectures, 
second order algorithms such as NBN or LM should be 
used. Unfortunately, the LM algorithm adopted in the 
popular MA TLAB NN Toolbox can handle only MLP 
topology without connections across layers, and these 
topologies are far from optimal. 

• Newly developed NBN algorithm is very fast. It can train 
any neural network architectures, and it has no limitations 
for the number of patterns used in training. Additionally, 
a feature of this algorithm is that individual patterns can 
be added or subtracted from the training set without 
necessity of training network with entire set of patterns. 

The only current limitation of the NBN algorithm is that 
neural networks should not be too big and practically it can 
train networks with up to 500 weights. 



REFERENCES 

[1] B. M. Wilamowski, "Neural Network Architectures and 
Learning Algorithms," IEEE Industrial Electronics Magazine, 
vol. 3, no. 4, pp. 56-63, Dec. 2009 

[2] B. M. Wilamowski "Silicon implementation of computational 
intelligence for mechatronics", IC M'04 IEEE International 
Conference on Mechatronics 2004, Istanbul, Turkey, pp.1-8. 
June 3-5, 2004. 

[3] B. M. Wilamowski, "Challenges in Applications of 
Computational Intelligence in Industrials Electronics," (keynote) 
ISlE' 10 IEEE International Symposium on Industrial 
Electronics, Bari, Italy, July 5-7, 2010, pp. 15-22. 

[4] B. M. Wilamowski "Neural Network Architectures and 
Learning", ICIT'03 - International Conference on Industrial 
Technology, Maribor, Slovenia, December 10-12, 2003 

[5] W.S. McCulloch and W. H. Pitts., A logical calculus of the ideas 
imminent in nervous activity. Bull. Math. Biophy. 5 pp. 115-133, 
1943. 

[6] P. Werbos, Beyond regression: new tools for prediction and 
analysis in behavioral sciences. Ph.D. diss., Harvard University, 
1974. 

[7] D. E. Rumelhart, G. E. Hinton, and R. J. Wiliams, "Learning 
representations by back-propagating errors", Nature, vol. 323, 
pp. 533-536, 1986. 

[8] B. M. Wilamowski and L. Torvik, " Modification of Gradient 
Computation in the Back-Propagation Algorithm", ANNIE'93 -
Artificial Neural Networks in Engineering, St. Louis, Missouri, 
November 14-17, 1993, pp. 175-180. 

[9] B. M. Wilamowski, N. J. Cotton, O. Kaynak" and G. Dundar, 
" Method of computing gradient vector and Jacobean matrix in 
arbitrarily connected neural networks" ISlE 2007- IEEE 
International Symposium on Industrial Electronics, Vigo, 
Spain, 4-7 June 2007, pp. 3298-3303. 

[10] B. M. Wilamowski "Efficient Neural Network Architectures and 
Advanced Training Algorithms", Gdansk University of 
Technology Faculty ofETI Annals, Vol 18, pp. 345-352, 2010 

[11] B. Wilamowski, D. Hunter, A. Malinowski, "Solving Parity-n 
Problems with Feedforward Neural Network," Proc. of the 
IJCNN'03 International Joint Conference on Neural 
Networks, pp. 2546-2551, Portland, Oregon, July 20-23, 2000. 

[12] B. M. Wilamowski, Hao Yu, and Kun Tao Chung "Parity-N 
Problems as a Vehicle to Compare Efficiency of Neural 
Network Architectures" Industrial Electronics Handbook, vol. 5 
- Intelligent Systems, 2

nd Edition, chapter 10, pp. 10-1 to 10-8, 
CRC Press 2011. 

[13] K. Levenberg, "A method for the solution of certain problems in 
least squares". Quarterly of Applied Machematics, 5, pp. 164-
168, 1944. 

[14] Hagan, M. T. and Menhaj, M., "Training feedforward networks 
with the Marquardt algorithm", IEEE Transactions on Neural 
Networks, vol. 5, no. 6, pp. 989-993, 1994 

[15] B. M. Wilamowski, N. Cotton, J. Hewlett, and O. 
Kaynak, "Neural Network Trainer with Second Order Learning 
Algorithms", 11th INES 2007 -International Conference on 
Intelligent Engineering Systems, Budapest, Hungary, June 29 
2007-July 1 2007, pp. 127-132 

29 

[16] B. M. Wilamowski, N. J. Cotton, O. Kaynak, G. 
Dundar, "Computing Gradient Vector and Jacobian Matrix in 
Arbitrarily Connected Neural Networks," IEEE Trans. on 
Industrial Electronics, vol. 55, no. 10, pp. 3784-3790, Oct 2008 

[17] B. M. Wilamowski, H. Yu, "Improved Computation for 
Levenberg Marquardt Training," IEEE Trans. on Neural 
Networks, vol. 21, no. 6, pp. 930-937, June 2010. 

[18] B. M. Wilamowski and H. Yu, "Neural Network Learning 
Without Backpropagation," IEEE Trans. on Neural Networks, 
vol. 21, no. 11, pp. 1793 - 1803 Nov. 2010. 

[19] Yu and B. M. Wilamowski, "Fast and efficient and training of 
neural networks," in Proc. 3nd IEEE Human System Interaction 
Conf HSI 2010, Rzeszow, Poland, May 13-15, 2010, pp. 175-
181. 

[20] B. M. Wilamowski and o. Kaynak, "Oil Well Diagnosis by 
sensing Terminal Characteristics of the Induction Motor, " IEEE 
Transactions on Industrial Electronics, Vol 47, No 5, pp. 1100-
1107, October 2000. 

[21] B. M. Wilamowski and J. Binfet, " Do Fuzzy Controllers Have 
Advantages over Neural Controllers in Microprocessor 
Implementation" Proc of2-nd International Conference on 
Recent Advances in Mechatronics - ICRAM'99, Istanbul, Turkey, 
pp. 342-347, May 24-26, 1999. 

[22] Andersen, Thomas J. and B. M. Wilamowski, " A Modified 
Regression Algorithm for Fast One Layer Neural Network 
Training", World Congress of Neural Networks, vol. 1, pp. 687-
690, Washington DC, USA, July 17-21, 1995. 

[23] H. Mamdani, "Application of Fuzzy Algorithms for Control of 
Simple Dynamic Plant," IEEE Proceedings, Vol. 121, No. 12, 
pp. 1585-1588, 1974. 

[24] M. Sugeno and G. T. Kang, "Structure Identification of Fuzzy 
Model," Fuzzy Sets and Systems, Vol. 28, No. 1, pp. 15-33, 

1988. 
[25] T. Takagi and M. Sugeno, "Fuzzy Identification of Systems and 

Its Application to Modeling and Control," IEEE Transactions on 
System, Man, Cybernetics, Vol. 15, No. 1, pp. 116-132, 1985. 

[26] Safer A. and B. M. Wilamowski, "Using neural networks to 
predict abnormal returns of quarterly earnings" presented 
at 1999 International Joint Coriference on Neural Networks -
IJCNN'99, pp. 3840-3843, Washington, DC, July 10-16, 1999. 

[27] Lawrence R. Weatherford, Travis Gentry, and Bogdan 
Wilamowski, "Neural Network Forecasting for Airlines: A 
Comparative Analysis" Journal of Revenue and Pricing 
Management. voU, no 4, pp.319-331, 2003. 

[28] Bogdan M. Wilamowski, Vitaly J. Vodyanoy, "Neural Network 
Architectures for Artificial Noses, " HIS'08, May 25-27, 
Krakow, Poland, pp. 731-736. 

[29] Katarzyna Wilamowska, Milos Manic, "Unsupervised pattern 
clustering for data mining", IECON'01 - The 27th Annual 
Conference of the IEEE Industrial Electronics Society, pp. 
1862-1867. 

[30] Aleksander Malinowski, Katarzyna Wilamowska, 
"Unsupervised pattern clustering for data mining", IECON'99 -
The 25th Annual Conference of the IEEE Industrial Electronics 
Society, vol. l, pp. 111-1I5. 

[31] J. Kolbusz, S. Paszczyllski and B. M. Wilamowski, "Network 
traffic model for industrial environment", IEEE Transaction on 
Industrial Informatics, vol. 2, No. 4, pp. 213-220, 2006. 


