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Abstract:  The paper describes basic concepts of neural 

networks and fuzzy systems. It is shows that most commonly 

used neural network architecture of MLP – Multi Layer 

Perceptron  is also one of the least efficient ones. Also most 

commonly used EBP – Error Back Propagation algorithm is not 

only very slow, but also it is not able to find solutions for 

optimal neural network architectures. EBP can solve problems 

only when large number of neurons is used, but this way neural 

network loses its generalization property. Performances of both 

fuzzy systems and neural networks are compared leading to the 

conclusion that neural networks can produce much more 

accurate nonlinear mapping and they are simple to implement. 

At the end of the presentation several concepts of neuro-fuzzy 

systems are compared. 

Keywords: Learning, neural networks, fuzzy systems, 

perceptron, neuro-fuzzy. 

1  Introduction 

Both neural networks and fuzzy systems perform nonlinear 

mapping and both systems internally operate within a limited 

signal range between zero and one. In general, all parameters of 

fuzzy systems are designed, while parameters of neural networks 

are being obtained by a training process. It is relatively easy for 

humans to follow the computation process of fuzzy systems, 

while it is almost impossible to do as in the case of neural 

networks.  Neural networks can handle basically an unlimited 

number of inputs and outputs while fuzzy systems have one 

output and number of inputs is practically limited to 2 or 3.  The 

resulted nonlinear function produced by neural networks is 

smooth while functions produced by fuzzy systems are relatively 

rough (see Fig. 1). 

    It is relative easy to design fuzzy systems based on a 

designer’s intuition. In case of neural networks a designer may 

face many challenges. The first challenge is that it is difficult to 

decide how many neurons to use and how they have to be 

connected. Second problem, which often leads to frustration, is 

how to train neural networks. As a result far from optimum 

neural network architectures are selected and learning algorithms 

which are not able to produce a good solution are used. These 

issues will be discussed in section 2 of this presentation. 

However, if difficulties with neural networks are solved then 

neural networks generate not only a better and smoother control 

surface, but also its microcontroller implementations requires 

shorter code and faster operation [1]. Of course it is possible to 

merge these two technologies by developing neuro-fuzzy 

systems. 
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(a)                                                                  (b) 

Fig. 1.  Comparison of control surfaces obtained with (a) fuzzy 

controller with 6 and 5 membership function for both inputs (b) 

neural controller with 3 neurons 

2  Neural Networks 

Artificial neural networks consist of many neurons with a 

sigmoid activation function as shown in Fig. 2. These neurons 

are connected in such a way that the feed forward signal flow is 

assured. Connecting weights may have both positive and 

negative values and the resulted neuron excitation net is 

calculated as a sum of products of incoming signals multiplied 

by weights:  

 xw = net ii

n

=1i

  (1) 

k net

out

 netk- + 1

1
 = f(net) = out

exp

 

Fig. 2. Unipolar activation function of a neuron 

2.1   Neural Network Architectures 

The most commonly used architecture is MLP – Multi Layer 

Perceptron as shown in Fig. 3.   The only advantage of MLP is 

that it is relatively easy to write software for this architecture. 

Unfortunately when using MLP topology more neurons are 

needed to solve problems. A better option is to use MLP with 

connections across layers.  This architecture is not only more 

powerful but it can be trained faster, assuming that we have 

written a proper software. The most powerful architecture is the 

cascade architecture, also known as FCN – Fully Connected 

Network shown in Fig. 4.  

+1 +1 +1
 

Fig. 3. MLP - Multi Layer Percepton architecture for neural 

networks 

 

Fig. 4. FCN – Fully Connected Network or cascade network 

architecture 

2.2   Neural Network Training 

The most common training algorithm is EBP – Error Back 

Propagation [2]. It is relatively simple and it does not require a 

lot of computer resources. This algorithm however seldom leads 

to a good solution and is extremely slow. The EBP show some 

advantages for MLP networks [3][4]    Much better results can 

be obtained with the LM – Levenberg-Marquardt Algorithm [5]. 

Even better results can be obtained with NBN – Neuron by 

Neuron algorithm [6]. Note that in the LM algorithm an N by N 

matrix must be inverted in every iteration. This is the reason 

why for large size neural networks the LM algorithm is not 

practical. Also most of implementations of LM algorithms (like 



popular MATLAB NN Toolbox) are developed only for MLP. 

The Neuron by Neuron (NBN)  algorithm was developed in 

order to eliminate most disadvantages of the LM algorithm.  

Detailed descriptions of the algorithm can be found in [6][7] 
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Fig. 5. Result of parity-4 training using EBP algorithm with 4-3-

3-1 architecture 
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Fig. 6. Result of parity-4 training using LM algorithm with 4-3-

3-1 architecture 
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Fig. 7. Result of parity-4 training using NBN algorithm with 4-

3-3-1 architecture 

Figures 5 through 7 shows results of training of MLP 

architecture for the Parity- 4 problem.  One may notice that EBP 

training requires 200 times more iterations and 100 times longer 

time to train. Also the success rate is smaller than in the case of 

other algorithms.  LM algorithm is slightly faster but it has a 

smaller success rate in comparison to NBN algorithm. For the 

FCN architecture, with 3 neurons connected in cascade, the 

parity problem can be solved with significantly smaller number 

of neurons (3 instead of 7). Unfortunately EBP algorithm cannot 

solve this problem with less than 10,000 iterations. The standard 

LM algorithm is not suitable for FCN architecture; but NBN 

algorithm can solve this problem in a short time with the success 

rate of 98%. Training results for Parity-4 problem are 

summarized in Table I.  

Success rate 0%

 

Fig. 8. Result of parity-4 training using EBP algorithm with 4-1-

1-1 architecture 
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Fig. 9. Result of parity-4 training using NBN algorithm with 4-

1-1-1 architecture 

TABLE  I 
COMPARISON OF SOLUTIONS OF PARITY-4 PROBLEM WITH 

VARIOUS ALGORITHMS FOR TWO DIFFERENT ARCHITECTURES 

 Iterations Time [ms] Success rate 

MLP with 4331 architecture without connections across layers (desired 

error=0.0001) 

EBP ( α=3) 7956.4 3296.6 46% 

LM (Gauss-Jordan) 16.5 14.9 69% 

NBN (Gauss-Jordan) 33.6 37.07 82% 

FCN with 4111 architecture with connections across layers (desired 

error=0.0001) 

EBP ( α=3) N/A N/A 0% 

LM (Gauss-Jordan) Is not able to handle FCN with connections across 

layers 

NBN (Gauss-Jordan) 30.2 19.1 98% 

 

For MLP topologies it seems that the EBP algorithm is most 

robust and has the largest success rate for random weight 

initialization. At the same time the EBP algorithm requires over 

200 times larger number of iterations to converge.  

If the number of neurons in FCN is increased to 4 then also EBP 

algorithm can solve the problem with success rate of 98%. The 

NBN algorithm can solve this problem in 150 times shorter time 

with 100% success rate.  Results are shown in Table II. One may 

also notice that with increasing of network complexity neural 

networks are losing their ability for generalization ( if neural 

network is used  for nonlinear mapping). 

 

 

For experiments shown in Table III the LM algorithm was 

modified so not only MLP networks but all arbitrarily connected 

neural networks could be trained. Also in both LM and NBN 

algorithms the matrix inversion, the Gauss-Jordan method, was 

replaced by the LU decomposition. As a consequence the 

training time was significantly reduced.  

One may notice that if too large neural networks are used the 

system can find solutions which produce very small error for the 

training patterns, but for patterns which were not used for 

training errors actually could be much  larger than in the case of 

much simpler network. 

 

TABLE III 
COMPARISON OF SOLUTIONS OF VARIOUS INCREASED 

COMPLEXITY PROBLEMS USING VARIOUS ALGORITHMS AND FCN 

ARCHITECTURES  

 Iterations Time [ms] Success 

rate 

Parity 4 problem with 4111 architecture (desired 

error=0.001) 

EBP ( α=1) 17505 3384.6 93% 

LM (modified) 14.6 0.16 98% 

NBN (modified) 20.6 1.01 99% 

Parity 8 problem with 411111 architecture (desired 

error=0.001) 

EBP ( α=1) failed failed 0% 

LM (modified) 32.1 152.2 8% 

NBN (modified) 40.6 192.7 28% 

Parity 12 problem with 411111111 architecture (desired 

error=0.001) 

EBP ( α=1) failed failed 0% 

LM (modified) 77.3 9656. 3% 

NBN (modified) 66.7 14,068. 14% 

 

What many people are not also aware of is that not all popular 

algorithms can train every neural network. Surprisingly, the 

most popular EBP (Error Back Propagation) algorithm cannot 

handle more complex problems while other more advanced 

TABLE II 
COMPARISON OF SOLUTIONS OF PARITY-4 PROBLEM WITH VARIOUS 

ALGORITHMS ON  4-1-1-1-1 TOPOLOGY 

Type 
size 

(pts.) 

Averages from 100 runs 

Success rate iterations Computing time 

EBP 98% 
3977.15 1382.78ms 

LM N/A 
N/A N/A 

NBN 100% 
12.36 8.15ms 

 



algorithms can.  Also, in most cases neural networks trained 

with popular algorithms such as EBP produce far from optimum 

solutions [3][4].  

Fuzzy Systems 

The fuzzy set system theory was developed by Zadeh [8].  Fuzzy 
logic is similar to Boolean algebra, but it operates on analog 
values between zero and one.  Also, instead of AND and OR 
operators the MIN and MAX operators are used as is shown in 
Fig. 10.  
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Fig. 10. Comparison Boolean algebra with fuzzy logic . 

In order to solve problem of nonlinear mapping two similar 

approaches are usually taken: Mamdani[9] and TSK[10][11]. 

Block diagrams for these two controllers are shown in Figures 

11 and 12. 
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Fig. 11.  Block diagram of a Mamdani type fuzzy controller 
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Fig. 12. TSK (Takagi-Sugeno-Kang) fuzzy architecture. 

Neuro-Fuzzy Systems 

Most commonly used neuro-fuzzy architecture is shown in Fig 

13.  It has neural network topology, but its operation does not 

reassemble biological neuron operations. This concept of neuro-

fuzzy architecture requires signal multiplication and division and 

as result it is not easy to implement this concept in hardware. 

It is, however, possible to implement fuzzy systems using typical 

neurons with sigmoid activation functions. One such 

implementation may follow the the concept of conterpropagation 

neural networks[4]. Actually TSK fuzzy systems have a very 

similar topology.  Unfortunately, the conterpropagation 

networks operate correctly only on normalized inputs. 

Normalization of inputs lead to removal of important 

information so it cannot be used. However,  by increasing the 

dimensionality of input dimensionality it is possible to project 

input data on sphere (or hypersphere) without losing important 

information, The neuro-fuzzy system based on the 

conterpropagation network with input pattern transformation is 

shown in Fig. 14. `In the network of Fig. each neuron is 

responsible for one fuzzy rule.  
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Fig. 13.  Classical Neuro-Fuzzy Architecture. 
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Fig. 14.  Fuzzy controller based on conterpropagation network 

All neurons in Fig. 14 have a unipolar activation function and if the 

system is properly designed, then for any input vector in certain 

areas only the neuron of this area produces +1 while all remaining 

neurons have zero values.  In the case of when the input vector is 

close to a boundary between two or more regions, then all 

participating neurons are producing fractional values and the 

system output is generated as a weighted sum.  For proper 

operation it is important that the sum of all outputs of the second 

layer must be equal to +1.  In order to assure the above condition, 

an additional normalization block can be introduced, in a similar 

way as it is done in TSK fuzzy systems as shown in Fig. 12. 

Another concept of replacing fuzzy systems with neural 

networks is shown in Fig. 14 [12].  This network can be 

considered as a fuzzy system with sigmoid membership 

functions [12].   
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Fig. 14. Simple neural networks performing the function of TSK 

fuzzy system. 

 

It is shown above that a simple neural network of Fig. 14 can 

replace a fuzzy system.  All parameters of this network are directly 

derived from requirements specified for a fuzzy system and there is 

no need for a training process.   

One may observe that if the training process is allowed then the 

network architecture of Fig. 14 can be significantly simplified.  

Let us compare in the following subsections the commonly used 

neural network architectures 

 

 

Comparison of neural networks and fuzzy systems 

 

 Fuzzy systems utilize the expert information in the form 

of a set of rules. There are several reasons for using fuzzy 

systems in control engineering practice.  First, the dynamics of 

the system under interest is generally complicated, but 

sometimes its behavior can be defined more easily in linguistic 

terms. Second, fuzzy systems are suitable architectures for 

modification and tuning process, which provides some kind of 

adaptiveness through the on-line adjustment of parameters. The 

major advantage of fuzzy logic based systems is their ability to 

utilize expert knowledge and perception based information. 

Artificial neural networks are well known by their property 

of performing complex nonlinear mappings. Earlier works on the 

mapping properties of these architectures have shown that neural 

networks are universal approximators [13,14]. 

 

Fig. 15.  Required control function and a comparison of the 

results obtained with microcontroller implementation  using 

fuzzy and neural systems 

 

 



 
Fig. 16.  Control surfaces obtained with Motorola 

microcontroller HC11 using fuzzy approach with trapezoidal 

membership  functions (7 functions per input) and TSK 

defuzzification [1] 

 
Fig. 17.  Control surfaces obtained with Motorola 

microcontroller HC11 using fuzzy approach with six neurons 2-

1-1-1-1-1 architecture and Elliot activation function. [1] 

 

Figures 15 to 17 show a comparison of fuzzy and neural 

networks based system implemented in Motorola HC11 

microcontroller. Motorola’s 68HC711E9 is a low cost, 8-bit 

microprocessor; the on-board features of which are 512 bytes of 

RAM and EEPROM and 12K bytes of UV erasable EPROM.  

The processor was used with an 8 MHz crystal, allowing an 

internal clock frequency of 2 MHz.    

Currently, fuzzy controllers are the most popular choice for 

hardware implementation of complex control surfaces because 

they are easy to design. Neural controllers are more complex and 

harder to train, but provide an outstanding control surface with 

much less error than that of a fuzzy controller.  

A drawback of neural controllers is that the design process is 

more complicated than that of fuzzy controllers.  However, this 

difficulty can be easily overcome with proper design tools. One 

severe disadvantage of a fuzzy system is its limited ability of 

handling problems with multiple inputs. In the case of neural 

networks such a limitation does not exist. Furthermore, control 

surfaces obtained from neural controllers also do not exhibit the 

roughness of fuzzy controllers that can lead to unstable or rough 

control.  

 

TABLE IV 
COMPARISON OF SOLUTIONS OF VARIOUS INCREASED 

COMPLEXITY PROBLEMS USING VARIOUS ALGORITHMS AND FCN 

ARCHITECTURES  

 Fuzzy 

System 

(Zadeh) 

Fuzzy 

System 

(TSK) 

Neural 

 Network 

2-1-1-1 

Neural 

 Network 

2-1-1-1-1-1 

Length of code   2324 1502 680 1119 

Time (ms)  1.95 28.5 1.72 3.3 

MSE Error 0.945 0.309 0.000578 0.000093 

 

Both neural networks and fuzzy systems are capable of 

approximating any nonlinear function, but their implementation 

in silicon is not easy. Both neural and fuzzy systems have their 

advantages and limitations.  

  One may notice that TSK fuzzy controller can be easily 

replaced by neural network with very simple architecture. In this 

case the intuitive fuzzy rules can be used as patterns to train 

neural networks. This approach is not only very simple but it 

also produces a smooth control surface. In most cases these 

neural networks which are replacing fuzzy systems require 

hardware. 

 

  

Conclusion 

 

 

 The paper describes basic concepts of neural networks and 

fuzzy systems. It is shown that most commonly used neural 

network architecture of MLP – Multi Layer Perceptron  is also 

one of the least efficient ones. Also most commonly used EBP – 

Error Back Propagation algorithm is not only very slow, but also 

it is not able to find solutions for optimal neural network 

architectures. EBP can solve problems only when large number 

of neurons is used, but this way neural network loses its 

generalization property. Performances of both fuzzy systems and 

neural networks are compared leading to the conclusion that 

neural networks can produce much more accurate nonlinear 

mapping that are simple to implement. At the end of the 

presentation several concepts of neuro-fuzzy systems are 

compared. 
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VIII. CONCLUSION 

 

Neural networks exhibit superior performance in comparison to 

fuzzy systems but there are several reasons for frustration of 

people trying to adapt neural networks for their research: 

 Neural networks can be  over-trained if excessive number of 

neurons are used. This way the network is losing its ability 

for generalization and it is not able to correctly process new 

patterns which were not used for training. 

 In most cases the relatively inefficient MLP architecture is 

used instead of more powerful topologies with connections 

across layers. As a result, full power of neural networks is 

not utilized. 

 In order to find solutions for close to optimal architectures, 

second order algorithms such as NBN or LM should be 

used. Unfortunately, the LM algorithm adopted in popular 

MATLAB NN Toolbox can handle only MLP topology 

without connections across layers and these topologies are 

far from optimal. 

 Newly developed NBN algorithm is very fast, it can train 

any neural network architectures and it has no limitations 

for the number of patterns used in training. Additional 

feature of this algorithm is that individual patterns can be 

added or subtracted from the training set without necessity 

of training network with entire set of patterns. 

The only current limitation of the NBN algorithm is that neural 

networks should not be too big and practically it can train 

networks with up to 500 weights. 
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