

Bright and dark sides of computational

intelligence
Bogdan M. Wilamowski

Auburn University
Electrical and Computer Engineering, Auburn University,

420 Broun Hall, Auburn, Alabama, USA

Abstract: The paper describes basic concepts of neural

networks and fuzzy systems. It is shows that most commonly

used neural network architecture of MLP – Multi Layer

Perceptron is also one of the least efficient ones. Also most

commonly used EBP – Error Back Propagation algorithm is not

only very slow, but also it is not able to find solutions for

optimal neural network architectures. EBP can solve problems

only when large number of neurons is used, but this way neural

network loses its generalization property. Performances of both

fuzzy systems and neural networks are compared leading to the

conclusion that neural networks can produce much more

accurate nonlinear mapping and they are simple to implement.

At the end of the presentation several concepts of neuro-fuzzy

systems are compared.

Keywords: Learning, neural networks, fuzzy systems,

perceptron, neuro-fuzzy.

1 Introduction

Both neural networks and fuzzy systems perform nonlinear

mapping and both systems internally operate within a limited

signal range between zero and one. In general, all parameters of

fuzzy systems are designed, while parameters of neural networks

are being obtained by a training process. It is relatively easy for

humans to follow the computation process of fuzzy systems,

while it is almost impossible to do as in the case of neural

networks. Neural networks can handle basically an unlimited

number of inputs and outputs while fuzzy systems have one

output and number of inputs is practically limited to 2 or 3. The

resulted nonlinear function produced by neural networks is

smooth while functions produced by fuzzy systems are relatively

rough (see Fig. 1).

 It is relative easy to design fuzzy systems based on a

designer’s intuition. In case of neural networks a designer may

face many challenges. The first challenge is that it is difficult to

decide how many neurons to use and how they have to be

connected. Second problem, which often leads to frustration, is

how to train neural networks. As a result far from optimum

neural network architectures are selected and learning algorithms

which are not able to produce a good solution are used. These

issues will be discussed in section 2 of this presentation.

However, if difficulties with neural networks are solved then

neural networks generate not only a better and smoother control

surface, but also its microcontroller implementations requires

shorter code and faster operation [1]. Of course it is possible to

merge these two technologies by developing neuro-fuzzy

systems.

0

5

10
15

20

0

5

10

15

20
-1

-0.5

0

0.5

1

0

5

10

15

20

0

5

10

15

20
-1

-0.5

0

0.5

1

required function

(a) (b)

Fig. 1. Comparison of control surfaces obtained with (a) fuzzy

controller with 6 and 5 membership function for both inputs (b)

neural controller with 3 neurons

2 Neural Networks

Artificial neural networks consist of many neurons with a

sigmoid activation function as shown in Fig. 2. These neurons

are connected in such a way that the feed forward signal flow is

assured. Connecting weights may have both positive and

negative values and the resulted neuron excitation net is

calculated as a sum of products of incoming signals multiplied

by weights:

 xw = net ii

n

=1i

 (1)

k net

out

 netk- + 1

1
 = f(net) = out

exp

Fig. 2. Unipolar activation function of a neuron

2.1 Neural Network Architectures

The most commonly used architecture is MLP – Multi Layer

Perceptron as shown in Fig. 3. The only advantage of MLP is

that it is relatively easy to write software for this architecture.

Unfortunately when using MLP topology more neurons are

needed to solve problems. A better option is to use MLP with

connections across layers. This architecture is not only more

powerful but it can be trained faster, assuming that we have

written a proper software. The most powerful architecture is the

cascade architecture, also known as FCN – Fully Connected

Network shown in Fig. 4.

+1 +1 +1

Fig. 3. MLP - Multi Layer Percepton architecture for neural

networks

Fig. 4. FCN – Fully Connected Network or cascade network

architecture

2.2 Neural Network Training

The most common training algorithm is EBP – Error Back

Propagation [2]. It is relatively simple and it does not require a

lot of computer resources. This algorithm however seldom leads

to a good solution and is extremely slow. The EBP show some

advantages for MLP networks [3][4] Much better results can

be obtained with the LM – Levenberg-Marquardt Algorithm [5].

Even better results can be obtained with NBN – Neuron by

Neuron algorithm [6]. Note that in the LM algorithm an N by N

matrix must be inverted in every iteration. This is the reason

why for large size neural networks the LM algorithm is not

practical. Also most of implementations of LM algorithms (like

popular MATLAB NN Toolbox) are developed only for MLP.

The Neuron by Neuron (NBN) algorithm was developed in

order to eliminate most disadvantages of the LM algorithm.

Detailed descriptions of the algorithm can be found in [6][7]

Number of iterations

Success rate

Training time

7956

46%

3297ms

Fig. 5. Result of parity-4 training using EBP algorithm with 4-3-

3-1 architecture

Number of iterations

Success rate

Training time

17

69%

15ms

Fig. 6. Result of parity-4 training using LM algorithm with 4-3-

3-1 architecture

Number of iterations

Success rate

Training time

34

82%

37ms

Fig. 7. Result of parity-4 training using NBN algorithm with 4-

3-3-1 architecture

Figures 5 through 7 shows results of training of MLP

architecture for the Parity- 4 problem. One may notice that EBP

training requires 200 times more iterations and 100 times longer

time to train. Also the success rate is smaller than in the case of

other algorithms. LM algorithm is slightly faster but it has a

smaller success rate in comparison to NBN algorithm. For the

FCN architecture, with 3 neurons connected in cascade, the

parity problem can be solved with significantly smaller number

of neurons (3 instead of 7). Unfortunately EBP algorithm cannot

solve this problem with less than 10,000 iterations. The standard

LM algorithm is not suitable for FCN architecture; but NBN

algorithm can solve this problem in a short time with the success

rate of 98%. Training results for Parity-4 problem are

summarized in Table I.

Success rate 0%

Fig. 8. Result of parity-4 training using EBP algorithm with 4-1-

1-1 architecture

Number of iterations

Success rate

Training time

30

98%

19ms

Fig. 9. Result of parity-4 training using NBN algorithm with 4-

1-1-1 architecture

TABLE I
COMPARISON OF SOLUTIONS OF PARITY-4 PROBLEM WITH

VARIOUS ALGORITHMS FOR TWO DIFFERENT ARCHITECTURES

 Iterations Time [ms] Success rate

MLP with 4331 architecture without connections across layers (desired

error=0.0001)

EBP (α=3) 7956.4 3296.6 46%

LM (Gauss-Jordan) 16.5 14.9 69%

NBN (Gauss-Jordan) 33.6 37.07 82%

FCN with 4111 architecture with connections across layers (desired

error=0.0001)

EBP (α=3) N/A N/A 0%

LM (Gauss-Jordan) Is not able to handle FCN with connections across

layers

NBN (Gauss-Jordan) 30.2 19.1 98%

For MLP topologies it seems that the EBP algorithm is most

robust and has the largest success rate for random weight

initialization. At the same time the EBP algorithm requires over

200 times larger number of iterations to converge.

If the number of neurons in FCN is increased to 4 then also EBP

algorithm can solve the problem with success rate of 98%. The

NBN algorithm can solve this problem in 150 times shorter time

with 100% success rate. Results are shown in Table II. One may

also notice that with increasing of network complexity neural

networks are losing their ability for generalization (if neural

network is used for nonlinear mapping).

For experiments shown in Table III the LM algorithm was

modified so not only MLP networks but all arbitrarily connected

neural networks could be trained. Also in both LM and NBN

algorithms the matrix inversion, the Gauss-Jordan method, was

replaced by the LU decomposition. As a consequence the

training time was significantly reduced.

One may notice that if too large neural networks are used the

system can find solutions which produce very small error for the

training patterns, but for patterns which were not used for

training errors actually could be much larger than in the case of

much simpler network.

TABLE III
COMPARISON OF SOLUTIONS OF VARIOUS INCREASED

COMPLEXITY PROBLEMS USING VARIOUS ALGORITHMS AND FCN

ARCHITECTURES

 Iterations Time [ms] Success

rate

Parity 4 problem with 4111 architecture (desired

error=0.001)

EBP (α=1) 17505 3384.6 93%

LM (modified) 14.6 0.16 98%

NBN (modified) 20.6 1.01 99%

Parity 8 problem with 411111 architecture (desired

error=0.001)

EBP (α=1) failed failed 0%

LM (modified) 32.1 152.2 8%

NBN (modified) 40.6 192.7 28%

Parity 12 problem with 411111111 architecture (desired

error=0.001)

EBP (α=1) failed failed 0%

LM (modified) 77.3 9656. 3%

NBN (modified) 66.7 14,068. 14%

What many people are not also aware of is that not all popular

algorithms can train every neural network. Surprisingly, the

most popular EBP (Error Back Propagation) algorithm cannot

handle more complex problems while other more advanced

TABLE II
COMPARISON OF SOLUTIONS OF PARITY-4 PROBLEM WITH VARIOUS

ALGORITHMS ON 4-1-1-1-1 TOPOLOGY

Type
size

(pts.)

Averages from 100 runs

Success rate iterations Computing time

EBP 98%
3977.15 1382.78ms

LM N/A
N/A N/A

NBN 100%
12.36 8.15ms

algorithms can. Also, in most cases neural networks trained

with popular algorithms such as EBP produce far from optimum

solutions [3][4].

Fuzzy Systems

The fuzzy set system theory was developed by Zadeh [8]. Fuzzy
logic is similar to Boolean algebra, but it operates on analog
values between zero and one. Also, instead of AND and OR
operators the MIN and MAX operators are used as is shown in
Fig. 10.

 Boolean Fuzzy

BA

0 0

0 1

1 0

1 1

0

0

0

1

BA

0 0

0 1

1 0

1 1

0

1

1

1

BA

0.2 0.3

0.2 0.8

0.7 0.3

0.7 0.8

0.2

0.2

0.3

0.7

BA

0.2 0.3

0.2 0.8

0.7 0.3

0.7 0.8

0.3

0.8

0.7

0.8

Fig. 10. Comparison Boolean algebra with fuzzy logic .

In order to solve problem of nonlinear mapping two similar

approaches are usually taken: Mamdani[9] and TSK[10][11].

Block diagrams for these two controllers are shown in Figures

11 and 12.

F
u
z
z
if
ie

r

X

Y

out

D
e
fu

z
z
if
ic

a
ti
o

n

F
u
z
z
if
ie

r

Rule selection cells

min-max operations

Fig. 11. Block diagram of a Mamdani type fuzzy controller

F
u
z
z
y
fi
e
r

F
u
z
z
y
fi
e
r

X

Y

Array of

cluster cells

out

weighted

currents

voltages

Fig. 12. TSK (Takagi-Sugeno-Kang) fuzzy architecture.

Neuro-Fuzzy Systems

Most commonly used neuro-fuzzy architecture is shown in Fig

13. It has neural network topology, but its operation does not

reassemble biological neuron operations. This concept of neuro-

fuzzy architecture requires signal multiplication and division and

as result it is not easy to implement this concept in hardware.

It is, however, possible to implement fuzzy systems using typical

neurons with sigmoid activation functions. One such

implementation may follow the the concept of conterpropagation

neural networks[4]. Actually TSK fuzzy systems have a very

similar topology. Unfortunately, the conterpropagation

networks operate correctly only on normalized inputs.

Normalization of inputs lead to removal of important

information so it cannot be used. However, by increasing the

dimensionality of input dimensionality it is possible to project

input data on sphere (or hypersphere) without losing important

information, The neuro-fuzzy system based on the

conterpropagation network with input pattern transformation is

shown in Fig. 14. `In the network of Fig. each neuron is

responsible for one fuzzy rule.

out

 multiplication

F
u

z
z
if
ie

r

X

F
u

z
z
if
ie

r

y

F
u

z
z
if
ie

r

z

sumfuzzification division

all weights

equal 1

all weights equal

expected values

Fig. 13. Classical Neuro-Fuzzy Architecture.

unipolar
neurons

summing
 circuits

22
XR

Fig. 14. Fuzzy controller based on conterpropagation network

All neurons in Fig. 14 have a unipolar activation function and if the

system is properly designed, then for any input vector in certain

areas only the neuron of this area produces +1 while all remaining

neurons have zero values. In the case of when the input vector is

close to a boundary between two or more regions, then all

participating neurons are producing fractional values and the

system output is generated as a weighted sum. For proper

operation it is important that the sum of all outputs of the second

layer must be equal to +1. In order to assure the above condition,

an additional normalization block can be introduced, in a similar

way as it is done in TSK fuzzy systems as shown in Fig. 12.

Another concept of replacing fuzzy systems with neural

networks is shown in Fig. 14 [12]. This network can be

considered as a fuzzy system with sigmoid membership

functions [12].

x

y

a
ll

w
e

ig
h
ts

 e
q
u

a
l

1

weights are
equal to the

average of

expected value

in the selected
region

Threshold= 3

thresholds are set

by values a to f

and u to z

A

B

C
w

e

d

f

c

b

a

x

y

z

u

v

+1

-1

out

-2

Threshold= 5

Fig. 14. Simple neural networks performing the function of TSK

fuzzy system.

It is shown above that a simple neural network of Fig. 14 can

replace a fuzzy system. All parameters of this network are directly

derived from requirements specified for a fuzzy system and there is

no need for a training process.

One may observe that if the training process is allowed then the

network architecture of Fig. 14 can be significantly simplified.

Let us compare in the following subsections the commonly used

neural network architectures

Comparison of neural networks and fuzzy systems

 Fuzzy systems utilize the expert information in the form

of a set of rules. There are several reasons for using fuzzy

systems in control engineering practice. First, the dynamics of

the system under interest is generally complicated, but

sometimes its behavior can be defined more easily in linguistic

terms. Second, fuzzy systems are suitable architectures for

modification and tuning process, which provides some kind of

adaptiveness through the on-line adjustment of parameters. The

major advantage of fuzzy logic based systems is their ability to

utilize expert knowledge and perception based information.

Artificial neural networks are well known by their property

of performing complex nonlinear mappings. Earlier works on the

mapping properties of these architectures have shown that neural

networks are universal approximators [13,14].

Fig. 15. Required control function and a comparison of the

results obtained with microcontroller implementation using

fuzzy and neural systems

Fig. 16. Control surfaces obtained with Motorola

microcontroller HC11 using fuzzy approach with trapezoidal

membership functions (7 functions per input) and TSK

defuzzification [1]

Fig. 17. Control surfaces obtained with Motorola

microcontroller HC11 using fuzzy approach with six neurons 2-

1-1-1-1-1 architecture and Elliot activation function. [1]

Figures 15 to 17 show a comparison of fuzzy and neural

networks based system implemented in Motorola HC11

microcontroller. Motorola’s 68HC711E9 is a low cost, 8-bit

microprocessor; the on-board features of which are 512 bytes of

RAM and EEPROM and 12K bytes of UV erasable EPROM.

The processor was used with an 8 MHz crystal, allowing an

internal clock frequency of 2 MHz.

Currently, fuzzy controllers are the most popular choice for

hardware implementation of complex control surfaces because

they are easy to design. Neural controllers are more complex and

harder to train, but provide an outstanding control surface with

much less error than that of a fuzzy controller.

A drawback of neural controllers is that the design process is

more complicated than that of fuzzy controllers. However, this

difficulty can be easily overcome with proper design tools. One

severe disadvantage of a fuzzy system is its limited ability of

handling problems with multiple inputs. In the case of neural

networks such a limitation does not exist. Furthermore, control

surfaces obtained from neural controllers also do not exhibit the

roughness of fuzzy controllers that can lead to unstable or rough

control.

TABLE IV
COMPARISON OF SOLUTIONS OF VARIOUS INCREASED

COMPLEXITY PROBLEMS USING VARIOUS ALGORITHMS AND FCN

ARCHITECTURES

 Fuzzy

System

(Zadeh)

Fuzzy

System

(TSK)

Neural

 Network

2-1-1-1

Neural

 Network

2-1-1-1-1-1

Length of code 2324 1502 680 1119

Time (ms) 1.95 28.5 1.72 3.3

MSE Error 0.945 0.309 0.000578 0.000093

Both neural networks and fuzzy systems are capable of

approximating any nonlinear function, but their implementation

in silicon is not easy. Both neural and fuzzy systems have their

advantages and limitations.

 One may notice that TSK fuzzy controller can be easily

replaced by neural network with very simple architecture. In this

case the intuitive fuzzy rules can be used as patterns to train

neural networks. This approach is not only very simple but it

also produces a smooth control surface. In most cases these

neural networks which are replacing fuzzy systems require

hardware.

Conclusion

 The paper describes basic concepts of neural networks and

fuzzy systems. It is shown that most commonly used neural

network architecture of MLP – Multi Layer Perceptron is also

one of the least efficient ones. Also most commonly used EBP –

Error Back Propagation algorithm is not only very slow, but also

it is not able to find solutions for optimal neural network

architectures. EBP can solve problems only when large number

of neurons is used, but this way neural network loses its

generalization property. Performances of both fuzzy systems and

neural networks are compared leading to the conclusion that

neural networks can produce much more accurate nonlinear

mapping that are simple to implement. At the end of the

presentation several concepts of neuro-fuzzy systems are

compared.

References

[1] B. M Wilamowski and J. Binfet " Microprocessor

Implementation of Fuzzy Systems and Neural Networks ",

International Joint Conference on Neural Networks

(IJCNN'01), pp. 234-239, Washington DC, July 15-19, 2001

[2] D. E Rumelhart., G. E. Hinton, R. J. Williams, “Learning

representations by back-propagating errors”. Nature, vol.

323, pp. 533-536, 1986.

[3] B. M. Wilamowski, “Advanced Learning Algorithms”,

INES’09 – 13-th International Conference on Intelligent

Engineering Systems, Barbados, April 16-18, 2009 pp. 9-17.

[4] B. M. Wilamowski, “Special Neural Network Architectures

for Easy Electronic Implementations” POWERENG’09 -

International Conference on Power Engineering, Energy

and Electrical Drivers, Lisbon, Portugal, March 18-20.

[5] M. T. Hagan, and M. Menhaj, “Training feedforward
networks with the Marquardt algorithm”, IEEE Transactions
on Neural Networks, vol. 5, no. 6, pp. 989-993, 1994

[6] B. M. Wilamowski, N. J. Cotton, O. Kaynak, G.

Dundar, "Computing Gradient Vector and Jacobian Matrix

in Arbitrarily Connected Neural Networks," IEEE Trans. on

Industrial Electronics, vol. 55, no. 10, pp. 3784-3790, Oct

2008

[7] B. M. Wilamowski, N. Cotton, J. Hewlett, and O.

Kaynak, “Neural Network Trainer with Second Order

Learning Algorithms”, 11th INES 2007 -International

Conference on Intelligent Engineering Systems, Budapest,

Hungary, June 29 2007-July 1 2007, pp. 127-132.

[8] L. A. Zadeh, “Fuzzy Sets,” Information and Control, Vol. 8,

pp. 338-353, 1965.

[9] E. H. Mamdani, “Application of Fuzzy Algorithms for

Control of Simple Dynamic Plant,” IEEE Proceedings, Vol.

121, No. 12, pp. 1585-1588, 1974.

[10] M. Sugeno and G. T. Kang, “Structure Identification of

Fuzzy Model,” Fuzzy Sets and Systems, Vol. 28, No. 1, pp.

15-33, 1988.

[11] T. Takagi and M. Sugeno, “Fuzzy Identification of Systems

and Its Application to Modeling and Control,” IEEE

Transactions on System, Man, Cybernetics, Vol. 15, No. 1,

pp. 116-132, 1985.

[12] B. M. Wilamowski, “Methods of Computational

Intelligence for Nonlinear Control Systems” ICCAE’ 05

International Conference on Control, Automation and

System, June 2-5, 2005, Gyeonggi-Do, Korea, pp. P1-P8

[13] J. Kolbusz, S. Paszczyński and B.M. Wilamowski,

“Network traffic model for industrial environment”, IEEE

Transaction on Industrial Informatics, vol. 2, No. 4, pp.

213-220, 2006.

[14] B. M. Wilamowski and O. Kaynak, "Oil Well Diagnosis by

sensing Terminal Characteristics of the Induction Motor,"

IEEE Transactions on Industrial Electronics, Vol 47, No 5,

pp. 1100-1107, October 2000.

VIII. CONCLUSION

Neural networks exhibit superior performance in comparison to

fuzzy systems but there are several reasons for frustration of

people trying to adapt neural networks for their research:

 Neural networks can be over-trained if excessive number of

neurons are used. This way the network is losing its ability

for generalization and it is not able to correctly process new

patterns which were not used for training.

 In most cases the relatively inefficient MLP architecture is

used instead of more powerful topologies with connections

across layers. As a result, full power of neural networks is

not utilized.

 In order to find solutions for close to optimal architectures,

second order algorithms such as NBN or LM should be

used. Unfortunately, the LM algorithm adopted in popular

MATLAB NN Toolbox can handle only MLP topology

without connections across layers and these topologies are

far from optimal.

 Newly developed NBN algorithm is very fast, it can train

any neural network architectures and it has no limitations

for the number of patterns used in training. Additional

feature of this algorithm is that individual patterns can be

added or subtracted from the training set without necessity

of training network with entire set of patterns.

The only current limitation of the NBN algorithm is that neural

networks should not be too big and practically it can train

networks with up to 500 weights.

REFERENCES

[1] J. Kolbusz, S. Paszczyński and B. M. Wilamowski,

“Network traffic model for industrial environment”, IEEE

Transaction on Industrial Informatics, vol. 2, No. 4, pp.

213-220, 2006.

[2] B. M. Wilamowski, Vitaly J. Vodyanoy, “Neural Network

Architectures for Artificial Noses, ” HIS’08, May 25-27,

Krakow, Poland, pp. 731-736

[3] H. Mamdani, “Application of Fuzzy Algorithms for Control

of Simple Dynamic Plant,” IEEE Proceedings, Vol. 121,

No. 12, pp. 1585-1588, 1974.

[4] M. Sugeno and G. T. Kang, “Structure Identification of

Fuzzy Model,” Fuzzy Sets and Systems, Vol. 28, No. 1, pp.

15-33, 1988.

[5] T. Takagi and M. Sugeno, “Fuzzy Identification of Systems

and Its Application to Modeling and Control,” IEEE

Transactions on System, Man, Cybernetics, Vol. 15, No. 1,

pp. 116-132, 1985.

[6] B. M. Wilamowski “Silicon implementation of

computational intelligence for mechatronics”, ICM'04 IEEE

International Conference on Mechatronics 2004, Istanbul,

Turkey, June 3-5, 2004

[7] B. M. Wilamowski, “Methods of Computational

Intelligence for Nonlinear Control Systems” ICCAE’ 05

International Conference on Control, Automation and

System, June 2-5, 2005, Gyeonggi-Do, Korea, pp. P1-P8

[8] B.M. Wilamowski and J. Binfet, " Do Fuzzy Controllers

Have Advantages over Neural Controllers in

Microprocessor Implementation" Proc of.2-nd International

Conference on Recent Advances in Mechatronics -

ICRAM'99, Istanbul, Turkey, pp. 342-347, May 24-26, 1999

[9] Bogdan Wilamowski and Xiangli Li, “Fuzzy System Based

Maximum Power Tracking for PV System” Proc. of the

28th Annual Conference of the IEEE Industrial Electronics

Society, pp. 1990-1994, Sevilla, Spain, Nov 5-8, 2002

[10] Ota, Yasuhiro and Bogdan M. Wilamowski, " Current-Mode

CMOS Implementation of a Fuzzy Min-Max Network",

World Congress of Neural Networks, vol. 2, pp. 480-483,

Washington DC, USA, July 17-21, 1995

[11] Bogdan Wilamowski and Jeremy Binfet " Microprocessor

Implementation of Fuzzy Systems and Neural Networks ",

International Joint Conference on Neural Networks

(IJCNN'01), pp. 234-239, Washington DC, July 15-19,

2001.

[12] B. K. Bose, "Neural Network Applications in Power

Electronics and Motor Drives—An Introduction and

Perspective," IEEE Trans. on Industrial Electronics, vol. 54,

no. 1, pp. 14-33, Feb 2007.

[13] M. Wilamowski, "Neural Network Architectures and

Learning Algorithms," IEEE Industrial Electronics

Magazine, vol. 3, no. 4, pp. 56-63, Dec. 2009

[14] D. E. Rumelhart, G. E. Hinton, R. J. Williams, “Learning

representations by back-propagating errors”. Nature, vol.

323, pp. 533-536, 1986.

[15] B. M. Wilamowski, “Challenges in Applications of

Computational Intelligence in Industrials Electronics,”

(keynote) ISIE’ 10 IEEE International Symposium on

Industrial Electronics, Bari, Italy, July 5-7, 2010, pp. 15-22.

[16] B. M. Wilamowski, H. Yu, “Improved Computation for

Levenberg Marquardt Training,” IEEE Trans. on Neural

Networks, vol. 21, no. 6, pp. 930-937, June 2010.

[17] M. Wilamowski, N. J. Cotton, O. Kaynak, G.

Dundar, "Computing Gradient Vector and Jacobian Matrix

in Arbitrarily Connected Neural Networks," IEEE Trans. on

Industrial Electronics, vol. 55, no. 10, pp. 3784-3790, Oct

2008

[18] B. M. Wilamowski, N. Cotton, J. Hewlett, and O.

Kaynak, “Neural Network Trainer with Second Order

Learning Algorithms”, 11th INES 2007 -International

Conference on Intelligent Engineering Systems, Budapest,

Hungary, June 29 2007-July 1 2007, pp. 127-132

[19] B. M. Wilamowski " VLSI Analog Multiplier/divider

Circuit"(5,6,7) ISIE'98 International Symposium on

Industrial Electronics, July, 7-10, 1998, Pretoria, South

Africa, pp. 493-496

[20] B. M. Wilamowski and O. Kaynak, "Oil Well Diagnosis by

sensing Terminal Characteristics of the Induction Motor,"

IEEE Transactions on Industrial Electronics, Vol 47, No 5,

pp. 1100-1107, October 2000.

[21] M. T. Hagan, M.B. Menhaj, “Training feedforward

networks with the Marquardt algorithm”. IEEE Trans. on

Neural Networks, vol. 5, no. 6, pp. 989-993, Nov. 1994.

[22] MATLAB Neural Network ToolBox

http://www.mathworks.com/products/neuralnet/

[23] B. M. Wilamowski, D. Hunter, A. Malinowski, "Solving

Parity-n Problems with Feedforward Neural Network,"

Proc. of the IJCNN'03 International Joint Conference on

Neural Networks, pp. 2546-2551, Portland, Oregon, July

20-23, 2003

[24] Stuttgart Neural Network Simulator SNNS

http://www.ra.cs.uni-tuebingen.de/SNNS/

[25] NNT - Neural Network Trainer

http://www.eng.auburn.edu/~wilambm/nnt/

[26] B. M. Wilamowski, N. J. Cotton, O. Kaynak,, and G.

Dundar, “Method of computing gradient vector and

Jacobean matrix in arbitrarily connected neural

networks” ISIE 2007- IEEE International Symposium

on Industrial Electronics, Vigo, Spain, 4-7 June 2007,

pp. 3298-3303

[27] B. M. Wilamowski, N. Cotton, J. Hewlett, and O.

Kaynak, “Neural Network Trainer with Second Order

Learning Algorithms”, 11th INES 2007 -International

Conference on Intelligent Engineering Systems,

Budapest, Hungary, June 29 2007-July 1 2007, pp. 127-

132H.

[28] Yu and B. M. Wilamowski, “Fast and efficient and

training of neural networks,” in Proc. 3nd IEEE Human

System Interaction Conf. HSI 2010, Rzeszow, Poland,

May 13-15, 2010, pp. 175-181

[29] Jian-Xun Peng, Kang Li, G.W. Irwin, "A New Jacobian

Matrix for Optimal Learning of Single-Layer Neural

Networks," IEEE Trans. on Neural Networks, vol. 19,

no. 1, pp. 119-129, Jan 2008.

[30] Bogdan M. Wilamowski “Efficient Neural Network

Architectures and Advanced Training Algorithms”,

Gdańsk University of Technology Faculty of ETI

Annals, Vol 18, pp. 345-352, 2010

[31] B. M. Wilamowski and H. Yu, “Neural Network

Learning Without Backpropagation," IEEE Trans. on

Neural Networks, vol. 21, no.11, pp. 1793 - 1803, Nov.

2010

[32]

http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(hagan%20%20m.%20t.%3cIN%3eau)&valnm=Hagan%2C+M.T.&reqloc%20=others&history=yes

