
Advantages and problems of soft computing
Bogdan M. Wilamowski

Auburn University
wilam@ieee.org

Abstract - Soft computing can be a very attractive alternative to a
purely digital system, but there are many traps waiting for
researchers trying to apply this new exciting technology. For
nonlinear processing both neural networks and fuzzy systems can
be used. Terrifically neural networks should provide much better
solutions: smoother surfaces, larger number of inputs and outputs,
better generalization abilities, faster processing time, etc. In
industrial practice, however, many people are frustrated with
neural networks not being aware that the reason for their
frustrations are wrong learning algorithms and wrong neural
network architectures. Having difficulties with neural network
training, many industrial practitioner are enlarging neural
networks and indeed such networks converges to solutions much
faster. But at the same time such excessively large network are not
able to respond correctly to new patterns which were not used for
training. This paper describes how to use effective neural networks
and how to avoid all reasons for frustration.

I. INTRODUCTION

 Two major technologies in soft computing are neural
networks and fuzzy systems. Neural networks and fuzzy
systems internally operate within a limited signal range
between zero and one. Both technologies are used for
nonlinear mapping between inputs and outputs. In the case of
neural networks the number of inputs are basically unlimited;
while in the case of fuzzy system, the number of inputs are
limited to two or three. Parameters of fuzzy systems are
found by the design process; parameters of neural networks
are obtained by learning. It is relatively easy for humans to
follow the computation process of fuzzy systems, while it is
almost impossible to follow computation process in neural
networks. The resulting nonlinear function produced by
neural networks is smooth (Fig. 1) while functions produced
by fuzzy systems are relatively rough (Fig. 2).

Fig. 1. Example of a control surface obtained with neural networks

 It is relatively easy to design fuzzy systems based on a
designer’s intuition. With neural networks a much better
result can be obtained, but unfortunately, improper use of
neural networks leads to worse results than these obtained
with fuzzy systems. In the case of neural networks, a designer
may face many challenges such as:
 How many neurons and weights to use.
 How these neurons should be connected.
 What training algorithm to use.
Wrong answers to these question often lead to frustration. If
too large a network is used, than it can be easily trained, but it
will respond very poorly for patterns not used for training.
[1,2]. Improper neural network architecture not only is more
difficult to train, but also it often cannot be trained for
optimum results. Also, it turns out that most popular learning
algorithms (such as EBP - Error Back Propagation [3,4]) are
not able to train close to optimal networks [5,6].

Fig. 2. Example of a control surface obtained with fuzzy system

This paper discusses incorrect usage of neural networks and
presents suggestions about how to avoid problems with
neural networks. Notice that if difficulties with neural
networks are solved, then neural networks generate not only a
better and smoother control surface, but also its
microcontroller implementations require shorter code and
faster operation [7,8].

II. NEURAL NETWORKS

Multi Layer Perceptron (MLP) architecture (Fig.3) is very
popular and is used in more than 95% of cases. Also, most
training software cannot train other architectures but MLP. It
turns out that these other feedforwad architectures, such as
Arbitrarily Connected Neurons (ACN) architectures (fig. 4)
are much more powerful, but they are seldom used because of

978-1-4577-0434-5/11/$26.00 ©2011 IEEE 5

lack of proper learning tools [9]. In feedforward networks one
directional signal flow is assured. Neurons are connected by
weights with different positive and negative values, and the
resulting neuron excitation net is calculated as a sum of
products of incoming signals multiplied by weights:

xw=net ii

n

=1i
 (1)

Then, signals are passing through neurons' activation
functions, which can be unipolar (Fig. 5.a) or bipolar (Fig.
5.b), and this leads to the question which type of activation
functions to use: unipolar or bipolar? The short answer is that
it does not matter.

Fig. 3. Multilayer Perceptron (MLP) type architecture 5-4-4-1

Fig. 4. Arbitrarily Connected Neurons (ACN) type architecture 3=1=2=2=1

 Both types of networks work the same way, and it is very
easy to transform bipolar a neural network into a unipolar
neural network and vice versa. Moreover, there is no need to
change most weights, but only the biasing weight has to be
changed.

k

 netk
netfo uni

exp1

1
)(

 ookof uni 1)('

)(netf

net

(a)

k

2
tanh1

exp1

2
1)(2)(

netk

netk

netfnetfo unibip

2

1
)('

2ok
of bip

)(netf

net

(b)
Fig. 5. Typical soft activation function of neurons (a) unipolar, (b)
bipolar

 In order to change from bipolar networks to unipolar
networks, only biasing weights must be modified using the
formula:

N

i

bip
i

bip
bias

uni
bias www

1

5.0 (6)

While in order to change from unipolar networks to bipolar
networks :

N

i

uni
i

uni
bias

bip
bias www

1

2 (7)

Fig. 6 shows the neural network for a parity-3 problem which
can be transformed both ways: from bipolar to unipolar and
from unipolar to bipolar. Notice that only biasing weights are
different. Obviously input signals in the bipolar network
should be in the range from -1 to +1 while for a unipolar
network they should be in the range from 0 to +1.

-2

0

+1

weights 1

0
bipolar

Fig. 6 Neural networks for parity-3 problem.

6

 The strength of the neural network strongly depends on the
used architecture. For example, Table I shows a minimum
number of neurons required to solve popular Parity-N
benchmarks with different values of N. Please notice that in
order to solve a Parity-64 problem using the most popular
MLP architecture with one hidden layer, 65 neurons are
required. When a FCC (Fully Connected Cascade)
architecture is used, then only 7 neurons are required to solve
the same problem. One may question why researchers are
using MLP instead of FCC architectures. A simple answer is
that they know how to train MLP networks, but they do not
know how to train FCC networks.

TABLE I
MINIMUM NUMBER OF NEURONS REQUIRED TO SOLVE VARIOUS PARITY-N

PROBLEMS

Parity-8 Parity-16 Parity-32 Parity-64
inputs 8 16 32 64
patterns 256 65536 4.294e+9 1.845e+19
MLP (one
hidden layer)

9
8-8-1

17
16-16-1

33
32--32-1

65
64-64-1

BMLP (one
hidden layer)

5
8=4=1

9
16=8=1

17
32=16=1

33
64=32=1

BMLP (2
hidden layer)

4
8=2=1=1

5
16=2=2=1

7
32=3=3=1

11
63=5=5=1

BMLP (3
hidden layer)

4
8=1=1=1=1

5
16=2=1=1=1

6
32=2=2=1=1

8
64=3=2=2=1

FCC 4
8=1=1=1=1

5 6 7

The most common training algorithm is EBP – Error Back
Propagation [3,4]. It is relatively simple, and it does not
require a lot of computer resources. This algorithm, however,
seldom leads to a good solution and is extremely slow.
 Much better results can be obtained with the LM –
Levenberg-Marquardt Algorithm [10,11], but even the LM
algorithm cannot train other architectures but MLP. These
more powerful neural network architectures can be efficiently
trained by the recently developed Neuron by Neuron (NBN)
learning algorithm [12-15].
 The Neuron by Neuron (NBN) algorithm was developed

in order to eliminate most disadvantages of the LM algorithm.
It can be used to train neural networks with arbitrarily
connected neurons. It does not require to compute and to store
large Jacobians, so it can train problems with basically
unlimited number of patterns [14]. Error derivatives are
computed only in the forward pass, so the backpropagation
process is not needed [15]. It is equally fast, but in the case of
networks with multiple outputs faster than LM algorithm. It can
of course train networks which are impossible to train with
other algorithms.
 Fig 7 shows training errors as a function of a number of
interactions using popular EBP algorithm for Parity-4 problem
using MLP architecture 4-3-3-1 (Fig. 7.a) and FCC architecture
4=1=1=1 (Fig. 7.b) [16]. For MLP network with 7 neurons, the
EBP algorithm was successful in 50 % cases (Fig. 7.a); while
the EBP algorithm failed for the FCC architecture network with
3 neurons, the EBP has failed on all tries(Fig.7.b).

(a)

(b)
Fig. 7. Result of parity-4 training using EBP algorithm architecture: (a)
with 4-3-3-1 architecture and success rate 50% and (b) with 4=1=1=1
architecture and success rate 0%. Average training times are 3797ms
and 6223 ms respectively.

 The average computation time with the EBP algorithm was
several seconds, and it required several thousand iterations to
converge. When the newly developed NBN algorithm was
used for the same two cases (Fig. 8), the success rate for MLP
was about 80 %, while the success rate for FCC network was
98%. The average computation times with the NBN
algorithm were almost 1000 times shorter. The NBN
algorithms not only solved the FCC network with 3 neurons,
but the success rate was close to 100%.
 One should notice that it is much easier to train neural
networks where the number of neurons is larger than required.
The most common mistake made by many researchers is to
increase the number of neurons in the system to secure faster
convergence. Indeed such larger networks can be trained
faster and to smaller errors, but this "success" is very
misleading. Such networks with the excessive number of
neurons are most likely losing their generalization abilities. It
means that neural networks with a smaller number of neurons
have much better generalization abilities. Such networks
respond correctly for patterns not used for training. If too
many neurons are used, then the network can be over-trained
on the training patterns, but it will fail on patterns never used
in training. With a smaller number of neurons, the network

7

cannot be trained for very small errors, but it may produce
much better approximations for new patterns.

(a)

(b)
Fig. 8. Result of parity-4 training using NBN algorithm architecture:
(a) with 4-3-3-1 architecture and success rate 80% and (b) with
4=1=1=1 architecture and success rate 98%. Average training times
are 34 ms and 19 ms respectively.

0 1 2 3 4 5 6 7 8
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Fig. 9 Approximation of measured points by polynomials with a
different orders stating with first through 9-th order.

 The problem is similar to curve fitting using polynomial
interpolation as illustrated in Fig. 9. Notice that if the order of
polynomial is too low there is poor approximation
everywhere. When the order is too high, there is a perfect fit
at the given data points, but the interpolation between points
is rather poor.

 In the case of neural networks, we have a similar situation
with an excessive number of neurons it is easy to train the
network to a very small error at the training data, but this may
lead to very poor and frustrating results when this trained
neural network is used for process new patterns.

-10
-5

0
5

10

-10

-5

0

5

10

-10

-5

0

5

10

Fig. 10. Control surface of TSK fuzzy controller with 8*6=48
defuzzyfication rules

-10

-5

0

5

10
-10

-5
0

5
10

-10

-5

0

5

10

Fig. 11 Control surface obtained with neural networks with 4
neurons in cascade (18 weights) Error=0.049061

-10

-5

0

5

10
-10

-5
0

5
10

-10

-5

0

5

10

Fig. 12 Control surface obtained with neural networks with 5
neurons in cascade (25 weights) Error=0.023973

8

 In order to have good generalization abilities, the number
of neurons in the network should be as small as possible to
obtain a reasonable training error. The generalization abilities
also depend on the number of training patterns. With a large
number of training patterns, a larger number of neurons can
be used while generalization abilities are preserved.
 To illustrate the problem with neural networks, let us try to
find the best neural network architecture to replace a fuzzy
controller. Fig. 10 shows the required control surface and the
defuzzyfication rules for the TSK (Takagi-Sugeno-Ken)
fuzzy controller [5,9].
 In order to train the developed neural controller, we may
use TSK defuzzyfication rules as the training patterns. Let
us select the FCC neural networks architecture and try to find
solutions for different number of neurons used. Fig. 11 shows
results for 4 neurons and 18 weights. Fig. 12 shows results for
the network with 5 neurons and 25 weights. When the size of
the network increased, the results become worse instead of
better despite that learning errors decrease with the increase
of the neural network size.

III. FUZZY SYSTEMS

 Fuzzy logic is similar to Boolean algebra, but it operates on
analog values between zero and one. Also, instead of AND
and OR operators, the MIN and MAX operators are used as
is shown in Fig. 13.

Fig. 13 Comparison Boolean logic with fuzzy logic

In order to solve the problem of nonlinear mapping, two
similar approaches are usually taken: Mamdani [17] and TSK
[18,19]. Block diagrams for these two controllers are shown
in Figures 14 and 15.

F
u

zz
ifi

er

X

Y

out

D
e

fu
zz

ifi
ca

tio
n

F
uz

zi
fie

r

Rule selection cells
min-max operations

Fig. 14. Block diagram of a Mamdani type fuzzy controller

F
uz

zi
fie

r
F

uz
zi

fie
r

X

Y

Array of
cluster cells

out

weighted
currents

voltages

Fig. 15. TSK (Takagi-Sugeno-Kang) fuzzy architecture.

 The most commonly used neuro-fuzzy architecture is
shown in Fig 16. It has neural network topology, but its
operation does not reassemble biological neuron operations.
This concept of neuro-fuzzy architecture requires signal
multiplication and division, and as result, it is not easy to
implement this concept in hardware.
 It is, however, possible to implement fuzzy systems using
typical neurons with sigmoid activation functions. One such
implementation may follow the concept of Hamming neural
networks [2]. TSK fuzzy systems actually have a very similar
topology. Unfortunately, the Hamming networks operate
correctly only on normalized inputs. Normalization of inputs
leads to removal of important information, so it cannot be
used. However, by increasing the dimensionality, of input
dimensionality it is possible to project input data on sphere
(or hypersphere) without losing important information. The
neuro-fuzzy system based on the Hamming network with
input pattern transformation is shown in Fig. 14. In the
network of Fig.18 each neuron is responsible for one fuzzy
rule.

9

out

multiplication

F
u

zz
ifi

e
r

X

F
u

zz
ifi

er

y

F
u

zz
ifi

e
r

z

sumfuzzification division

all weights
equal 1

all weights equal
expected values

Fig. 16. Classical Neuro-Fuzzy Architecture.

 All neurons in Fig. 18 have a unipolar activation function,
and if the system is properly designed, then for any input vector
in certain areas only the neuron of this area produces +1 while
all remaining neurons have zero values. In the case of when the
input vector is close to a boundary between two or more
regions, all participating neurons are producing fractional
values, and the system output is generated as a weighted sum.
For proper operation it is important that the sum of all outputs of
the second layer must be equal to +1. In order to assure the
above condition, an additional normalization block can be
introduced, in a similar way as it is done in TSK fuzzy systems
as shown in Fig. 12.

unipolar
neurons

summing
circuits

22 XR

Fig. 17. Fuzzy controller based on Hamming network

Another concept of replacing fuzzy systems with neural
networks is shown in Fig. 14 [20]. This network can be
considered as a fuzzy system with sigmoid membership
functions [20].

x

y

al
lw

ei
g

ht
s

e
qu

al
1

weights are
equal to the
average of

expected value
in the selected

region

Threshold= 3

thresholds are set
by values a to f

and u to z

A

B

C
w

e

d

f

c

b

a

x

y

z

u

v

+1

-1

out

-2

Threshold= 5

Fig. 18. Simple neural networks performing the function of TSK fuzzy
system.

IV. COMPARISON OF NEURAL NETWORKS AND FUZZY
SYSTEMS

 Fuzzy systems utilize the expert information in the form of
a set of rules. There are several reasons for using fuzzy
systems in control engineering practice. First, the dynamics
of the system under interest is generally complicated, but
sometimes its behavior can be defined more easily in
linguistic terms. Second, fuzzy systems are suitable
architectures for the modification and tuning process, which
provides some kind of adaptiveness through the on-line
adjustment of parameters. The major advantage of fuzzy logic
based systems is their ability to utilize expert knowledge and
perception based information.

Currently, fuzzy controllers are the most popular choice
for hardware implementation of complex control surfaces
because they are easy to design [20,21]. Neural controllers
are more complex and harder to train, but they provide an
outstanding control surface with much less error than that of a
fuzzy controller.

TABLE II
COMPARISON OF SOLUTIONS OF VARIOUS INCREASED COMPLEXITY

PROBLEMS USING VARIOUS ALGORITHMS AND FCN ARCHITECTURES

Fuzzy
System

(Mamdani)

Fuzzy
System
(TSK)

Neural
Network
2-1-1-1

Length of code 2324 1502 680

Time (ms) 1.95 28.5 1.72

MSE Error 0.945 0.309 0.000578

10

A drawback of neural controllers is that the design process
is more complicated than that of fuzzy controllers. However,
this difficulty can be easily overcome with proper design
tools. One severe disadvantage of a fuzzy system is its limited
ability of handling problems with multiple inputs. In the case of
neural networks, such a limitation does not exist. Furthermore,
control surfaces obtained from neural controllers also do not
exhibit the roughness of fuzzy controllers that can lead to
unstable or rough control.

 One may notice that the TSK fuzzy controller can be
easily replaced by a neural network with very simple
architecture. In this case the intuitive fuzzy rules can be used
as patterns to train neural networks. This approach is not only
very simple, but it also produces a smooth control surface.

V. CONCLUSION

There are several reasons for frustration of people trying to
adapt neural networks for their research:
 In most cases the relatively inefficient MLP architecture

is used instead of more powerful topologies [22] where
connections across layers are allowed.

 When popular learning software is used, such as EBP,
the training process is not only very time consuming, but
frequently the wrong solution is obtained. In other words
EBP is often not able to find solutions for a neural
network with the smallest possible number of neurons

 It is easy to train neural networks with an excessive
number of neurons. Such complex architectures for a
given pattern can be trained to very small errors, but such
networks do not have generalization abilities. Such
networks are not able to deliver a correct response to new
patterns, which were not used for training [1][9]. In other
words the main purpose of using neural networks is
missed. In order to properly utilize neural networks, its
architecture should be as simple as possible to perform
the required function.

 In order to find solutions for close to optimal
architectures, second order algorithms such as NBN or
LM should be used [13,23] Unfortunately, the LM
algorithm adopted in popular MATLAB NN Toolbox can
handle only MLP topology without connections across
layers and these topologies are far from optimal.

The importance of the proper learning algorithm was
emphasized since with the advanced learning algorithm we
can train those networks, which cannot be trained with simple
algorithms. The software used in this work which implements
the NBN algorithm can be downloaded from [24].

REFERENCES

[1] B. M. Wilamowski, "Neural Network Architectures and Learning
Algorithms," IEEE Industrial Electronics Magazine, vol. 3, no. 4, pp.
56-63, Dec. 2009

[2] B.M. Wilamowski “Neural Network Architectures and Learning”,
ICIT'03 - International Conference on Industrial Technology,
Maribor, Slovenia, December 10-12, 2003

[3] P. Werbos, Beyond regression: new tools for prediction and analysis
in behavioral sciences. Ph.D. diss., Harvard University, 1974.

[4] D. E Rumelhart., G. E. Hinton, R. J. Williams, “Learning
representations by back-propagating errors”. Nature, vol. 323, pp.
533-536, 1986.

[5] B.M. Wilamowski “Efficient Neural Network Architectures and
Advanced Training Algorithms”, Gdańsk University of Technology
Faculty of ETI Annals, Vol 18, pp. 345-352, 2010

[6] B. M. Wilamowski, H. Yu, “Improved Computation for Levenberg
Marquardt Training,” IEEE Trans. on Neural Networks, vol. 21, no. 6,
pp. 930-937, June 2010.

[7] B. M Wilamowski and J. Binfet " Microprocessor Implementation of
Fuzzy Systems and Neural Networks ", International Joint
Conference on Neural Networks (IJCNN'01), pp. 234-239,
Washington DC, July 15-19, 2001

[8] Wilamowski B.M. and J. Binfet, " Do Fuzzy Controllers Have
Advantages over Neural Controllers in Microprocessor
Implementation" Proc of.2-nd International Conference on Recent
Advances in Mechatronics - ICRAM'99, Istanbul, Turkey, pp. 342-
347, May 24-26, 1999

[9] B. M. Wilamowski, " Challenges in Applications of Computational
Intelligence in Industrial Electronics" ISIE10 - International
Symposium on Industrial Electronics, Bari, Italy, July 4-7, 2010,
pp. 15-22.

[10] K. Levenberg, “A method for the solution of certain problems in least
squares”. Quarterly of Applied Machematics, 5, pp. 164-168, 1944.

[11] M. T. Hagan, and M. Menhaj, “Training feedforward networks with
the Marquardt algorithm”, IEEE Transactions on Neural Networks,
vol. 5, no. 6, pp. 989-993, 1994

[12] B. M. Wilamowski, N. Cotton, J. Hewlett, and O. Kaynak, “Neural
Network Trainer with Second Order Learning Algorithms”, 11th INES
2007 -International Conference on Intelligent Engineering Systems,
Budapest, Hungary, June 29 2007-July 1 2007, pp. 127-132

[13] B. M. Wilamowski, N. J. Cotton, O. Kaynak, G. Dundar, "Computing
Gradient Vector and Jacobian Matrix in Arbitrarily Connected Neural
Networks," IEEE Trans. on Industrial Electronics, vol. 55, no. 10, pp.
3784-3790, Oct 2008

[14] B. M. Wilamowski and O. Kaynak, "Oil Well Diagnosis by sensing
Terminal Characteristics of the Induction Motor," IEEE Transactions
on Industrial Electronics, Vol 47, No 5, pp. 1100-1107, October 2000.

[15] B. M. Wilamowski and H. Yu, “Neural Network Learning Without
Backpropagation," IEEE Trans. on Neural Networks, vol. 21, no.11,
pp. 1793 - 1803 Nov. 2010.

[16] B. M. Wilamowski, “Neural Networks or Fuzzy Systems” Workshop
on Intelligent Systems, Budapest, Hungary, August 30, 2009, pp. 1-
12.

[17] E. H. Mamdani, “Application of Fuzzy Algorithms for Control of
Simple Dynamic Plant,” IEEE Proceedings, Vol. 121, No. 12, pp.
1585-1588, 1974.

[18] M. Sugeno and G. T. Kang, “Structure Identification of Fuzzy
Model,” Fuzzy Sets and Systems, Vol. 28, No. 1, pp. 15-33, 1988.

[19] T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and Its
Application to Modeling and Control,” IEEE Transactions on System,
Man, Cybernetics, Vol. 15, No. 1, pp. 116-132, 1985.

[20] J. Kolbusz, S. Paszczyński and B.M. Wilamowski, “Network traffic
model for industrial environment”, IEEE Transaction on Industrial
Informatics, vol. 2, No. 4, pp. 213-220, 2006.

[21] B. M. Wilamowski and O. Kaynak, "Oil Well Diagnosis by sensing
Terminal Characteristics of the Induction Motor," IEEE Transactions
on Industrial Electronics, Vol 47, No 5, pp. 1100-1107, October
2000.

[22] B. Wilamowski, D. Hunter, A. Malinowski, "Solving Parity-n
Problems with Feedforward Neural Network," Proc. of the IJCNN'03
International Joint Conference on Neural Networks, pp. 2546-2551,
Portland, Oregon, July 20-23, 2003

[23] B. M. Wilamowski, N. J. Cotton, O. Kaynak,, and G. Dundar,
“Method of computing gradient vector and Jacobian matrix in
arbitrarily connected neural networks” ISIE 2007- IEEE International
Symposium on Industrial Electronics, Vigo, Spain, 4-7 June 2007,
pp. 3298-3303

[24] Software Download - NNT - Neural Network Trainer
http://www.eng.auburn.edu/~wilambm/nnt/.

11

