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Abstract - Soft computing can be a very attractive alternative to a 
purely digital system, but there are many traps waiting for 
researchers trying to apply this new exciting technology. For 
nonlinear processing both neural networks and fuzzy systems can
be used. Terrifically neural networks should provide much better 
solutions: smoother surfaces, larger number of inputs and outputs, 
better generalization abilities, faster processing time, etc.  In 
industrial practice, however, many people are frustrated with 
neural networks not being aware that the reason for their 
frustrations are wrong learning algorithms and wrong neural 
network architectures. Having difficulties with neural network 
training, many industrial practitioner are enlarging neural 
networks and indeed such networks converges to solutions much 
faster. But at the same time such excessively large network are not 
able to respond correctly to new patterns which were not used for 
training. This paper describes how to use effective neural networks 
and how to avoid all reasons for frustration.

I. INTRODUCTION

   Two major technologies in soft computing are neural 
networks and fuzzy systems. Neural networks and fuzzy 
systems internally operate within a limited signal range 
between zero and one. Both technologies are used for 
nonlinear mapping between inputs and outputs. In the case of 
neural networks the number of inputs are basically unlimited;
while in the case of fuzzy system, the number of inputs are 
limited to two or three. Parameters of fuzzy systems are
found by the design process; parameters of neural networks 
are obtained by learning. It is relatively easy for humans to 
follow the computation process of fuzzy systems, while it is 
almost impossible to follow computation process in neural 
networks.  The resulting nonlinear function produced by 
neural networks is smooth (Fig. 1) while functions produced 
by fuzzy systems are relatively rough (Fig. 2).

Fig. 1.  Example of a control surface obtained with neural networks

    It is relatively easy to design fuzzy systems based on a 
designer’s intuition. With neural networks a much better 
result can be obtained, but unfortunately, improper use of 
neural networks leads to worse results than these obtained 
with fuzzy systems. In the case of neural networks, a designer 
may face many challenges such as:
 How many neurons and weights to use.
 How these neurons should be connected.
 What training algorithm to use.
Wrong answers to these question often lead to frustration. If 
too large a network is used, than it can be easily trained, but it 
will respond very poorly for patterns not used for training. 
[1,2]. Improper neural network architecture not only is more
difficult to train, but also it often cannot be trained for 
optimum results.  Also, it turns out that most popular learning 
algorithms (such as EBP - Error Back Propagation [3,4]) are
not able to train close to optimal networks [5,6]. 

Fig. 2.  Example of a control surface obtained with fuzzy system

This paper discusses incorrect usage of neural networks and 
presents suggestions about how to avoid problems with 
neural networks.  Notice that if difficulties with neural 
networks are solved, then neural networks generate not only a 
better and smoother control surface, but also its 
microcontroller implementations require shorter code and 
faster operation [7,8]. 

II. NEURAL NETWORKS

Multi Layer Perceptron (MLP) architecture (Fig.3) is very 
popular and is used in more than 95% of cases. Also, most 
training software cannot train other architectures but MLP. It 
turns out that these other feedforwad  architectures, such as 
Arbitrarily Connected Neurons (ACN)  architectures (fig. 4) 
are much more powerful, but they are seldom used because of 
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lack of proper learning tools [9]. In feedforward networks one 
directional signal flow is assured. Neurons are connected by 
weights with different positive and negative values, and the 
resulting neuron excitation net is calculated as a sum of
products of incoming signals multiplied by weights:

xw=net ii

n

=1i
                   (1)

Then, signals are passing through neurons' activation 
functions, which can be unipolar (Fig. 5.a) or bipolar (Fig. 
5.b), and this leads to the question which type of activation 
functions to use: unipolar or bipolar? The short answer is that 
it does not matter.  

Fig. 3.  Multilayer Perceptron (MLP) type architecture 5-4-4-1 

Fig. 4.  Arbitrarily Connected Neurons (ACN) type architecture 3=1=2=2=1

   Both types of networks work the same way, and it is very 
easy to transform bipolar a neural network into a unipolar 
neural network and vice versa.  Moreover, there is no need to 
change most weights, but only the biasing weight has to be 
changed.  
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Fig. 5.  Typical soft activation function of neurons (a) unipolar, (b) 
bipolar

   In order to change from bipolar networks to unipolar 
networks, only biasing weights must be modified using the 
formula:
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While in order to change from unipolar networks to bipolar 
networks :
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Fig. 6 shows the neural network for a parity-3 problem which 
can be transformed both ways:  from bipolar to unipolar and 
from unipolar to bipolar.  Notice that only biasing weights are 
different.  Obviously input signals in the bipolar network 
should be in the range from -1 to +1 while for a unipolar 
network they should be in the range from 0 to +1. 
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Fig. 6  Neural networks for parity-3 problem.
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    The strength of the neural network strongly depends on the 
used architecture. For example, Table I  shows a minimum 
number  of neurons required to solve popular Parity-N 
benchmarks with different values of N. Please notice that in 
order to solve a Parity-64 problem using the most popular 
MLP architecture with one hidden layer, 65 neurons are
required. When a FCC (Fully Connected Cascade) 
architecture is used, then only 7 neurons are required to solve 
the same problem.  One may question why researchers are 
using MLP instead of FCC architectures. A simple answer is 
that they know how to train MLP networks, but they do not 
know how to train FCC networks.

TABLE I
MINIMUM NUMBER OF NEURONS REQUIRED TO SOLVE VARIOUS PARITY-N

PROBLEMS

Parity-8 Parity-16 Parity-32 Parity-64
# inputs 8 16 32 64
# patterns 256 65536 4.294e+9 1.845e+19
MLP (one 
hidden layer)

9
8-8-1

17
16-16-1

33
32--32-1

65
64-64-1

BMLP  (one 
hidden layer)

5
8=4=1

9
16=8=1

17
32=16=1

33
64=32=1

BMLP  (2
hidden layer)

4
8=2=1=1

5
16=2=2=1

7
32=3=3=1

11
63=5=5=1

BMLP  (3
hidden layer)

4
8=1=1=1=1

5
16=2=1=1=1

6
32=2=2=1=1

8
64=3=2=2=1

FCC 4
8=1=1=1=1

5 6 7

    
     
The most common training algorithm is EBP – Error Back 
Propagation [3,4]. It is relatively simple, and it does not 
require a lot of computer resources. This algorithm, however,
seldom leads to a good solution and is extremely slow. 
   Much better results can be obtained with the LM –
Levenberg-Marquardt Algorithm [10,11], but even the LM 
algorithm cannot train other architectures but MLP. These 
more powerful neural network architectures can be efficiently 
trained by the recently developed Neuron by Neuron (NBN) 
learning algorithm [12-15].
   The Neuron by Neuron (NBN)  algorithm was developed 

in order to eliminate most disadvantages of the LM algorithm. 
It can be used to train neural networks with arbitrarily 
connected neurons. It does not require to compute and to store 
large Jacobians, so it can train problems with basically 
unlimited number of patterns [14].  Error derivatives are 
computed only in the forward pass, so the backpropagation 
process is not needed [15].  It is equally fast, but in the case of 
networks with multiple outputs faster than LM algorithm.  It can
of course train networks which are impossible to train with 
other algorithms.
  Fig 7 shows training errors as a function of a number of 
interactions using popular EBP algorithm for Parity-4 problem 
using  MLP architecture 4-3-3-1 (Fig. 7.a) and FCC architecture 
4=1=1=1 (Fig. 7.b) [16]. For MLP network with 7 neurons, the 
EBP algorithm was successful in 50 % cases (Fig. 7.a); while 
the EBP algorithm failed for the FCC architecture network with 
3 neurons, the EBP has failed on all tries(Fig.7.b).

     

(a)

(b)
Fig. 7. Result of parity-4 training using EBP algorithm architecture: (a) 
with 4-3-3-1 architecture and success rate 50% and (b) with 4=1=1=1 
architecture and success rate 0%. Average training times are  3797ms 
and 6223 ms respectively.

    The average computation time with the EBP algorithm was 
several seconds, and it required several thousand iterations to 
converge. When the newly developed NBN algorithm was 
used for the same two cases (Fig. 8), the success rate for MLP 
was about 80 %, while the success rate for FCC network was 
98%. The average computation times with the NBN 
algorithm were almost 1000 times shorter.  The NBN 
algorithms not only solved the FCC network with 3 neurons,
but the success rate was close to 100%. 
  One should notice that it is much easier to train neural 
networks where the number of neurons is larger than required. 
The most common mistake made by many researchers is to 
increase the number of neurons in the system to secure faster 
convergence. Indeed such larger networks can be trained 
faster and to smaller errors, but this "success" is very 
misleading.  Such networks with the excessive number of 
neurons are most likely losing their generalization abilities. It 
means that neural networks with a smaller number of neurons 
have much better generalization abilities.  Such networks
respond correctly for patterns not used for training. If too 
many neurons are used, then the network can be over-trained 
on the training patterns, but it will fail on patterns never used 
in training. With a smaller number of neurons, the network 
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cannot be trained for very small errors, but it may produce 
much better approximations for new patterns.  

(a)

(b)
Fig. 8. Result of parity-4 training using NBN algorithm architecture: 
(a) with 4-3-3-1 architecture and success rate 80% and (b) with 
4=1=1=1 architecture and success rate 98%. Average training times 
are  34 ms and 19 ms respectively.
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Fig. 9 Approximation of measured points by polynomials with a 
different orders stating with first through 9-th order.

    The problem is similar to curve fitting using polynomial 
interpolation as illustrated in Fig. 9. Notice that if the order of 
polynomial is too low there is poor approximation 
everywhere. When the order is too high, there is a perfect fit 
at the given data points, but the interpolation between points 
is rather poor. 

   In the case of neural networks, we have a similar situation 
with an excessive number of neurons it is easy to train  the 
network to a very small error at the training data, but this may 
lead to very poor and frustrating results when this trained 
neural network is used for process new patterns.
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Fig. 10. Control surface of TSK fuzzy controller  with  8*6=48 
defuzzyfication rules 
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Fig. 11  Control surface obtained with neural networks with 4 
neurons in cascade (18 weights) Error=0.049061

-10

-5

0

5

10
-10

-5
0

5
10

-10

-5

0

5

10

Fig. 12   Control surface obtained with neural networks with 5 
neurons in cascade (25 weights) Error=0.023973
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    In order to have good generalization abilities, the number 
of neurons in the network should be as small as possible to 
obtain a reasonable training error. The generalization abilities 
also depend on the number of training patterns. With a large 
number of training patterns, a larger number of neurons can 
be used while generalization abilities are preserved.
  To illustrate the problem with neural networks, let us try to 
find the best neural network architecture to replace a fuzzy 
controller. Fig. 10 shows the required control surface and the 
defuzzyfication rules for the TSK (Takagi-Sugeno-Ken) 
fuzzy controller [5,9]. 
     In order to train the developed neural controller, we may 
use  TSK defuzzyfication rules as the training patterns.  Let 
us select the FCC neural networks architecture and try to find 
solutions for different number of neurons used. Fig. 11 shows 
results for 4 neurons and 18 weights. Fig. 12 shows results for 
the network with 5 neurons and 25 weights. When the size of 
the network increased, the results become worse instead of 
better despite that learning errors decrease with the increase 
of the neural network size.

III. FUZZY SYSTEMS

  Fuzzy logic is similar to Boolean algebra, but it operates on 
analog values between zero and one.  Also, instead of AND 
and OR operators, the MIN and MAX operators are used as 
is shown in Fig. 13. 

Fig. 13 Comparison Boolean logic with fuzzy logic

In order to solve the problem of nonlinear mapping, two 
similar approaches are usually taken: Mamdani [17] and TSK
[18,19]. Block diagrams for these two controllers are shown 
in Figures 14 and 15.
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Fig. 14. Block diagram of a Mamdani type fuzzy controller
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Fig. 15. TSK (Takagi-Sugeno-Kang) fuzzy architecture.

    The most commonly used neuro-fuzzy architecture is 
shown in Fig 16.  It has neural network topology, but its 
operation does not reassemble biological neuron operations. 
This concept of neuro-fuzzy architecture requires signal 
multiplication and division, and as result, it is not easy to 
implement this concept in hardware.
     It is, however, possible to implement fuzzy systems using 
typical neurons with sigmoid activation functions. One such 
implementation may follow the concept of Hamming neural 
networks [2]. TSK fuzzy systems actually have a very similar 
topology.  Unfortunately, the Hamming networks operate 
correctly only on normalized inputs. Normalization of inputs 
leads to removal of important information, so it cannot be 
used. However,  by increasing the dimensionality, of input 
dimensionality it is possible to project input data on sphere 
(or hypersphere) without losing important information. The 
neuro-fuzzy system based on the Hamming network with 
input pattern transformation is shown in Fig. 14. In the 
network of Fig.18 each neuron is responsible for one fuzzy 
rule. 
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Fig. 16.  Classical Neuro-Fuzzy Architecture.

    All neurons in Fig. 18 have a unipolar activation function,
and if the system is properly designed, then for any input vector 
in certain areas only the neuron of this area produces +1 while 
all remaining neurons have zero values. In the case of when the 
input vector is close to a boundary between two or more 
regions, all participating neurons are producing fractional 
values, and the system output is generated as a weighted sum.
For proper operation it is important that the sum of all outputs of 
the second layer must be equal to +1. In order to assure the
above condition, an additional normalization block can be 
introduced, in a similar way as it is done in TSK fuzzy systems
as shown in Fig. 12.
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summing
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22 XR

Fig. 17.  Fuzzy controller based on Hamming network

Another concept of replacing fuzzy systems with neural 
networks is shown in Fig. 14 [20].  This network can be 
considered as a fuzzy system with sigmoid membership 
functions [20].
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Fig. 18. Simple neural networks performing the function of TSK fuzzy 
system.

IV. COMPARISON OF NEURAL NETWORKS AND FUZZY 
SYSTEMS

    Fuzzy systems utilize the expert information in the form of 
a set of rules. There are several reasons for using fuzzy 
systems in control engineering practice.  First, the dynamics 
of the system under interest is generally complicated, but 
sometimes its behavior can be defined more easily in 
linguistic terms. Second, fuzzy systems are suitable 
architectures for the modification and tuning process, which 
provides some kind of adaptiveness through the on-line 
adjustment of parameters. The major advantage of fuzzy logic 
based systems is their ability to utilize expert knowledge and 
perception based information.

Currently, fuzzy controllers are the most popular choice 
for hardware implementation of complex control surfaces 
because they are easy to design [20,21]. Neural controllers 
are more complex and harder to train, but they provide an 
outstanding control surface with much less error than that of a 
fuzzy controller.

TABLE II
COMPARISON OF SOLUTIONS OF VARIOUS INCREASED COMPLEXITY 

PROBLEMS USING VARIOUS ALGORITHMS AND FCN ARCHITECTURES 

Fuzzy
System

(Mamdani)

Fuzzy
System
(TSK)

Neural
Network
2-1-1-1

Length of code  2324 1502 680

Time (ms) 1.95 28.5 1.72

MSE Error 0.945 0.309 0.000578
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A drawback of neural controllers is that the design process 
is more complicated than that of fuzzy controllers.  However, 
this difficulty can be easily overcome with proper design 
tools. One severe disadvantage of a fuzzy system is its limited 
ability of handling problems with multiple inputs. In the case of 
neural networks, such a limitation does not exist. Furthermore, 
control surfaces obtained from neural controllers also do not 
exhibit the roughness of fuzzy controllers that can lead to 
unstable or rough control. 

  One may notice that the TSK fuzzy controller can be 
easily replaced by a neural network with very simple 
architecture. In this case the intuitive fuzzy rules can be used 
as patterns to train neural networks. This approach is not only 
very simple, but it also produces a smooth control surface.

V. CONCLUSION

There are several reasons for frustration of people trying to 
adapt neural networks for their research:
 In most cases the relatively inefficient MLP architecture 

is used instead of more powerful topologies [22] where 
connections across layers are allowed. 

 When popular learning software is used, such as EBP, 
the training process is not only very time consuming, but 
frequently the wrong solution is obtained.  In other words 
EBP is often not able to find solutions for a neural 
network with the smallest possible number of neurons

 It is easy to train neural networks with an excessive 
number of neurons.  Such complex architectures for a 
given pattern can be trained to very small errors, but such 
networks do not have generalization abilities.  Such 
networks are not able to deliver a correct response to new 
patterns, which were not used for training [1][9]. In other 
words the main purpose of using neural networks is 
missed.  In order to properly utilize neural networks, its 
architecture should be as simple as possible to perform 
the required function.

 In order to find solutions for close to optimal 
architectures, second order algorithms such as NBN or 
LM should be used [13,23] Unfortunately, the LM 
algorithm adopted in popular MATLAB NN Toolbox can 
handle only MLP topology without connections across 
layers and these topologies are far from optimal.

The importance of the proper learning algorithm was 
emphasized since with the advanced learning algorithm we 
can train those networks, which cannot be trained with simple 
algorithms. The software used in this work which implements 
the NBN algorithm can be downloaded from [24].
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