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Abstract - Humans are very capable of solving many scientific 
and engineering problems, but during the solution process they 
have a tendency to make mistakes. For example, humans without  
computer aided tools, would not be able to design VLSI chips 
larger than 100 transistors.   This imperfection of humans make 
them very unreliable elements  in resilient control systems.  
There is a tendency of replacing humans with computers using 
artificial intelligence, expert systems, or methods of 
computational intelligence.  The methods of computational 
intelligence can be most successful but they have to be used with 
great  care. Limitations of fuzzy and neural networks are 
presented and it is shown how to avoid these limitations so 
resilient control systems can be developed.  It turns out that often 
popular training algorithms are not capable of tuning neural 
networks to proper accuracy without losing generalization 
abilities. As a consequence, such system of computational 
intelligence may not work properly for cases which were not used 
in training. The comparison of different neural network 
architectures follows and also it is shown how to develop and 
train close to optimal topologies, so resilient control systems can 
be developed.  
 

I.  INTRODUCTION 
 
Humans are capable not only of solving many scientific 
problems, but also in the process they are making mistakes. 
For example, even very good students are not able to solve 
long problems requiring complex calculations without making 
errors in the process.  These mistakes can be eventually 
corrected but if a long problem with many calculations is 
given to a group of students then most likely initially each 
student would produce a different answer.  In the early stage 
of development of VLSI chips, required mask was manually 
cut  on a foil and when the number of transistors in the circuits 
was larger than 50, then chances of successful production of a 
chip was very slim. Even after several stages of corrections a 
chance of success was not that great because by correcting 
some mistakes humans generated other errors.  As a 
consequence, without computer aided tools humans were not 
able to design chips larger than 100 transistors.  Also, with 
usage of computers humans were the weakest link in the chip 
design process where many different software were used.  For 
example, when humans were required to manually enter data 
obtained from one software to another software then again 
errors were generated.  The problem was partially solved 
when the PERL language [1] was used to automatically 

convert data between different software. Eventually the human 
role was limited only to specific requirements and the rest of 
the process was done automatically by so called "silicon 
compilers".  By taking  humans out of the design process we 
can now successfully design chips with over 10 billion 
transistors. Humans are also the weakest links in 
communication control processes. Please notice that an 
airplane may fly smoothly  only when it is on autopilot.  The 
manual control of the airplane is used only when it is 
necessary, when autopilot is not designed for given flying 
conditions (like airborne and landing).  With the help of expert 
systems and computational intelligence the role of humans are 
being steadily eliminated. There are, however, several areas 
where methods of computer intelligence have difficulty  to 
replace humans.  It is common knowledge that computers are 
much superior to humans in number crunching, but it is 
believed that humans are superior to computers in areas of 
image recognition.   
     Section II demonstrates that methods of computation 
intelligence can be much more efficient than humans in image 
recognition. Section III shows that humans are not as effective 
as methods of computational intelligence for data mining, to 
extract and to classify information from overwhelming  data 
sets. Both sections II and III indicates superiority of method 
computational intelligence over humans, but these methods 
have their limitations and have to be used with caution. 
Section IV describes limitations of fuzzy systems and sections 
V and VI describe limitations of neural networks. Section VII 
introduces a recently developed efficient algorithm for neural 
network training.  
 
 

II.  COMPARISON OF HUMAN APPROACHES AND METHODS OF 
COMPUTATIONAL INTELLIGENCE FOR CHARACTER 

RECOGNITIONS 
 

Let us compare humans and computers in recognition of noisy 
characters. In this experiment, 256 characters used in CGI 
displays were selected for the experiment. The CGI characters 
are organized in 8*7 arrays.  
     The experiment of character recognition was carried on in 
the following scheme. Original characters (left columns on 
Fig. 1 were distorted by six levels of noise). Then the neural 
network with the architecture of Fig. 2 was used to recognize 
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characters (left side of the architecture) and to retrieve the 
original character (right side of the architecture).  

 
Fig. 1.  Result of pattern retrieval for neural network architecture of  

Fig. 2 trained to recognize 256 patterns. 
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Fig 2. Artificial Neural Network architecture for classification of 

patterns. 
 
      The  neural network of Fig. 2 is an enhanced version of the 
conterpropagation network proposed by Hecht-Nielsen [42] 
with Kohonen/Hamming input layer and with Grosberg/linear 
output layer. First layer computes Euclidean distances 
between input pattern and stored patterns. If inputs are 
binaries, for example X=[1, -1, 1, -1, -1] then the maximum 
value of net  
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is when weights W=[1, -1, 1, -1, -1] are identical to the input 
pattern  X. If input signal is different, for example X=[1, 1, 1, 
-1, -1]  then 
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Winning “neuron” is the highest value of net and it is with the 
minimum of Euclidean distance from the stored pattern.  This 
specific architecture of artificial neural network was selected 
because it is not computationally intensive because of binary 
patterns to find the Hamming distance the weight-signal 
multiplication process can be replaced by a subtraction: 
 
 )( WXD −= abs  (4) 
 
and calculate the sum of all elements of D. Then  
 
 sumnnet ⋅−= 2  (5) 
 
Such a neural network can be easily implemented on very 
simple ($1 worth)  microcontrollers. 
     For the experiment shown in Fig. 1 the neural network was 
trained to 256 patterns (all ASCII code). In this case the 
system failed for all 9 letters at the highest level of noise 
(levels 5 and 6). At level 4 five out of  nine characters were 
classified correctly, while at level 3, seven out of  nine 
characters were classified correctly [2].   
   One may notice that the artificial neural network of Fig 2 
was able to correctly recognize noisy characters while humans 
may have difficulty in fulfilling the same task.  
 

III. COMPUTATIONAL INTELLIGENCE FOR DATA MINING 
 

With overwhelming information humans may have difficulty  
extracting proper information. For example, by observing 
price changes on different stock markets it is very difficult for 
humans to find correlations and interactions between various 
stock.  Methods of computational intelligence are capable of 
solving such problems as long as some relations between stock 
exists. The problem is that humans have difficulty in 
analyzing data in more than 3 dimensions.  Fig. 3 shows 4-
dimensional data set with 76 patterns. These patterns are 
organized in clusters.  Humans may have difficulty in finding 
how many clusters are there and where they are located.  
 

 
Fig. 3.  76 patterns in 4-dimensional space 

 
Using methods of computational intelligence this problem can 
be easily solved following a simple scheme: 
1.  Assume threshold of attraction, which is distance where 
patterns can be grouped in a single cluster. 
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2.  First pattern is applied and the cluster is formed 
3.  Next pattern is applied and then: 

a) If distance from all existing clusters is larger than 
threshold then a new cluster is formed 

b) Else weights of the closest cluster are updated 
 

1+
+

=
m

m XWW                                     (6) 

 
where W are coordinates of cluster and X are coordinates of 
the applied pattern, m is the number of previous patterns of a 
given set which were used to update this particular. 
     One may notice that in order to find the location of all 
clusters each pattern has to be read only once.  The only 
difficult part is a proper guess of the threshold of attraction.  In 
this particular case if the threshold of attraction is selected 
from 3 to 12 the same three clusters are found as shown in Fig. 
4. 
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Fig. 4.  Number of patterns in clusters depending on the attraction 

distance 
 

 
IV.   LIMITATIONS OF FUZZY SYSTEMS 

 
The major advantage of fuzzy logic based systems is their 
ability to utilize expert knowledge and perception based 
information.  There are two major ways to design fuzzy 
controllers: a first was developed by Mamdani [3] and second 
by Tagagi, Sugeno and Kun [4,5]. Control surfaces of fuzzy 
controllers are relatively raw as is shown in Fig. 5.  The 
rawness of control surface in fuzzy controllers leads to raw 
control and instabilities [6-8]. Therefore, for resilient control 
systems fuzzy controllers are not used directly in the control 
loop [9,10]. Instead traditional PID controllers are often used 
and fuzzy systems are just used to automatically adjust 
parameters of PID controllers.  
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Fig. 5. Control surface obtained with fuzzy controllers (a) required 

surface, (b) Mamdani controller with trapezoidal membership 
functions, (c) TSK controller with trapezoidal membership functions 
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V. NEURAL NETWORKS 
 
Artificial neural networks are well known by their properties 
of complex nonlinear mappings and they are outperforming 
fuzzy systems. For example control surface obtained with 
neural networks for the required surface shown in Fig. 5(a) are 
shown in Fig. 6.  
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Fig. 6. Control surfaces obtained with neural controller using (a) 3 
neuron network, (b) 4 neuron network 

 
Currently, fuzzy controllers are the most popular choice 

for hardware implementation of complex control surfaces 
because they are easy to design[12,13]. Neural controllers are 
more complex and harder to train, but provide an outstanding 
control surface with much less error than that of a fuzzy 
controller [8,11]. Figures 7 and 8 show a comparison of fuzzy 
and neural network based systems implemented in the 
Motorola HC11 microcontroller. Motorola’s 68HC711E9 is a 
low cost, 8-bit microprocessor; the on-board features of which 
are 512 bytes of RAM and EEPROM and 12K bytes of UV 
erasable EPROM.  The processor was used with an 8 MHz 
crystal, allowing an internal clock frequency of 2 MHz.    
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Fig. 7. Control surfaces obtained with Motorola microcontroller 

HC11 using fuzzy approach with trapezoidal membership  functions 
(7 functions per input) and Tagagi-Sugeno defuzzification [8,11] 

out

 

   
Fig. 8. Control surfaces obtained with Motorola microcontroller 

HC11 using fuzzy approach with six neurons 2-1-1-1-1-1 architecture 
and Elliot activation function. [8,11] 

 
A drawback of neural controllers is that the design process 

is more complicated than that of fuzzy controllers.  However, 
this difficulty can be easily overcome with proper design 
tools. One severe disadvantage of a fuzzy system is its limited 
ability of handling problems with multiple inputs. In the case 
of neural networks such a limitation does not exist.  
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VI. LIMITATIONS OF NEURAL NETWORKS 
 
   The most important feature of neural networks is their 
generalization abilities. This means that neural networks 
should correctly respond to new patterns which were never 
used in the training [13]. The number of neurons in such 
networks should be as small as possible. Unfortunately it is 
very difficult to train neural networks with good 
generalization abilities. In order to reduce the number of 
neurons special network architectures have to be used. Also, 
more advanced learning algorithms than popular EBP 
algorithm [14] should be used.  
     It is relatively easy to find neural network architectures so 
they can be trained to very small errors. However, it is more 
important to find an architecture which after training will 
respond correctly to patterns which were not used for training.   
Let us illustrate this problem using an example with the peak 
surface [13,16] shown in Fig. 9(a) as the required surface and 
let us use equally spaced 10×10=100 patterns (Fig. 9(b)) in 
training neural networks. The quality of trained networks is 
evaluated using errors computed for equally spaced 
37×37=1,369 patterns. In order to make a valid comparison 
between training and verification error, the SSE, as defined in 
(1), is divided by 100 and 1,369 respectively. 
 

 
(a)                                                                  

 
 (b) 

Fig. 9 Surface matching problem: (a) Required 2-D surface with 
37×37=1,369 points, used for verification; (b) 10×10=100 training 

patterns extracted in equal space from (a), used for training. 
 

 
(a)                                                               

 
 (b) 

Fig. 10 Training results using 100 trials with (a) NBN algorithm, 8 
neurons in FCC network (52 weights); maximum training iteration is 
1,000; SSETrain=0.0044, SSEVerify=0.0080 and training time=0.37 s, 

(b) EBP algorithm, 13 neurons in FCC network (117 weights); 
maximum training iteration is 1,000,000; SSETrain=0.0018, 

SSEVerify=0.4909 and training time=635.72 s, 
 
As the training results are shown using the NBN algorithm[16-
18], which can handle arbitrarily connected neural networks, it 
was possible to find the acceptable solution (Fig. 10(a)), 
SSETrain=0.0044 and SSEVerify=0.0080) with 8 neurons (52 
weights). Unfortunately, with the EBP algorithm, it was not 
possible to find acceptable solutions in 100 trials within 
1,000,000 iterations each. The best result out of the 100 trials 
with 1,000,000 iterations each was SSETrain=0.0764 and 
SSEVerify=0.1271. When the network size was significantly 
increased from 8 to 13 neurons (117 weights), the EBP 
algorithm was able to reach a similar training error as with 
NBN algorithm, but the network lost its ability to respond 
correctly for new patterns (between training points). Please 
notice that indeed with enlarged number of neurons, the EBP 
algorithm was able to train the network to small error 
SSETrain=0.0018, but as one can see from Fig. 10(b), the result 
is unacceptable with verification error SSEVerify=0.4909. When 
reduced number of neurons are used the EBP algorithm can’t 
converge to required training error.  When the size of 
networks increase, the EBP algorithm can reach the required 
training error, but trained networks lose their generalization 
ability and can’t process new patterns well (Fig. 10(b)). On the 
other hand, second order algorithms, such as a NBN algorithm 
[16,19], works not only significantly faster but it can find 
good solutions with close to optimal networks (Fig. 10(a)). 
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Fig. 11. Approximation of data by different orders of polynomials 

 
From the above analysis, one may notice that  in order to 
sustain neural network generalization abilities the network 
should have as few neurons/weights as possible [13,20]. This 
problem is very similar to function approximation by 
polynomials.  If too high order of polynomial is used then 
errors for training points and values between points cannot be 
evaluated correctly. In the example on Fig. 11  only 5-th, 6-th, 
and 7-th order of polynomials are giving adequate results, 
while higher order polynomials can be tuned to smaller errors 
for given points; they are useless to predict evaluated new 
points which were not used for training.  We are facing a 
similar problem with neural network training. If more neurons 
are used then actually a worse result can be obtained if number 
of training patterns are limited. In other words for larger 
neural networks larger number of training patterns must be 
used. The problem is that efficient learning algorithms like 
LM - Levenberg-Marquardt [21,22] cannot handle problems 
with large number of patterns. The solution to this problem is 
shown in the next section.  
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Fig.12. Abilities of solving Parity-N problems as function of 

number of neurons.  
 
 

VII. EFFICIENT ALGORITHM FOR TRAINING NEURAL 
NETWORKS 

 
The most common training algorithm is EBP – Error Back 
Propagation [15]. It is relatively simple and it does not require 
a lot of computer resources. This algorithm however seldom 
leads to a good solution and is extremely slow. Much better 
results can be obtained with second order algorithms such as 
LM – Levenberg-Marquardt algorithm [21] or NBN – Neuron 
by Neuron algorithm [16,18]. 
     Please notice that the capability of neural networks strongly 
depends on their architecture.  Fig. 12 shows ability of solving 
parity-N problems using different neural network architectures 
[15,23].  For example if popular MLP (Multi Layer 
Perceptron) architecture with one hidden layer is used then 
with 10 neurons only parity-9 problem can be solved. Once 
the FCC (Fully Connected Cascade) architecture is used then 
with the same 10 neurons as big a problem as parity-1023 can 
be solved. Unfortunately, it is very difficult to find software to 
train these advanced neural network architecture. One 
exception is SNNS [24] which can train arbitrarily connected 
neural networks, but only first order algorithms are 
implemented there so training process is not very efficient. 
Moreover, as it was shown in the previous section these 
algorithms may converge to small errors only if an excessive 
number of neurons are used and the neural network is losing 
its generalization abilities.  Very powerful Levenberg-
Marquardt algorithm was unfortunately developed only for 
MLP networks [21] and it is not suitable to train optimal 
neural network architectures.  
      Recently developed Neuron by Neuron (NBN) algorithm 
[25] implemented in NNT software package [25], was 
developed in order to eliminate most disadvantages of the LM 
algorithm and can handle arbitrarily connected neural 
networks.   The NBN algorithm is at least as fast as the LM 
algorithm []. It can efficiently train arbitrarily connected 
neural networks. What is also very important is that it can 
solve with a second order algorithm large problems with 
basically an unlimited number of patterns. 
 

VIII. CONCLUSION 
 
Neural networks exhibit superior performance in comparison 
to fuzzy systems but there are several reasons for frustration of 
people trying to adapt neural networks for their research: 
• Neural networks can be  over-trained if excessive number 

of neurons are used. This way the network is losing its 
ability for generalization and it is not able to correctly 
process new patterns which were not used for training. 

• In most cases the relatively inefficient MLP architecture 
is used instead of more powerful topologies with 
connections across layers. As a result, full power of 
neural networks is not utilized. 

• In order to find solutions for close to optimal 
architectures, second order algorithms such as NBN or 
LM should be used. Unfortunately, the LM algorithm 
adopted in popular MATLAB NN Toolbox can handle 
only MLP topology without connections across layers and 
these topologies are far from optimal. 
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• Newly developed NBN algorithm is very fast, it can train 
any neural network architectures and it has no limitations 
for the number of patterns used in training. Additional 
feature of this algorithm is that individual patterns can be 
added or subtracted from the training set without 
necessity of training network with entire set of patterns. 

The only current limitation of the NBN algorithm is that 
neural networks should not be too big and practically it can 
train networks with up to 500 weights. 
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