

Human factor and computational intelligence
limitations in resilient control systems

Bogdan M. Wilamowski

Auburn University

Abstract - Humans are very capable of solving many scientific
and engineering problems, but during the solution process they
have a tendency to make mistakes. For example, humans without
computer aided tools, would not be able to design VLSI chips
larger than 100 transistors. This imperfection of humans make
them very unreliable elements in resilient control systems.
There is a tendency of replacing humans with computers using
artificial intelligence, expert systems, or methods of
computational intelligence. The methods of computational
intelligence can be most successful but they have to be used with
great care. Limitations of fuzzy and neural networks are
presented and it is shown how to avoid these limitations so
resilient control systems can be developed. It turns out that often
popular training algorithms are not capable of tuning neural
networks to proper accuracy without losing generalization
abilities. As a consequence, such system of computational
intelligence may not work properly for cases which were not used
in training. The comparison of different neural network
architectures follows and also it is shown how to develop and
train close to optimal topologies, so resilient control systems can
be developed.

I. INTRODUCTION

Humans are capable not only of solving many scientific
problems, but also in the process they are making mistakes.
For example, even very good students are not able to solve
long problems requiring complex calculations without making
errors in the process. These mistakes can be eventually
corrected but if a long problem with many calculations is
given to a group of students then most likely initially each
student would produce a different answer. In the early stage
of development of VLSI chips, required mask was manually
cut on a foil and when the number of transistors in the circuits
was larger than 50, then chances of successful production of a
chip was very slim. Even after several stages of corrections a
chance of success was not that great because by correcting
some mistakes humans generated other errors. As a
consequence, without computer aided tools humans were not
able to design chips larger than 100 transistors. Also, with
usage of computers humans were the weakest link in the chip
design process where many different software were used. For
example, when humans were required to manually enter data
obtained from one software to another software then again
errors were generated. The problem was partially solved
when the PERL language [1] was used to automatically

convert data between different software. Eventually the human
role was limited only to specific requirements and the rest of
the process was done automatically by so called "silicon
compilers". By taking humans out of the design process we
can now successfully design chips with over 10 billion
transistors. Humans are also the weakest links in
communication control processes. Please notice that an
airplane may fly smoothly only when it is on autopilot. The
manual control of the airplane is used only when it is
necessary, when autopilot is not designed for given flying
conditions (like airborne and landing). With the help of expert
systems and computational intelligence the role of humans are
being steadily eliminated. There are, however, several areas
where methods of computer intelligence have difficulty to
replace humans. It is common knowledge that computers are
much superior to humans in number crunching, but it is
believed that humans are superior to computers in areas of
image recognition.
 Section II demonstrates that methods of computation
intelligence can be much more efficient than humans in image
recognition. Section III shows that humans are not as effective
as methods of computational intelligence for data mining, to
extract and to classify information from overwhelming data
sets. Both sections II and III indicates superiority of method
computational intelligence over humans, but these methods
have their limitations and have to be used with caution.
Section IV describes limitations of fuzzy systems and sections
V and VI describe limitations of neural networks. Section VII
introduces a recently developed efficient algorithm for neural
network training.

II. COMPARISON OF HUMAN APPROACHES AND METHODS OF
COMPUTATIONAL INTELLIGENCE FOR CHARACTER

RECOGNITIONS

Let us compare humans and computers in recognition of noisy
characters. In this experiment, 256 characters used in CGI
displays were selected for the experiment. The CGI characters
are organized in 8*7 arrays.
 The experiment of character recognition was carried on in
the following scheme. Original characters (left columns on
Fig. 1 were distorted by six levels of noise). Then the neural
network with the architecture of Fig. 2 was used to recognize

978-1-4244-5954-4/10/$26.00 ©2010 IEEE 5

characters (left side of the architecture) and to retrieve the
original character (right side of the architecture).

Fig. 1. Result of pattern retrieval for neural network architecture of

Fig. 2 trained to recognize 256 patterns.

unipolar
neurons

Hamming
 layer

bi
na

ry
 in

pu
ts

bi
na

ry
 o

ut
pu

ts

summing
 circuits

W
TA

 W
in

ne
r T

ak
es

 A
ll

pattern
retrieval layer

linear
layer

Fig 2. Artificial Neural Network architecture for classification of

patterns.

 The neural network of Fig. 2 is an enhanced version of the
conterpropagation network proposed by Hecht-Nielsen [42]
with Kohonen/Hamming input layer and with Grosberg/linear
output layer. First layer computes Euclidean distances
between input pattern and stored patterns. If inputs are
binaries, for example X=[1, -1, 1, -1, -1] then the maximum
value of net

 (1) 5
1

====∑
=

nwxnet T
n

i
ii XW

is when weights W=[1, -1, 1, -1, -1] are identical to the input
pattern X. If input signal is different, for example X=[1, 1, 1,
-1, -1] then

 (2) 3
1

===∑
=

T
n

i
iiwxnet XW

 or
 (3) () 3,2 =⋅−= WXHDnnet

Winning “neuron” is the highest value of net and it is with the
minimum of Euclidean distance from the stored pattern. This
specific architecture of artificial neural network was selected
because it is not computationally intensive because of binary
patterns to find the Hamming distance the weight-signal
multiplication process can be replaced by a subtraction:

)(WXD −= abs (4)

and calculate the sum of all elements of D. Then

 sumnnet ⋅−= 2 (5)

Such a neural network can be easily implemented on very
simple ($1 worth) microcontrollers.
 For the experiment shown in Fig. 1 the neural network was
trained to 256 patterns (all ASCII code). In this case the
system failed for all 9 letters at the highest level of noise
(levels 5 and 6). At level 4 five out of nine characters were
classified correctly, while at level 3, seven out of nine
characters were classified correctly [2].
 One may notice that the artificial neural network of Fig 2
was able to correctly recognize noisy characters while humans
may have difficulty in fulfilling the same task.

III. COMPUTATIONAL INTELLIGENCE FOR DATA MINING

With overwhelming information humans may have difficulty
extracting proper information. For example, by observing
price changes on different stock markets it is very difficult for
humans to find correlations and interactions between various
stock. Methods of computational intelligence are capable of
solving such problems as long as some relations between stock
exists. The problem is that humans have difficulty in
analyzing data in more than 3 dimensions. Fig. 3 shows 4-
dimensional data set with 76 patterns. These patterns are
organized in clusters. Humans may have difficulty in finding
how many clusters are there and where they are located.

Fig. 3. 76 patterns in 4-dimensional space

Using methods of computational intelligence this problem can
be easily solved following a simple scheme:
1. Assume threshold of attraction, which is distance where
patterns can be grouped in a single cluster.

6

2. First pattern is applied and the cluster is formed
3. Next pattern is applied and then:

a) If distance from all existing clusters is larger than
threshold then a new cluster is formed

b) Else weights of the closest cluster are updated

1+
+

=
m

m XWW (6)

where W are coordinates of cluster and X are coordinates of
the applied pattern, m is the number of previous patterns of a
given set which were used to update this particular.
 One may notice that in order to find the location of all
clusters each pattern has to be read only once. The only
difficult part is a proper guess of the threshold of attraction. In
this particular case if the threshold of attraction is selected
from 3 to 12 the same three clusters are found as shown in Fig.
4.

N
um

be
r o

f p
at

te
rn

s

Fig. 4. Number of patterns in clusters depending on the attraction

distance

IV. LIMITATIONS OF FUZZY SYSTEMS

The major advantage of fuzzy logic based systems is their
ability to utilize expert knowledge and perception based
information. There are two major ways to design fuzzy
controllers: a first was developed by Mamdani [3] and second
by Tagagi, Sugeno and Kun [4,5]. Control surfaces of fuzzy
controllers are relatively raw as is shown in Fig. 5. The
rawness of control surface in fuzzy controllers leads to raw
control and instabilities [6-8]. Therefore, for resilient control
systems fuzzy controllers are not used directly in the control
loop [9,10]. Instead traditional PID controllers are often used
and fuzzy systems are just used to automatically adjust
parameters of PID controllers.

0
5

10
15

20

0
5

10

15
20
-1

-0.5

0

0.5

1

(a)

0
5

10
15

20

0
5

10

15
20
-1

-0.5

0

0.5

1

(b)

0
5

10
15

20

0
5

10

15
20
-1

-0.5

0

0.5

1

(c)

Fig. 5. Control surface obtained with fuzzy controllers (a) required

surface, (b) Mamdani controller with trapezoidal membership
functions, (c) TSK controller with trapezoidal membership functions

7

V. NEURAL NETWORKS

Artificial neural networks are well known by their properties
of complex nonlinear mappings and they are outperforming
fuzzy systems. For example control surface obtained with
neural networks for the required surface shown in Fig. 5(a) are
shown in Fig. 6.

0
5

10
15

20

0
5

10

15
20
-1

-0.5

0

0.5

1

(a)

0
5

10
15

20

0
5

10

15
20
-1

-0.5

0

0.5

1

(b)

Fig. 6. Control surfaces obtained with neural controller using (a) 3
neuron network, (b) 4 neuron network

Currently, fuzzy controllers are the most popular choice

for hardware implementation of complex control surfaces
because they are easy to design[12,13]. Neural controllers are
more complex and harder to train, but provide an outstanding
control surface with much less error than that of a fuzzy
controller [8,11]. Figures 7 and 8 show a comparison of fuzzy
and neural network based systems implemented in the
Motorola HC11 microcontroller. Motorola’s 68HC711E9 is a
low cost, 8-bit microprocessor; the on-board features of which
are 512 bytes of RAM and EEPROM and 12K bytes of UV
erasable EPROM. The processor was used with an 8 MHz
crystal, allowing an internal clock frequency of 2 MHz.

Fu
zz

ifi
er

X

Y

out

D
ef

uz
zi

fic
at

io
n

Fu
zz

ifi
er

Rule selection cells
min-max operations

Fig. 7. Control surfaces obtained with Motorola microcontroller

HC11 using fuzzy approach with trapezoidal membership functions
(7 functions per input) and Tagagi-Sugeno defuzzification [8,11]

out

Fig. 8. Control surfaces obtained with Motorola microcontroller

HC11 using fuzzy approach with six neurons 2-1-1-1-1-1 architecture
and Elliot activation function. [8,11]

A drawback of neural controllers is that the design process

is more complicated than that of fuzzy controllers. However,
this difficulty can be easily overcome with proper design
tools. One severe disadvantage of a fuzzy system is its limited
ability of handling problems with multiple inputs. In the case
of neural networks such a limitation does not exist.

8

VI. LIMITATIONS OF NEURAL NETWORKS

 The most important feature of neural networks is their
generalization abilities. This means that neural networks
should correctly respond to new patterns which were never
used in the training [13]. The number of neurons in such
networks should be as small as possible. Unfortunately it is
very difficult to train neural networks with good
generalization abilities. In order to reduce the number of
neurons special network architectures have to be used. Also,
more advanced learning algorithms than popular EBP
algorithm [14] should be used.
 It is relatively easy to find neural network architectures so
they can be trained to very small errors. However, it is more
important to find an architecture which after training will
respond correctly to patterns which were not used for training.
Let us illustrate this problem using an example with the peak
surface [13,16] shown in Fig. 9(a) as the required surface and
let us use equally spaced 10×10=100 patterns (Fig. 9(b)) in
training neural networks. The quality of trained networks is
evaluated using errors computed for equally spaced
37×37=1,369 patterns. In order to make a valid comparison
between training and verification error, the SSE, as defined in
(1), is divided by 100 and 1,369 respectively.

(a)

 (b)

Fig. 9 Surface matching problem: (a) Required 2-D surface with
37×37=1,369 points, used for verification; (b) 10×10=100 training

patterns extracted in equal space from (a), used for training.

(a)

 (b)

Fig. 10 Training results using 100 trials with (a) NBN algorithm, 8
neurons in FCC network (52 weights); maximum training iteration is
1,000; SSETrain=0.0044, SSEVerify=0.0080 and training time=0.37 s,

(b) EBP algorithm, 13 neurons in FCC network (117 weights);
maximum training iteration is 1,000,000; SSETrain=0.0018,

SSEVerify=0.4909 and training time=635.72 s,

As the training results are shown using the NBN algorithm[16-
18], which can handle arbitrarily connected neural networks, it
was possible to find the acceptable solution (Fig. 10(a)),
SSETrain=0.0044 and SSEVerify=0.0080) with 8 neurons (52
weights). Unfortunately, with the EBP algorithm, it was not
possible to find acceptable solutions in 100 trials within
1,000,000 iterations each. The best result out of the 100 trials
with 1,000,000 iterations each was SSETrain=0.0764 and
SSEVerify=0.1271. When the network size was significantly
increased from 8 to 13 neurons (117 weights), the EBP
algorithm was able to reach a similar training error as with
NBN algorithm, but the network lost its ability to respond
correctly for new patterns (between training points). Please
notice that indeed with enlarged number of neurons, the EBP
algorithm was able to train the network to small error
SSETrain=0.0018, but as one can see from Fig. 10(b), the result
is unacceptable with verification error SSEVerify=0.4909. When
reduced number of neurons are used the EBP algorithm can’t
converge to required training error. When the size of
networks increase, the EBP algorithm can reach the required
training error, but trained networks lose their generalization
ability and can’t process new patterns well (Fig. 10(b)). On the
other hand, second order algorithms, such as a NBN algorithm
[16,19], works not only significantly faster but it can find
good solutions with close to optimal networks (Fig. 10(a)).

9

0 1 2 3 4 5 6 7 8 9 10
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 11. Approximation of data by different orders of polynomials

From the above analysis, one may notice that in order to
sustain neural network generalization abilities the network
should have as few neurons/weights as possible [13,20]. This
problem is very similar to function approximation by
polynomials. If too high order of polynomial is used then
errors for training points and values between points cannot be
evaluated correctly. In the example on Fig. 11 only 5-th, 6-th,
and 7-th order of polynomials are giving adequate results,
while higher order polynomials can be tuned to smaller errors
for given points; they are useless to predict evaluated new
points which were not used for training. We are facing a
similar problem with neural network training. If more neurons
are used then actually a worse result can be obtained if number
of training patterns are limited. In other words for larger
neural networks larger number of training patterns must be
used. The problem is that efficient learning algorithms like
LM - Levenberg-Marquardt [21,22] cannot handle problems
with large number of patterns. The solution to this problem is
shown in the next section.

2 3 4 5 6 7 8
0

50

100

150

200

250

300

number of neurons used

M
ax

im
um

 N
 in

 a
 P

ar
ity

-N

efficiencies of NN topologies

MLP with 1 hidden layer
BMLP with 1 hidden layer
BMLP with 2 hidden layer
MLP with 3 hidden layer
FCC architecture

Fig.12. Abilities of solving Parity-N problems as function of

number of neurons.

VII. EFFICIENT ALGORITHM FOR TRAINING NEURAL
NETWORKS

The most common training algorithm is EBP – Error Back
Propagation [15]. It is relatively simple and it does not require
a lot of computer resources. This algorithm however seldom
leads to a good solution and is extremely slow. Much better
results can be obtained with second order algorithms such as
LM – Levenberg-Marquardt algorithm [21] or NBN – Neuron
by Neuron algorithm [16,18].
 Please notice that the capability of neural networks strongly
depends on their architecture. Fig. 12 shows ability of solving
parity-N problems using different neural network architectures
[15,23]. For example if popular MLP (Multi Layer
Perceptron) architecture with one hidden layer is used then
with 10 neurons only parity-9 problem can be solved. Once
the FCC (Fully Connected Cascade) architecture is used then
with the same 10 neurons as big a problem as parity-1023 can
be solved. Unfortunately, it is very difficult to find software to
train these advanced neural network architecture. One
exception is SNNS [24] which can train arbitrarily connected
neural networks, but only first order algorithms are
implemented there so training process is not very efficient.
Moreover, as it was shown in the previous section these
algorithms may converge to small errors only if an excessive
number of neurons are used and the neural network is losing
its generalization abilities. Very powerful Levenberg-
Marquardt algorithm was unfortunately developed only for
MLP networks [21] and it is not suitable to train optimal
neural network architectures.
 Recently developed Neuron by Neuron (NBN) algorithm
[25] implemented in NNT software package [25], was
developed in order to eliminate most disadvantages of the LM
algorithm and can handle arbitrarily connected neural
networks. The NBN algorithm is at least as fast as the LM
algorithm []. It can efficiently train arbitrarily connected
neural networks. What is also very important is that it can
solve with a second order algorithm large problems with
basically an unlimited number of patterns.

VIII. CONCLUSION

Neural networks exhibit superior performance in comparison
to fuzzy systems but there are several reasons for frustration of
people trying to adapt neural networks for their research:
• Neural networks can be over-trained if excessive number

of neurons are used. This way the network is losing its
ability for generalization and it is not able to correctly
process new patterns which were not used for training.

• In most cases the relatively inefficient MLP architecture
is used instead of more powerful topologies with
connections across layers. As a result, full power of
neural networks is not utilized.

• In order to find solutions for close to optimal
architectures, second order algorithms such as NBN or
LM should be used. Unfortunately, the LM algorithm
adopted in popular MATLAB NN Toolbox can handle
only MLP topology without connections across layers and
these topologies are far from optimal.

10

• Newly developed NBN algorithm is very fast, it can train
any neural network architectures and it has no limitations
for the number of patterns used in training. Additional
feature of this algorithm is that individual patterns can be
added or subtracted from the training set without
necessity of training network with entire set of patterns.

The only current limitation of the NBN algorithm is that
neural networks should not be too big and practically it can
train networks with up to 500 weights.

REFERENCES

[1] J. Kolbusz, S. Paszczyński and B. M. Wilamowski, “Network

traffic model for industrial environment”, IEEE Transaction on
Industrial Informatics, vol. 2, No. 4, pp. 213-220, 2006.

[2] B. M. Wilamowski, Vitaly J. Vodyanoy, “Neural Network
Architectures for Artificial Noses, ” HIS’08, May 25-27,
Krakow, Poland, pp. 731-736

[3] H. Mamdani, “Application of Fuzzy Algorithms for Control of
Simple Dynamic Plant,” IEEE Proceedings, Vol. 121, No. 12,
pp. 1585-1588, 1974.

[4] M. Sugeno and G. T. Kang, “Structure Identification of Fuzzy
Model,” Fuzzy Sets and Systems, Vol. 28, No. 1, pp. 15-33,
1988.

[5] T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and
Its Application to Modeling and Control,” IEEE Transactions on
System, Man, Cybernetics, Vol. 15, No. 1, pp. 116-132, 1985.

[6] B. M. Wilamowski “Silicon implementation of computational
intelligence for mechatronics”, ICM'04 IEEE International
Conference on Mechatronics 2004, Istanbul, Turkey, June 3-5,
2004

[7] B. M. Wilamowski, “Methods of Computational Intelligence for
Nonlinear Control Systems” ICCAE’ 05 International
Conference on Control, Automation and System, June 2-5, 2005,
Gyeonggi-Do, Korea, pp. P1-P8

[8] B.M. Wilamowski and J. Binfet, " Do Fuzzy Controllers Have
Advantages over Neural Controllers in Microprocessor
Implementation" Proc of.2-nd International Conference on
Recent Advances in Mechatronics - ICRAM'99, Istanbul,
Turkey, pp. 342-347, May 24-26, 1999

[9] Bogdan Wilamowski and Xiangli Li, “Fuzzy System Based
Maximum Power Tracking for PV System” Proc. of the 28th
Annual Conference of the IEEE Industrial Electronics Society,
 pp. 1990-1994, Sevilla, Spain, Nov 5-8, 2002

[10] Ota, Yasuhiro and Bogdan M. Wilamowski, " Current-Mode
CMOS Implementation of a Fuzzy Min-Max Network", World
Congress of Neural Networks, vol. 2, pp. 480-483, Washington
DC, USA, July 17-21, 1995

[11] Bogdan Wilamowski and Jeremy Binfet " Microprocessor
Implementation of Fuzzy Systems and Neural Networks ",

International Joint Conference on Neural Networks (IJCNN'01),
pp. 234-239, Washington DC, July 15-19, 2001.

[12] B. K. Bose, "Neural Network Applications in Power Electronics
and Motor Drives—An Introduction and Perspective," IEEE
Trans. on Industrial Electronics, vol. 54, no. 1, pp. 14-33, Feb
2007.

[13] M. Wilamowski, "Neural Network Architectures and Learning
Algorithms," IEEE Industrial Electronics Magazine, vol. 3, no.
4, pp. 56-63, Dec. 2009

[14] D. E. Rumelhart, G. E. Hinton, R. J. Williams, “Learning
representations by back-propagating errors”. Nature, vol. 323,
pp. 533-536, 1986.

[15] B. M. Wilamowski, “Challenges in Applications of
Computational Intelligence in Industrials Electronics,” (keynote)
ISIE’ 10 IEEE International Symposium on Industrial
Electronics, Bari, Italy, July 5-7, 2010, pp. 15-22.

[16] B. M. Wilamowski, H. Yu, “Improved Computation for
Levenberg Marquardt Training,” IEEE Trans. on Neural
Networks, vol. 21, no. 6, pp. 930-937, June 2010.

[17] M. Wilamowski, N. J. Cotton, O. Kaynak, G.
Dundar, "Computing Gradient Vector and Jacobian Matrix in
Arbitrarily Connected Neural Networks," IEEE Trans. on
Industrial Electronics, vol. 55, no. 10, pp. 3784-3790, Oct 2008

[18] B. M. Wilamowski, N. Cotton, J. Hewlett, and O.
Kaynak, “Neural Network Trainer with Second Order Learning
Algorithms”, 11th INES 2007 -International Conference on
Intelligent Engineering Systems, Budapest, Hungary, June 29
2007-July 1 2007, pp. 127-132

[19] B. M. Wilamowski " VLSI Analog Multiplier/divider
Circuit"(5,6,7) ISIE'98 International Symposium on Industrial
Electronics, July, 7-10, 1998, Pretoria, South Africa, pp. 493-
496

[20] B. M. Wilamowski and O. Kaynak, "Oil Well Diagnosis by
sensing Terminal Characteristics of the Induction Motor," IEEE
Transactions on Industrial Electronics, Vol 47, No 5, pp. 1100-
1107, October 2000.

[21] M. T. Hagan, M.B. Menhaj, “Training feedforward networks
with the Marquardt algorithm”. IEEE Trans. on Neural
Networks, vol. 5, no. 6, pp. 989-993, Nov. 1994.

[22] MATLAB Neural Network ToolBox
http://www.mathworks.com/products/neuralnet/

[23] B. M. Wilamowski, D. Hunter, A. Malinowski, "Solving
Parity-n Problems with Feedforward Neural Network," Proc. of
the IJCNN'03 International Joint Conference on Neural
Networks, pp. 2546-2551, Portland, Oregon, July 20-23, 2003

[24] Stuttgart Neural Network Simulator SNNS
http://www.ra.cs.uni-tuebingen.de/SNNS/

[25] NNT - Neural Network Trainer
http://www.eng.auburn.edu/~wilambm/nnt/

11

