
Special Neural Network Architectures for Easy
Electronic Implementations

Bogdan M. Wilamowski
Auburn University, AMNSTC, Auburn, Alabama, USA

wilam@ieee.org

Abstract— An overview of various neural network
architectures is presented. Depending on applications some
of these architectures are capable to perform very complex
operations with limited number of neurons, while other
architectures, which use more neurons, are easy to train.
There are neural network architectures which have very
limited requirements for training or no training is required.
The importance of the proper learning algorithm was
emphasized because with advanced learning algorithm we
can train these networks, which cannot be trained with
simple algorithms. When simple training algorithms, such
as EBP are used, neural networks with larger number of
neurons must be used to fulfill the task.

I. INTRODUCTION

The purpose of this presentation is not to give an
introduction to neural networks but to give practical
advice about its implementations. Most researchers who
are trying to use neural networks are facing two major
challenges:

(1) How to train this network and what
software/algorithm to use

(2) What neural network architecture (topology) to
employ and how many neurons to use.

The first challenge is relatively easy to solve. With
little effort a neural network software can be found and
used. What many people are not aware of is that not all
popular algorithms can train every neural network.
Surprisingly the most popular EBP (Error Back
Propagation) algorithm [1,2] cannot handle more
complex problems while other more advanced algorithms
[3,4] can.

Fig. 1. Solution of the two spiral problem with NBN algorithm [4] using
fully connected architecture with 8 neurons and 52 weights.

For example, training the popular test bench with
Wieland two spiral problem can be solved (Fig. 1) with
second order using cascade architecture with 8 neurons
but in order to solve the same problem with the EBP
algorithm (Fig 2) at least 16 neurons and weights in
cascade architecture are needed. With only 12 neurons in
cascade, the NBN algorithm can produce a very smooth
response (Fig. 3) with less than 150 iterations but we
were not able to solve this 12 neuron problem with EBP
algorithm despite many trials with 1,000,000 iterations
limit. More detailed information about the relationship
between complexity of network topology and learning
algorithms can be found at [5]. The conclusion is that
with a better learning algorithm the same problem can be
solved with simpler hardware.

Fig. 2. Solution of the two spiral problem with EBP algorithm using
fully connected architecture with 16 neurons and 168 weights.

Fig. 3. Solution of the two spiral problem with NBN algorithm [4] using
fully connected architecture with only 12 neurons and 102 weights

POWERENG 2009 Lisbon, Portugal, March 18-20, 2009

978-1-4244-2291-3/09/$25.00 ©2009 IEEE 17

The second challenge about neural network
architecture is more difficult. In most cases neural
network architectures are selected by trial and error
process. Often success depends on a lucky guess. This
presentation may provide some hints for neural network
architecture/topology selection. The selected architecture
may depend on many factors such as:
 How to get maximum performance with minimal

hardware?
 What topology should be selected so network can be

easily trained?
 How to make network less sensitive to element

tolerances?
 Is it possible to have neural networks which need not

to be trained or can only very simple training
algorithm be used?

In the following chapters we will discuss these issues.

II. HOW TO GET MAXIMUM PERFORMANCE WITH
MINIMUM HARDWARE

Another test bench for neural networks is the parity-N
problem. The simplest parity-2 problem is also known as
the XOR problem. The larger the problem, the more
difficult it is to solve it. The parity N problem can be
solved analytically and the number of required neurons
depends on the neural network topology [6].. In the case
of the most popular MLP (Multi Layer Perceptron)
architecture with one hidden layer there are at least 9
neurons required and 8*9+9 = 81 weights (Fig. 4). When
connection across layers are allowed (Fig. 5) then the
same problem can be solved only with 5 neurons and the
total number of weights is 4*9+8+4+1=49. For cascade
connection (Fig. 6) then only four neurons are required
and the total number of weights is 9+10+11+12=42. For
the pipeline architecture (Fig. 7) the parity 8 problem can
be solved with 3 neurons and 8+2+2=12 weights.

all weights =1

7

8

-1

1

+1

+1

6

2

3

4

5

1

1

1

-1

-1

-1

1

-1

-7; -5; -3; -1; 1; 3; 5; 7
Fig. 4. Parity-8 problem with feedforward bipolar neural network with
one hidden layer.

all weights =1

3

4

-2

-2

+1

+1

2

1

-2

 -2

 -0.5

-6.5; -2.5; 1.5; 5.5

Fig. 5. Fully-connected layered bipolar neural network with one hidden
layer for the parity-8 problem.

weights = +1

1

2

3

out

+1

+1

+1

+1

-8

-4

-2

-6.5

-6.5

-6.5

 -6.5

Fig. 6. Bipolar implementation of a fully connected cascade neural
network for the parity-8 problem.

weights = +1

+1

+2
-9

+2
-9

Fig. 7: Bipolar implementation of a pipeline neural network for the
parity-8 problem.

The pipeline architecture is specific only to the parity-N
problems; therefore, one may conclude that the cascade
network (Fig. 6) is the most powerful, since it would
require a minimum number of elements. At the same
time, because of a long signal path across many nonlinear
elements, the cascade architecture is more difficult to
train. One may also notice that when in the feed forward
neural networks all possible connections between neurons
are implemented (fully connected network) then the
resulting topology is the cascade architecture. However
the most popular is MLP architecture primarily because
it is easiest to write training software for MLP networks.
For example very popular MATLAB Neural Network
Toolbox is primarily designed for MLP networks.
Surprisingly the MLP architecture is the least efficient.

POWERENG 2009 Lisbon, Portugal, March 18-20, 2009

18

III. WHAT TOPOLOGY SHOULD BE SELECTED SO
NETWORK CAN BE EASILY TRAINED

The general rule is that less layers in the neural network
then it is easier to train it. It is very easy to train one layer
neural network where the solution can be obtained with
only several iterations. With more layers the network is
becoming less transparent and it is more difficult to train
because signals have to pass more neurons with nonlinear
activation functions. From this perspective it takes longer
to find solution for MLP network with multiple layers
than for the same network where connections across
layers are allowed (Fig. 5). At the same time, this
network can handle more complex tasks. The problem is
that only limited number of software packages were
developed to train arbitrarily connected neural networks
such as SNNS [7] and NBN [8]. SNNS package has
limited applications because it uses only the first order
algorithms and its ability to train complex neural
networks is limited.

hidden neurons

output
neurons

in
pu

ts

ou
tp

ut
s

+1

+1

+1

+1
once adjusted weights and then frozen
weights adjusted every step

Fig. 8. Cascade correlation algorithm

There are some neural network architectures which are
merged with training algorithms. The best example of
such an approach is cascade correlation algorithm [9].
This unique algorithm is dedicated to train cascade
architectures (Fig. 8) and the training process is relatively
fast and simple. At each time only one neuron (one layer)
is being trained in a very specific sequence. The network
is being built during the training process by adding
neurons and training them. This is one of very few
algorithms where network architecture is being developed
at the same time as it is trained. This algorithm is fast
and easy and it is more powerful than EBP algorithm [9].
For example the two spirals problem, mentioned in the
introduction, can be solved with 12-19 neurons and it
requires at least 10 times less iteration than EBP
algorithm [9]. Of course the cascade correlation
algorithm is not as powerful as NBN [4], which can solve
the same problem with only 8 neurons (Fig 1), but the
computations are more advanced.

There are other neural network architectures, which
require even less training. One of them is the FLN
Functional Link Network [10] (Fig. 9) and another is
Polynomial Neural Network (Fig 10). The latter one
differs from the first one that only polynomial are being
used as nonlinear terms. Both networks can be very easily
trained because only one layer training is required and it
has to be performed only once.

+1

ou
tp

ut
s

in
pu

ts

no
nl

in
ea

r e
le

m
en

ts

Fig. 9. Functional link network with arbitrary nonlinear terms.

+1

ou
tp

ut
s

in
pu

ts

po
ly
no
m
ia
l

te
rm
s

xy
2x

2y

yx2

Fig. 10. Functional link network with polynomial nonlinear terms.

unipolar
neurons

Kohonen
 layer

no
rm

al
iz

ed
 in

pu
ts

ou
tp

ut
s

summing
 circuits

0

1

0

0

0

Fig. 11. Counterpropagation networks.

Another very interesting neural network architecture is
the counterpropagation network [11,12] shown in Fig. 11.
If the training patterns are normalized then number of
neurons in the hidden layer must be equal to the number
of patterns. Weights in the first layer are equal to the
input patterns and weights in the output layer are equal to
the output patterns. Therefore, no training process is
required. This network has a generalization feature,
which means that it may produce good results also for the
patterns which were never stored in the network. In this
case the network will generate an weighted average of the
closest patterns which were stored in the network. A
disadvantage of the counterpropagation network is that
number of neurons in the hidden layer must be equal to
number of training patterns and this number is sometimes
excessively large. This limitation can be solved by storing
not all patterns but only center of representative clusters

POWERENG 2009 Lisbon, Portugal, March 18-20, 2009

19

of patterns. Such network is shown in Fig. 12 and it has a
nice name of LVQ -Learning Vector Quantization, but it
is basically not much different than the
counterpropagation network.

unipolar
neurons

Competitive Layer

summing
 circuits

0

1

0

0

0

LinearLayer
W V

Fig. 12. LVQ Learning Vector Quantization networks.

in
pu

ts

ou
tp

ut
s

summing
 circuit

y2

y3

y1

D

D

D

hidden "neurons"

w1

w
2

y1

y2

y3

D

0

1

0

0

 output
normalization

s1

s4

s3

s2

stored

stored

stored

stored

x
 is

 c
l o

s e
 t

o
 s

2

Fig. 13. RBF - Radial basis function networks.

Another network which needs only very limited
training or no training at all is the RBF - Radial Basis
Function network [13] (Fig.13). Also, in this case the
number of processing units “neurons” is equal to number
of patterns or number of clusters. Each of these "neurons"
responds only to the input signals close to the stored
pattern. The output signal hi of the i-th hidden "neuron"
is computed using the following formula.

i

2

2h = -
2

exp
x sis-

2
 (1)

The RBF can be used only when we have a significant
computing power, because each processing unit “neuron”
has to calculate the Euclidean distance, then calculate
Gaussian function eq.(1) and finally several division
operations must be performed. It would be very difficult
to implement RBF networks in electronic hardware.

IV SHALL WE USE NEURAL NETWORKS OR FUZZY
SYSTEMS

For most problems we can use either neural networks
or fuzzy systems. Both approaches perform function of
nonlinear mapping, but they use a completely different
philosophy. Fuzzy systems can be relatively easily
designed using intuitive rules of operations. Neural
networks need to be trained with sample patterns. One

may notice that if these patterns are representing fuzzy
rules then development neural networks and fuzzy
systems could be very similar. Even for neural networks
we need training process to find weights, while all fuzzy
system parameters are extracted from fuzzy rules.

In case of fuzzy systems, the number of inputs are
practically limited to two or three, while neural networks
do not have limitations of number of inputs.

Neural networks are capable to produce control
surfaces with significantly higher accuracy and in
microcontroller applications are working faster with
shorter number of instructions [13]

Because of very raw control surfaces of fuzzy
controllers fuzzy systems are not used directly in the
control loop but they are just used to adjust parameters of
traditional PID controller.

-6 -4 -2 0 2 4 6
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

tangent
hyperbolic
unipolar

Elliott
bipolar

tangent
hyperbolic

bipolar

Elliott
unipolar

Fig. 14. Comparison of various activation functions.

 It is not easy to implement neural networks on
microcontroller because it would be difficult to compute
traditional tangent hyperbolic function. However neural
networks can use different sigmoid like function and very
similar results can be obtained. When the tangent
hyperbolic function is replaced by the Elliott (Fig. 14)
function

net
netnetf

n1
)((2)

then the computations activation function becomes
relatively simple. Neural networks are compared with
fuzzy systems in microcontroller implementations [14].
With the Elliott function the neural network
implementations resulted with shorter code, faster
operation, and much more accurate results. Fig. 15 shows
the comparison of several controllers for the same desired
control surface implemented in the popular HC11
microcontroller, using various fuzzy and neural network
architectures.

POWERENG 2009 Lisbon, Portugal, March 18-20, 2009

20

(a)

(b)

(c)

(d)

Fig. 15. Control surfaces for various controllers. (a). Required control
surface, (b) Fuzzy Mamdani type with trapezoidal membership
functions, (c) Fuzzy Tagagi-Sugeno type with triangular membership
functions, (d) neural controller with six neurons in 2-1-1-1-1-1-1
architecture.

One may conclude that neural networks produce a
smoother and more acurate surface, but suprisingly neural
networks require shorter assembly code and it has shorter
processing time [14].

Table 1. Error comparison for various types of fuzzy and neural
controllers implemented on Motorola 68HC711E9 microcontroller to
match the control surface from Fig 16 (a). All fuzzy systems had 7
membership functions on each input or output if applicable.

Approach used Length
of code
(bytes)

Processing
time

(ms)

error
MSE
(%)

Mamdani fuzzy controller
with trapezoidal

2324 1.95 9.45

Mamdani fuzzy controller
with triangular

2324 1.95 6.71

Mamdani fuzzy controller
with Gaussian

3245 39.8 5.85

TSK fuzzy controller with
trapezoidal

1502 28.5 3.09

TSK fuzzy controller with
triangular

1502 28.5 2.19

TSK fuzzy controller with
Gaussian

2845 52.3 3.06

Neural network with 3
neurons in cascade

680 1.72 0.0578

Neural network with 5
neurons in cascade

1070 3.3 0.0093

Neural network with 6
neurons in one hidden layer

660 3.8 0.0302

V IMPLEMENTING NEURAL AND FUZZY SYSTEMS ON
MICROCONTROLLERS

If Elliott function is used then it is relatively easy to
implement neural networks on higher end
microcontrollers such as HC11 [14]. As long the
microcontroller can perform division operation the
activation function can be easily calculated using Elliot
functions. The results are of course not the same as in the
case of tangent hyperbolic functions and often in order to
obtain similar results slightly larger neural network can
be used but all problems can be solved. Table 1 shows
comparison of results for different types of neural and
fuzzy systems implemented on 68HC711E9. The on-
board features of the 68HC711E9 are 512 bytes of RAM
and EEPROM and 12K bytes of UV erasable EPROM.
The processor was used with an 8 MHz crystal, allowing
an internal clock frequency of 2 MHz

Neural networks can be also implemented on very
simple microcontrollers, where there are no 16 bit
multiplication instructions and there are no division or
floating point operations. In this case, a special care must
be taken in order to develop routine for activation
function calculation such as Microchip Microcontroller
(PIC) [15]. This very simple microcontroller allows for
implementation of neural networks with up to 256
weights and practically unlimited number of neurons (less
than 127). The obtained results are within couple percent
accuracy. The PIC microcontroller programming was
done in assembly language using pseudo floating point
calculations and activation function approximating
tangent hyperbolic function. For most of the tested
problems the response time was around a couple

POWERENG 2009 Lisbon, Portugal, March 18-20, 2009

21

milliseconds. If the same PIC was programmed using C
language the response time was reduced by the factor of
10.

VI IMPLEMENTING NEURAL AND FUZZY SYSTEMS IN
ANALOG HARDWARE

 Implementations of neurons in VLSI chips are
relatively simple, as long there is no need for weight
adjustments. Note, that every differential pair generates a
sigmoid type nonlinear function that is suitable for neural
processing. In the case of bipolar transistor pair exact
tangent hyperbolic function is generated. In the case of
MOS implementations the MOS differential pair also
sigmoid type of transfer function is produced (Fig. 16).
 It is much more difficult to implement weights. A
weight circuit is usually much more complicated than the
neuron circuit. When a digital adjustment is required for
each weight then the complicity of the weight circuit is
similar to to the complexity of digital to analog converter.
When fixed values of weights can be used, then the circuit
can be significantly simplified. Each weight can be set by
proper W/L ratios of output transistors as shown in Fig.
16(a). By taking signals from different outputs of the
differential pairs, both positive and negative weights can
be implemented.

M2

M3 M4

Ma
M5 M6

IN

+OUT -OUT

+VDD

M7
VBIAS

M1

IREF

M11

M12

M13

M14

McMa Mc

-VSS

MdMdMbMb

(a)

-50 -40 -30 -20 -10 0 10 20 30 40 50

-100

0

100

W
L

__W
L

__

negative
output

positive
outputou

tpu
t c

urr
en

ts
[[

A]

input current [A]

(b)
Fig. 16 Neuron circuit with weights determined by W/L ratios of output
transistors.

VII CONCLUSION

Various neural network architectures was described and
compared. Depending on applications some of these
architectures are capable to perform very complex
operations with limited number of neurons, while other
architectures, which use more neurons, are easy to train.

There are neural network architectures which have very
limited requirements for training or no training is
required. The importance of the proper learning algorithm
was emphasized because with advanced learning
algorithm we can train these networks, which cannot be
trained with simple algorithms. When simple training
algorithms, such as EBP are used, neural networks with
larger number of neurons must be used to fulfill the task.

REFERENCES

[1] Rumelhart, D. E., Hinton, G. E. and Wiliams, R. J,
“Learning representations by back-propagating errors”,
Nature, vol. 323, pp. 533-536, 1986

[2] Scott E. Fahlman. Faster-learning variations on back-
propagation: An empirical study. In T. J. Sejnowski G. E.
Hinton and D. S. Touretzky, editors, 1988 Connectionist
Models Summer School, San Mateo, CA, 1988. Morgan
Kaufmann.

[3] Hagan, M. T. and Menhaj, M., “Training feedforward
networks with the Marquardt algorithm”, IEEE
Transactions on Neural Networks, vol. 5, no. 6, pp. 989-
993, 1994

[4] B. M. Wilamowski, N. J. Cotton, O. Kaynak, G.
Dundar, "Computing Gradient Vector and Jacobian
Matrix in Arbitrarily Connected Neural Networks," IEEE
Trans. on Industrial Electronics, vol. 55, no. 10, pp.
3784-3790, Oct 2008

[5] Hao Yu and B. M. Wilamowski, “C++ Implementation of
Neural Networks Trainer”, 13-th International
Conference on Intelligent Engineering Systems, INES-09,
Barbados, April 16-18, 2009

[6] B. Wilamowski, D. Hunter, "Solving Parity-n Problems
with Feedforward Neural Network," Proc. of the
IJCNN'03 International Joint Conference on Neural
Networks, pp. 2546-2551, Portland, Oregon, July 20-23,
2003

[7] Stuttgart Neural Network Simulator SNNS
http://www.ra.cs.uni-tuebingen.de/SNNS/

[8] NNT - Neural Network Trainer
http://www.eng.auburn.edu/~wilambm/nnt/

[9] S.E Fahlman,.and C. Lebiere, “The cascade- correlation
learning architecture” nn D. S.Touretzky, Ed. Advances in
Neural Information Processing Systems 2, Morgan
Kaufmann, San Mateo, Calif., (1990), 524-532.

[10] Y. H. Pao, Adaptive Pattern Recognition and Neural
Networks, Reading, Mass. Addison-Wesley Publishing
Co. 1989

[11] Hecht-Nielsen, R. 1987. Counterpropagation networks.
Appl. Opt. 26(23):4979-4984

[12] J.M. Zurada, Artificial Neural Systems, PWS Publishing
Company, St. Paul, MN, 1995

[13] B. M. Wilamowski and R. C. Jaeger, "Implementation of
RBF Type Networks by MLP Networks," IEEE
International Conference on Neural Networks,
Washington, DC, June 3-6, 1996, pp. 1670-1675.

[14] Bogdan Wilamowski and Jeremy Binfet " Microprocessor
Implementation of Fuzzy Systems and Neural Networks,”
International Joint Conference on Neural Networks
(IJCNN'01), pp. 234-239, Washington DC, July 15-19,
2001.

[15] N.J. Cotton, B.M. Wilamowski, and G. Dundar “A Neural
Network Implementation on an Inexpensive Eight Bit
Microcontroller” 12th INES 2008 -International
Conference on Intelligent Engineering Systems, Miami,
Florida, USA, February 25-29, 2008, pp. 109-114.

POWERENG 2009 Lisbon, Portugal, March 18-20, 2009

22

