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Abstract— An overview of various neural network 
architectures is presented.  Depending on applications some 
of these architectures are capable to perform very complex 
operations with limited number of neurons, while other 
architectures, which use more neurons, are easy to train.  
There are neural network architectures which have very 
limited requirements for training or no training is required. 
The importance of the proper learning algorithm was 
emphasized because with advanced learning algorithm we 
can train these networks, which cannot be trained with 
simple algorithms. When simple training algorithms, such 
as EBP are used, neural networks with larger number of 
neurons must be used to fulfill the task. 

I. INTRODUCTION

The purpose of this presentation is not to give an 
introduction to neural networks but to give practical 
advice about its implementations. Most researchers who 
are trying to use neural networks are facing two major 
challenges: 

(1) How to train this network and what 
software/algorithm to use 

(2) What neural network architecture (topology) to 
employ and how many neurons to use. 

The first challenge is relatively easy to solve. With 
little effort a neural network software can be found and 
used.  What many people are not aware of is that not all 
popular algorithms can train every neural network. 
Surprisingly the most popular EBP (Error Back 
Propagation) algorithm [1,2] cannot handle more 
complex problems while other more advanced algorithms
[3,4] can.  

Fig. 1. Solution of the two spiral problem with NBN algorithm [4] using 
fully connected architecture with 8 neurons and 52 weights. 

For example, training the popular test bench with 
Wieland two spiral problem  can be solved (Fig. 1) with 
second order using cascade architecture with 8 neurons 
but in order to solve the same problem with the EBP 
algorithm (Fig 2) at least 16 neurons and weights in 
cascade architecture  are needed. With only 12 neurons in 
cascade, the NBN algorithm can produce a very smooth 
response (Fig. 3) with less than 150 iterations but we 
were not able to solve this 12 neuron problem with EBP 
algorithm despite many trials with 1,000,000 iterations 
limit. More detailed information about the relationship 
between complexity of network topology and learning 
algorithms can be found at [5]. The conclusion is that 
with a better learning algorithm the same problem can be 
solved with simpler hardware. 

Fig. 2. Solution of the two spiral problem with EBP algorithm using 
fully connected architecture with 16 neurons and 168 weights. 

Fig. 3. Solution of the two spiral problem with NBN algorithm [4] using 
fully connected architecture with only 12 neurons and 102 weights 
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The second challenge about neural network 
architecture is more difficult. In most cases neural 
network architectures are selected by trial and error 
process. Often success depends on a lucky guess.  This 
presentation may provide some hints for neural network 
architecture/topology selection.  The selected architecture 
may depend on many factors such as: 
 How to get maximum performance with minimal 

hardware? 
 What topology should be selected so network can be 

easily trained?  
 How to make network less sensitive to element 

tolerances? 
 Is it possible to have neural networks which need not 

to be trained or can only very simple training 
algorithm be used?  

In the following chapters we will discuss these issues.  

II. HOW TO GET MAXIMUM PERFORMANCE WITH 
MINIMUM HARDWARE

Another test bench for neural networks is the parity-N
problem. The simplest parity-2 problem is also known as 
the XOR problem. The larger the problem, the more 
difficult it is to solve it.   The parity N problem can be 
solved analytically and the number of required neurons 
depends on the neural network topology [6].. In the case 
of the most popular MLP (Multi Layer Perceptron) 
architecture with one hidden layer there are at least 9 
neurons required and 8*9+9 = 81 weights (Fig. 4). When 
connection across layers are allowed (Fig. 5) then the
same problem can be solved only with  5 neurons and the 
total number of weights is 4*9+8+4+1=49.  For cascade 
connection (Fig. 6) then only four neurons are required 
and the total number of weights is 9+10+11+12=42. For 
the pipeline architecture (Fig. 7) the parity 8 problem can 
be solved with 3 neurons and 8+2+2=12 weights.   
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Fig. 4.  Parity-8 problem with feedforward bipolar neural network with 
one hidden layer. 
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Fig. 5.  Fully-connected layered bipolar neural network with one hidden 
layer for the parity-8 problem. 
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Fig. 6.  Bipolar implementation of a fully connected cascade neural 
network for the parity-8 problem.  
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Fig. 7: Bipolar implementation of a pipeline neural network for the 
parity-8 problem. 

The pipeline architecture is specific only to the parity-N
problems; therefore, one may conclude that the cascade 
network (Fig. 6) is the most powerful, since it would 
require a minimum number of elements.  At the same 
time, because of a long signal path across many nonlinear 
elements, the cascade architecture is more difficult to 
train. One may also notice that when in the feed forward 
neural networks all possible connections between neurons 
are implemented (fully connected network) then the 
resulting topology is the cascade architecture.  However 
the  most popular is MLP architecture primarily because 
it is easiest to write training software for MLP networks.
For example very popular MATLAB Neural Network 
Toolbox is primarily designed for MLP networks. 
Surprisingly the MLP architecture is the least efficient.   
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III.    WHAT TOPOLOGY SHOULD BE SELECTED SO 
NETWORK CAN BE EASILY TRAINED

The general rule is that less layers in the neural network 
then it is easier to train it. It is very easy to train one layer 
neural network where the solution can be obtained with 
only several iterations.  With more layers the network is 
becoming less transparent and it is more difficult to train 
because signals have to pass more neurons with nonlinear 
activation functions. From this perspective it takes longer 
to find solution for MLP network with multiple layers 
than for the same network where connections across 
layers are allowed (Fig. 5). At the same time, this 
network can handle more complex tasks. The problem is 
that only limited number of software packages were 
developed to train arbitrarily connected neural networks 
such as SNNS [7] and NBN [8]. SNNS package has 
limited applications because it uses only the first order 
algorithms and its ability to train complex neural 
networks is limited. 
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Fig. 8. Cascade correlation algorithm 

There are some neural network architectures which are 
merged with training algorithms. The best example of 
such an approach is cascade correlation algorithm [9]. 
This unique algorithm is dedicated to train cascade 
architectures (Fig. 8) and the training process is relatively 
fast and simple. At each time only one neuron (one layer) 
is being trained in a very specific sequence. The network 
is being built during the training process by adding 
neurons and training them.  This is one of very few 
algorithms where network architecture is being developed 
at the same time as it is trained.  This algorithm is fast 
and easy and it is more powerful than EBP algorithm [9].  
For example the two spirals problem, mentioned in the 
introduction, can be solved with 12-19 neurons and it 
requires at least 10 times less iteration than EBP 
algorithm [9]. Of course the cascade correlation 
algorithm is not as powerful as NBN [4], which can solve 
the same problem with only 8 neurons (Fig 1), but the 
computations are more  advanced. 

There are other neural network architectures, which 
require even less training.  One of them is the FLN 
Functional Link Network [10] (Fig. 9) and another is 
Polynomial Neural Network (Fig 10). The latter one 
differs from the first one that only polynomial are being 
used as nonlinear terms. Both networks can be very easily 
trained because only one layer training is required and it 
has to be performed only once.  
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Fig. 9. Functional link network with arbitrary nonlinear terms. 
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Fig. 10. Functional link network with polynomial nonlinear terms. 
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Fig. 11. Counterpropagation networks. 

Another very interesting neural network architecture is 
the counterpropagation network [11,12] shown in Fig. 11. 
If the training patterns are normalized then number of 
neurons in the hidden layer must be equal to the number 
of patterns. Weights in the first layer are equal to the 
input patterns and weights in the output layer are equal to 
the output patterns. Therefore, no training process is 
required.  This network has a generalization feature, 
which means that it may produce good results also for the 
patterns which were never stored in the network. In this 
case the network will generate an weighted average of the 
closest patterns which were stored in the network.  A
disadvantage of the counterpropagation network is that 
number of neurons in the hidden layer must be equal to 
number of training patterns and this number is sometimes 
excessively large. This limitation can be solved by storing 
not all patterns but only center of representative clusters 
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of patterns. Such network is shown in Fig. 12 and it has a 
nice name of LVQ -Learning Vector Quantization, but it 
is basically not much different than the 
counterpropagation network. 
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Fig. 12.  LVQ Learning Vector Quantization networks. 
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Fig. 13.  RBF - Radial basis function networks. 

Another network which needs only very limited 
training or no training at all is the RBF - Radial Basis 
Function network [13] (Fig.13).   Also, in this case the 
number of processing units “neurons” is equal to number 
of patterns or number of clusters. Each of these "neurons" 
responds only to the input signals close to the stored 
pattern.  The output signal hi of the i-th hidden "neuron" 
is computed using the following formula. 

i

2

2h  =  -
2

exp
x sis-

2
   (1) 

The RBF can be used only when we have a significant 
computing power, because each processing unit “neuron” 
has to calculate the Euclidean distance, then calculate 
Gaussian function eq.(1)  and finally several division 
operations must be performed. It would be very difficult 
to implement RBF networks in electronic hardware. 

IV SHALL WE USE NEURAL NETWORKS OR FUZZY 
SYSTEMS

For most problems we can use either neural networks 
or fuzzy systems. Both approaches perform function of 
nonlinear mapping, but they use a completely different 
philosophy.  Fuzzy systems can be relatively easily 
designed using intuitive rules of operations. Neural 
networks need to be trained with sample patterns.   One 

may notice that if these patterns are representing fuzzy 
rules then development neural networks and fuzzy 
systems could be very similar. Even for neural networks 
we need training process to find weights, while all fuzzy 
system parameters are extracted from fuzzy rules. 

In case of fuzzy systems, the number of inputs are 
practically limited to two or three, while neural networks 
do not have limitations of number of inputs. 

Neural networks are capable to produce control 
surfaces with significantly higher accuracy and in 
microcontroller applications are working faster with 
shorter number of instructions [13] 

Because of very raw control surfaces of fuzzy 
controllers fuzzy systems are not used directly in the 
control loop but they are just used to adjust parameters of 
traditional PID controller. 
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      It is not easy to implement neural networks on 
microcontroller because it would be difficult to compute 
traditional tangent hyperbolic function. However neural 
networks can use different sigmoid like function and very 
similar results can be obtained. When the tangent 
hyperbolic function is replaced by the Elliott (Fig. 14)
function  

net
netnetf

n1
)(    (2) 

then the computations activation function becomes 
relatively simple. Neural networks are compared with 
fuzzy systems in microcontroller implementations [14].
With the Elliott function the neural network 
implementations resulted with shorter code, faster 
operation, and much more accurate results. Fig. 15 shows 
the comparison of several controllers for the same desired 
control surface implemented in the popular HC11 
microcontroller, using various fuzzy and neural network 
architectures. 
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Fig. 15. Control surfaces for various controllers. (a). Required control 
surface, (b)  Fuzzy Mamdani type with trapezoidal membership 
functions, (c) Fuzzy Tagagi-Sugeno  type with triangular membership 
functions, (d)  neural controller with six neurons in 2-1-1-1-1-1-1
architecture.  

One may conclude that neural networks produce a
smoother and more acurate surface, but suprisingly neural 
networks require shorter assembly code and it has shorter 
processing time [14].

Table 1.  Error comparison for various types of fuzzy and neural 
controllers implemented on Motorola 68HC711E9 microcontroller to 
match the control surface from Fig 16 (a). All fuzzy systems had 7 
membership functions on each input or output if applicable.

Approach used Length
of code
(bytes)

Processing 
time

(ms)

error
MSE
(%)

Mamdani fuzzy controller 
with trapezoidal 

2324 1.95 9.45

Mamdani fuzzy controller 
with triangular 

2324 1.95 6.71

Mamdani fuzzy controller 
with Gaussian

3245 39.8 5.85

TSK fuzzy controller with 
trapezoidal 

1502 28.5 3.09

TSK fuzzy controller with 
triangular 

1502 28.5 2.19

TSK fuzzy controller with 
Gaussian 

2845 52.3 3.06

Neural network with 3 
neurons in cascade 

680 1.72 0.0578

Neural network with 5 
neurons in cascade 

1070 3.3 0.0093

Neural network with 6 
neurons in one hidden layer 

660 3.8 0.0302

V IMPLEMENTING NEURAL AND FUZZY SYSTEMS ON
MICROCONTROLLERS

If Elliott function is used then it is relatively easy to 
implement neural networks on higher end 
microcontrollers such as HC11 [14]. As long the 
microcontroller can perform division operation the 
activation function can be easily calculated using Elliot 
functions.  The results are of course not the same as in the 
case of tangent hyperbolic functions and often in order to 
obtain similar results slightly larger neural network can 
be used but all problems can be solved. Table 1 shows 
comparison of results for different types of neural and 
fuzzy systems implemented on 68HC711E9. The on-
board features of the 68HC711E9 are 512 bytes of RAM 
and EEPROM and 12K bytes of UV erasable EPROM.  
The processor was used with an 8 MHz crystal, allowing 
an internal clock frequency of 2 MHz  

Neural networks can be also implemented on very 
simple microcontrollers, where there are no 16 bit 
multiplication instructions and there are no division or 
floating point operations. In this case, a special care must 
be taken in order to develop routine for activation 
function calculation such as  Microchip Microcontroller 
(PIC) [15]. This very simple microcontroller allows for 
implementation of neural networks with up to 256 
weights and practically unlimited number of neurons (less 
than 127). The obtained results are within couple percent 
accuracy. The PIC microcontroller programming was 
done in assembly language using pseudo floating point 
calculations and activation function approximating 
tangent hyperbolic function.  For most of the tested 
problems the response time was around a couple 
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milliseconds. If the same PIC was programmed using C 
language the response time was reduced by the factor of 
10.

VI     IMPLEMENTING NEURAL AND FUZZY SYSTEMS IN 
ANALOG HARDWARE

     Implementations of neurons in VLSI chips are 
relatively simple, as long there is no need for weight 
adjustments.  Note, that every differential pair generates a 
sigmoid type nonlinear function that is suitable for neural 
processing. In the case of bipolar transistor pair exact 
tangent hyperbolic function is generated. In the case of 
MOS implementations the MOS differential pair also 
sigmoid type of transfer function is produced (Fig. 16).   
    It is much more difficult to implement weights. A
weight circuit is usually much more complicated than the 
neuron circuit.  When a digital adjustment is required for 
each weight then the complicity of the weight circuit is 
similar to to the complexity of digital to analog converter. 
When fixed values of weights can be used, then the circuit 
can be significantly simplified. Each weight can be set by 
proper W/L ratios of output transistors as shown in Fig. 
16(a).  By taking signals from different outputs of the 
differential pairs, both positive and negative weights can 
be implemented. 
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Fig. 16 Neuron circuit with weights determined by W/L ratios of output 
transistors. 

VII     CONCLUSION

Various neural network architectures was described and 
compared.  Depending on applications some of these 
architectures are capable to perform very complex 
operations with limited number of neurons, while other 
architectures, which use more neurons, are easy to train.  

There are neural network architectures which have very 
limited requirements for training or no training is
required. The importance of the proper learning algorithm 
was emphasized because with advanced learning 
algorithm we can train these networks, which cannot be 
trained with simple algorithms. When simple training 
algorithms, such as EBP are used, neural networks with 
larger number of neurons must be used to fulfill the task. 
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