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Figure 2. An example implementation of the third-order lowpass 
Butterworth ladder filter. 
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Figure 1. A seventh-order lowpass Butterworth ladder filter. 
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Abstract—In the paper, issues concerning the synthesis of 
ladder reactance analog filter have been raised. In all exist-
ing algorithms of synthesis of such filters it is assumed that 
the reactance elements are ideal ones. Since actual reactance 
elements are lossy, which means the Q-factor has a finite 
value, the frequency response of real filters differs widely 
from the desired frequency response, assumed before de-
signing the filter. In this article, a new approach to the syn-
thesis of reactance ladder filters has been introduced. In this 
approach, the lossiness of reactance elements is taken into 
consideration during the synthesis process. This method 
allows to design a ladder filter with desired frequency re-
sponse with the use of lossy capacitors and what is more 
important, lossy inductors. 

I. INTRODUCTION 

A ladder passive reactance filter is made up of inductors 
and capacitors arranged series and shunt alternately, or of 
series or parallel tuned LC circuits. Many varieties of such 
filters are used: doubly terminated symmetric or asymmet-
ric filters, or singly terminated with resistive load or with-
out resistive load. Predominantly, filters with Butterworth, 
Chebychev, inverse Chebychev and Cauer frequency re-
sponses are used. Each of these responses has different, 
specific properties. 

The classical synthesis process of ladder reactance filter 
begins with designing a lowpass prototype. The reactance 
elements in the prototype are then transformed, if neces-
sary, to obtain a highpass, bandpass or bandstop filter. 
Next, the values of all filter elements are scaled. There are 
two main purposes of scaling: to produce more practical 
or simply feasible values of filter elements, e.g. load resis-
tance (magnitude scaling) and/or to move the filter pass-
band towards the required range of frequencies (frequency 
scaling). Almost always, transformation and scaling take 
place at the same time, with the use of appropriately modi-
fied formulae.  

For the most popular sorts of prototype lowpass filters, 
the values of elements have been derived and put into ta-
bles [6]. Thus, when designing a filter, there is no need to 
start from the desired frequency response and to recalcu-
late them anew. Therefore, synthesis of a ladder reactance 
filter is very simple and requires relatively less computa-
tion, particularly when using tables of element values to 
obtain the prototype filter. 

There are several ways of implementation of such lad-
der filters. They are built as reactance ladders according to 
the obtained circuit scheme, or as ladders with simulated 
inductors. The latter are commonly used in integrated cir-
cuit technologies. The subject of analog filter design was 
recently undertaken by [1], but that work focuses rather on 

noise and non-linearity of integrated filters with simulated 
inductors. Fig. 1 shows a lowpass, seventh-order Butter-
worth filter. Fig. 2 shows an example of implementation 
of a third-order Butterworth filter, which has one series 
inductor in its prototype. This inductance has been real-
ized with the use of two gyrators, each of which has been 
built with two operational transconductance amplifiers 
OTA-C. Assuming the gyrators are ideal, the filter shown 
in Fig. 2 has exactly the same frequency response as its 
passive LC prototype. Another way of realizing ladder 
filters using differential voltage current conveyor (DVCC) 
is described in [2]. For yet other examples of realizations 
of ladder filters see [3][4]. 

Unfortunately, for every possible realization of a ladder 
reactance filter, its magnitude Bode plot has a different 
shape than it was intended to have. The reason of this fact 
is that the real reactance elements used to build the filter 
are lossy. To determine how big the reactance element 
lossiness is, the so called quality factor (Q-factor) is used. 
This dimensionless parameter is particularly important for 
inductors. Real inductors have low values of the quality 
factor and consequently high values of lossiness. It con-
cerns real inductors made simply of wounded wire as well 
as conductors simulated with real gyrators loaded with 
capacitors, or with frequency-dependent negative resistors 
(FDNR) or generalized impedance converter (GIC) etc. 
For example, inductors simulated with a real gyrator 
loaded with a capacitor, have lossiness because of non-
zero values of the gyrator’s parasitic admittances. Addi-
tional issues concerning simulated inductances with gyra-
tors are described in [5]. 

In this article, we will use the term lossiness rather than 
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Figure 3. Models of real inductor and real capacitor. 

  
Figure 4. Magnitude Bode plots of the seventh-order lowpass Chebychev ladder filter and the pole location of its transfer function. 

the quality factor. The use of the term lossiness means 
series resistance, measured in ohms, for inductors and 
leakage conductance, measured in siemens, for capacitors. 

Further in the article, units will be omitted for simplic-
ity of notification. Models of real inductors and real ca-
pacitors are shown in Fig. 3. 

The greater the lossiness of reactance elements used to 
build a filter, the greater the difference between the fre-
quency response of the filter and the frequency response 
that the filter was intended to have. Fig. 4 shows the com-
parison of magnitude Bode plots and poles location on the 
complex plane for a seventh-order Chebychev lowpass 
prototype filter and its realization with real, lossy ele-
ments. 

In classical algorithms of ladder filter synthesis it is as-
sumed that the elements used for the filter implementation 
will be lossless, which is obviously impossible to accom-
plish. As we will see later in this article, it is possible to 
replenish the synthesis algorithm so that the lossiness of 
the reactance elements will be taken into consideration 
already when the filter is being designed. A filter obtained 
in this way can have exactly the same frequency response 
as the non-feasible filter designed using the classical algo-
rithm and built with ideal reactance elements. 

As it is shown in Fig. 4, the lossiness of the reactance 
elements changes the location of poles on the complex 
plane, and this implies the deformation of the magnitude 
response of the filter. With some additional assumptions it 
is however possible to modify the values of capacitance 
and inductance of the reactance elements so as to move 
the poles back into place. This is the key concept of the 
synthesis algorithm introduced in this article. 

II. SINGLY TERMINATED LADDER FILTERS. 

There are two configurations of singly terminated lad-
der filters: with resistive load and without resistive load, 
as shown in Fig. 5. 

A. Ladder filters with resistive load. 

Let us take into consideration a singly terminated 
fourth-order Chebychev lowpass prototype with a transfer 
function obtained using approach from [7]. 
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Tp  (1) 

Having this filter designed using the classical synthesis 

algorithm, that is without considering the reactance ele-
ments’ lossiness, a schematics as in Fig. 6 can be drawn. 

In order to include the lossiness, all of the inductors and 
capacitors in the schematic have to be replaced by their 
real models from Fig. 3. In this way we get a circuit 
shown in Fig. 7. 

Let us now set the example value of the lossiness 
1 2 1 2 0.1RL RL GC GC , although quite obvi-

ously this value can be different for each element. After 
that, the transfer function of the filter shown in Fig. 7 is as 
follows 
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Comparing the coefficients of denominators of transfer 
functions (1) and (2), we get a system of five non-linear 
equations with the unknowns 2, 1, 2, 1, 2R L L C C  
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The system (3) can be solved analytically. There are 
twenty four different solutions, two of which are real and 
can be actually used to build a filter. 
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Figure 5. Singly terminated filters with resistive load a) and without resistive load b). 
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Figure 6. A fourth-order lowpass Chebychev ladder filter with 

resistive load. 
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Figure 7. A fourth-order lowpass Chebychev ladder filter with 
resistive load, built with real reactance elements. 
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Figure 8. The filter from Fig. 9, built with real reactance elements 
according to (4). 

 
Figure 9. The magnitude Bode plots of the prototype filter , the 

real filter  and the filter shown in Fig. 8 . 

1.199Vin

0.554 1.458

1.245

1

V
o

u
t

 
Figure 10. A fourth-order lowpass Chebychev ladder filter without 

resistive load. 

C1 = 4.759993153, C2 = 1.180227393, R2 = 0.7756528492,

L1 = 0.1856518514, L2 = 1.491986786

C1 = 1.924134578, C2 = 0.9020147578, R2 = 0.7756528492, 

L1 = 0.8885120233, L2 = 1.009076015

 (4) 

After substituting the coefficients 2, 1, 2, 1, 2R L L C C  in 

(2) with either of the solutions (4) we get the same transfer 
function as the transfer function of the prototype filter (1), 
except for the coefficient in the numerator. 

2 3 4

0.775653

1 2.44475 s 3.17051 s 2.17713 s 1.20699 s
Tp  (5) 

Fig. 8 shows the schematic of the ladder filter built 
from real, lossy reactance elements, the values of which 
are determined by one of the solutions (4). 

Since the numerator of the transfer function (5) has the 
value of less than 1, the filter designed with the lossy reac-
tance elements has a bigger attenuation than the prototype 
filter – but this fact is of no great importance. The magni-
tude plot of the obtained filter has exactly the same shape 
as it was intended before the synthesis process. The mag-
nitude Bode plot of this filter is shown in Fig. 9 with the 
line . 

The ladder filter, built according to the circuit shown in 
Fig. 6, but with real reactance elements, will have a differ-
ent frequency response than the desired one. The magni-
tude Bode plot of this filter is shown in Fig. 9, with the 
line . Apart from the bigger attenuation, which is of 
lesser importance, the shape of the plot is different and 
what is most important, the cut-off frequency is shifted. 

B. Ladder filters without resistive load. 

The filter with the transfer function (1) can also be real-
ized as a circuit without resistive load. The schematic of 
such filter is shown in Fig. 10. 

After replacing the reactance elements with their real 
models according to Fig. 3, we get a circuit shown in 
Fig. 11. 

The transfer function of this filter, made of lossy ele-
ments, with the value of lossiness 

1 2 1 2 0.1RL RL GC GC  is as shown below 
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Comparing the coefficients of denominators of the 
transfer functions (6) and (1), we get a system of five non-
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Figure 11. The filter without resistive load, built with real reac-

tance elements. 
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Figure 12. The filter from Fig. 11, built with real reactance ele-

ments according to (9). 

 
Figure 13. The magnitude Bode plots of the prototype filter , the 

real filter  and the filter shown in Fig. 12 . 

linear equations as previously, with the unknowns 
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Again there are two real solutions 

C1 = 9.855369094, C2 = 58.79309583, R1 = 0.1497512438,

L1 = 0.05587480537, L2 = 0.03728107491

C1 = 0.2489640550, C2 = 0.07104167957, R1 = 0.1497512438, 

L1 = 4.239975232, L2 = 16.09498154

(8) 

This time, the obtained solutions are worthless because 
of the sign of 1R . It was not necessary to solve the sys-
tem (8), because by looking at the first equation, we can 
easily notice that in any existing solution of the system (8) 
will appear R1 = 0.1497512438 . The numerator of the 
transfer function (1) has the value of 1, which means that 
by comparing the coefficients of denominators we are 
looking for a filter with the same shape of the magnitude 
Bode plot and with the same attenuation. Since the at-
tenuation of the filter is not of the greatest importance, we 
can allow the numerator to have a different value. Thus 
dividing the numerator and the denominator of the transfer 
function (6) by 1R , and then comparing coefficients of 
the denominator to (1), we get a system of equations 
which has two real positive solutions. 

C1 = 1.491987044, C2 = 0.1856499926, R1 = 1.289236546,

L1 = 1.180230733, L2 = 4.760010868

C1 = 1.009071373, C2 = 0.8885171440, R1 = 1.289236546, 

L1 = 0.9020135856, L2 = 1.924128515

 (9) 

The ladder filter built with the lossy elements according 
to one of the solutions (9) and the circuit Fig. 11 is shown 
in Fig. 12. 

The magnitude Bode plots of the prototype filter , the 
real filter  and the filter made of lossy elements  ac-
cording to Fig. 12, are shown in Fig. 13. 

As we can note by comparing Fig. 9 and Fig. 13, the 
magnitude Bode plots obtained in this way for the filter 
without resistive load are exactly the same as for the filter 
with resistive load. 

III. LOSSINESS LIMITATIONS FOR SINGLY TERMINATED 

LADDER FILTERS. 

In both considered cases we set the same (0.1) value of 
lossiness for each reactance element. Both designed filters 
have exactly the same magnitude Bode plots with attenua-
tion value of 0.775653 at the frequency 0 . The ques-
tions appear now, whether we can introduce any value for 
lossiness, no matter how high, and if not, what the upper 
limit is for it, and how the introduced lossiness affects the 
attenuation of the filter. 

In both filter configurations considered in 1a) and 1b) 
the upper limit of lossiness is 0.189. For a greater value of 
lossiness the system of equations does not have any real 
positive solutions. The relationship between the attenua-
tion of the filter and the lossiness of reactance elements 
for both above-mentioned filters has been shown in Fig. 
14 with line . 

The synthesis method presented in 1a), even though it 
let us easily design a singly terminated ladder filter with 
resistive load, had to be modified slightly for the filter 
without resistive load. Without this modification, the 
above-mentioned system of equations did not have real 
positive solutions. The mentioned modification was sim-
ple: it was enough to reduce the transfer function by the 
resistance R1 and only after that compare the denomina-
tors’ coefficients. It appears that if we choose a different 
expression to reduce the transfer function by, we will be 
able to introduce even greater values of lossiness, and the 
system of equations will still have real positive solutions. 
If we reduce transfer function (6) so that the constant has 
the value of 1, the lossiness limit will increase from 0.189 
to 0.254 for both considered filters. Moreover, the filter’s 
attenuation will be lower for the particular values of lossi-
ness. The relationship between the attenuation and the 
lossiness of reactance elements has been shown in Fig. 14 
with the line . 

IV. DOUBLY TERMINATED LADDER FILTERS. 

The synthesis method for doubly terminated ladder fil-
ters will be discussed, like for singly terminated filters, 



 
 

Figure 14. Relationship between attenuation and lossiness of reac-
tance elements without reducing the transfer function  and after 

reducing the transfer function . 
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Figure 15. A doubly terminated fourth-order lowpass Chebychev 

ladder filter. 
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Figure 16. A doubly terminated fourth-order lowpass Chebychev 

ladder filter built with real reactance elements. 

 
Figure 17. The magnitude Bode plots of the prototype filter , the 

real filter  and the filter shown in Fig. 16 . 

 
 

Figure 18. The relationship between the maximum value of lossi-
ness and the value of resistance R2. 

using the example of a fourth-order Chebychev lowpass 
prototype. The transfer function of such filter is as fol-
lows: 
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and its schematic has been show in Fig. 15. 

Just as it was done in the previous examples, we replace 
the reactance elements with their real, lossy models ac-
cording to Fig. 3. Thus, we get the circuit shown in Fig. 
16. 

We set the value of the lossiness 
1 2 1 2 0.1RL RL GC GC , as before. Having de-

termined the transfer function of this filter we compare the 
coefficients of its denominator to the denominator of  the 
transfer function (10) in a similar way as it was done be-
fore. In this way we get the following system of equations. 

0.201+ 1.01 R1 + 1.0301 R2 + 0.201 R1 R2 2

0.01 C1 + 1.01 L1 + 1.01 L2 + 0.1 C1 R1 + 0.1 L2 R1 +

+0.101 C1 R2 + 0.201 C2 R2 + 0.201 L1 R2 + 0.101 L2 R2

+1.01 C1 R1 R2 + 1.01 C2 R1 R2 + 0.01 L2 R1 R2 5

0.1 C1 L1 + 0.1 C1 L2 + 0.1 L1 L2 + C1 L2 R1 + 0.01 C1 C2 R2 + 

+ 1.01 C1 L1 R2+1.01 C2 L1 R2 + 0.01 C1 L2 R2 + 1.01 C2 L2 R2

 + 0.01 L1 L2 R2+0.1 C1 C2 R1 R2 + 0.1 C1 L2 R1 R2 +

 +0.1 C2 L2 R1 R2 6.116

C1 L1 L2 + 0.1 C1 C2 L1 R2 + 0.1 C1 C2 L2 R2

+0.1 C1 L1 L2 R2 + 0.1 C2 L1 L2 R2 + C1 C2 L2 R1 R2 4.456

C1 C2 L1 L2 R2 2.097

 (11) 

This time the obtained system of equations has six un-
knowns and only five equations, therefore we have to es-
tablish one of the unknowns. The numerator of the trans-
fer function of the filter shown in Fig. 16 has only the 
value of R2, thus it is this unknown that we establish, 
thereby having the influence on the filter’s attenuation. 
Setting 2 0.3R  we get, apart from complex solutions, 

two solutions which are real and positive. 

C1 = 0.7953046216, C2 = 1.566204861, R1 = 1.120192968,

L1 = 1.569217023, L2 = 0.9579526492

C1 = 0.8331791988, C2 = 1.623699805, R1 = 1.120192968, 

L1 = 1.655198890, L2 = 0.8362088968

 (12) 

Magnitude Bode plots of the doubly terminated proto-
type filter , the real filter  and the filter made of lossy 
elements  are shown in Fig. 17. 

The maximum value of lossiness which can be intro-
duced to the reactance elements depends on the previously 
set value of 2R . The relationship between these two 
quantities is shown in Fig. 18. 

Every ladder filter can be realized with an inductor as 
the first element in the ladder. Fig. 19 a) shows the sche-
matic of a fourth-order Chebychev lowpass prototype, in 
which the first element of the ladder is an inductor. Sche-
matics of this filter after replacing the reactance elements 
with their lossy models is shown in Fig. 19 b). 

The transfer function of the prototype filter is as follows  
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Similarly as in the previous examples, we replace the 
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Figure 19. A doubly terminated fourth-order lowpass Chebychev ladder filter, 
 before a) and after b) replacing reactance elements with their real models. 

reactance elements with the real models, we calculate the 
transfer function and we create a system of equations by 
comparing the denominators’ coefficients. This system, 
like the previous one, has five equations and six un-
knowns. However in this case, the real and positive solu-
tions will occur after setting R2 values from the range 
1.6 2.09 . A value of R2 set from this range causes the 
filter to have a lower attenuation than the prototype filter. 
This is an obvious advantage of the filter shown in Fig. 19 
over the filter shown in Fig. 15 if we design these filters 
with the presented method. 

V. CONCLUSIONS 

The synthesis algorithm introduced in the article makes 
it possible to design a passive ladder, Butterworth or Che-
bychev filter with the use of lossy reactance elements. The 
filter obtained in this way can have exactly the same fre-
quency response as the non-feasible prototype filter. The 
described method, although conceptually very simple, is 
not suitable for practical applications without some modi-
fication. Analytical solving of the obtained systems of 
non-linear equations is complicated as well as pointless. 
When designing a filter we do not need to know all exist-
ing solutions; it is enough to know only one of them. 
Moreover, for filters of higher order, it is not possible to 
solve such a system analytically. Thus we have to make 
use of numerical methods, for example one of the varieties 
of the Newton method. Here, some additional problems 
occur, e.g. singularity of the Jacobian, choice of the initial 
point or lack of convergence. These issues are the subject 

of further research. Apart from that, additional research 
concerns adapting this promising method for filters the 
transfer function of which has zeros on the complex plane. 
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