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Abstract-Although neural networks have been around for over 20
years, we still have difficulties training them. Training is often difficult
and time consuming. The paper describes a software (NNT) developed for
neural network training. In addition to the traditional Error Back
Propagation (EBP) algorithm, several second order algorithms were
implemented. These algorithms are modifications of the Levenberg
Marquet algorithm and they are able to train arbitrarily connected feed-
forward neural networks. In most cases the training process is more than
100 times faster than EBP training. These algorithms can also find
solutions for very difficult networks where the EBP algorithm fails.

I. INTRODUCTION

There is a significant interest in the use of neural networks
in various industrial applications [1-7]. Unfortunately, the
most commonly used Error Back Propagation (EBP) algorithm
[7][8] is neither powerful nor fast. It is also not easy to find
the proper neural network architectures. The most common
approach is to try a number of various architectures until one
is found for which the training algorithm converges to an
acceptable solution. This approach requires many training
sessions and often leads to the use of far from optimum
architectures.

Another reason for not using optimal architectures is that
most of the commonly used training algorithms (like
MATLAB Neural Network Toolbox) are only able to train
multilayered neural networks like the one shown in Fig. 1,
where there are no connections across layers.

Fig. 1 Typical layer by layer neural network architecture.

As it was shown in [9], the most commonly used neural
network architectures are far from optimum. Let us consider
the parity 5 problem which has 32 training patterns. When a
traditional layer by layer architecture is used, at least 5
neurons are needed in the hidden layer (see Fig 2(a)), and the
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total number of weights (including biasing) is 5X6+6=36 [9].
When using a fully connected neural network, only 2 neurons
are needed in the hidden layer (see Fig 2(b)), and the total
number ofweights is 2X6+8=20 [9].

(5),

(a) (b)
Fig. 2. Minimal network architectures to solve parity- 5 problems
with (a) traditional feed-forward neural networks and (b) with fully
connected network.

The fully connected architecture of Fig 2(b) is not only
simpler, but it is easier to train. Unfortunately, most neural
network software is not capable of training fully connected
architectures, with the exception of SNNS (Stuttgart Neural
Network Simulator), which was developed a decade ago and is
constantly improving [10]. The SNNS uses many different
algorithms including Error Back Propagation [8], Quickprop
algorithm [11], Resilient Error Back Propagation [12], Back
percolation, Delta-bar-Delta, Cascade Correlation [13] etc.
Unfortunately, all these algorithms are derivatives of steepest
gradient search (EBP) and training is relatively slow.

For fast training, second order learning algorithms have to
be used. The most effective is LM - Levenberg Marquet [14]
algorithm, which is a derivative of the Newton method. This
is a relatively complex algorithm since not only the gradient
but also the Jacobian must be found. The LM algorithm is
implemented in the MATLAB Neural Network Toolbox, but
because of its complexity, it was developed only for layer-by
layer architectures, which are far from optimum.
The software described in this paper is capable of handling

arbitrarily connected neural networks (including fully
connected). These architectures can be trained not only by
Error Back Propagation methods but also by the LM -
Levenberg Marquet algorithm. In addition, a couple of

1-4244-1148-3/07/$25.00 ©2007 IEEE.

127

Authorized licensed use limited to: Auburn University. Downloaded on March 9, 2009 at 09:46 from IEEE Xplore.  Restrictions apply.



INES 2007 - 11th International Conference on Intelligent Engineering Systems - 29 June - 1 July 2007 - Budapest, Hungary

modifications to the LM algorithm were proposed in order to
improve convergence and to simplify Jacobian computations.

II. DESCRIPTION OF NEURAL NETWORK TRAINER

Currently, there is very little neural network training
software available that will train fully connected networks.
Thus a package with a graphical user interface has been
developed in M\ATLAB for that purpose. This software allows
the user to easily enter very complex architectures as well as
initial weights, training parameters, data sets, and the choice
of several powerful algorithms. The front end of the package
is shown in Fig. 3.

Fig. 3. Front end ofNeural Network Trainer (NNT)

On the right side there are several text windows where the
algorithm and its parameters can be set. A number of the
parameter boxes change based on the currently selected
training algorithm. However, print scale, max iterations, max
error, and gain are used by all of the included algorithms. The
print scale determines how often the error is displayed in the
MATLAB control panel. Printing this error slows down the
computation so this allows the user to print the error only as
often as needed. The max iterations sets a ceiling so the
calculations will not last indefinitely. Max error is the amount
of error that still qualifies as a successful convergence. File
name is the file that contains the network architecture,
weights, and models. When the Train button is pressed the
program begins training the network. The user can monitor
the progress by watching the total error as it is displayed in the
MATLAB Command Window. If the network is successfully
trained, a plot of the errors will be displayed in black on a
semi logarithmic scale. If the networked failed to converge or
is canceled by the user, then a red dotted line will be
displayed.

Fig. 3 shows results for solution of the parity 5 problem
using modified LM algorithm (BMW) which reaches a
solution with an error smaller that 0.00001 in less than 30
iterations.

It would not be practical to enter the network architectures
or learning patterns on screen. Therefore two text files are
used instead.

A. Input File
The input file contains the network architecture, neuron
models, data file reference, and optional initial weights. The
neurons are listed in a net list type of layout that is very
similar to that of SPICE. This way of listing the layout is node
based with the first nodes reserved for the inputs. The first
character of the line is an "N" to signify that this line describes
a neuron and is followed by the neuron output node number.
The neuron model name is listed which allows the user to
specify a unique model for each neuron. After the model, the
input nodes are listed in increasing order. Figure 2(b) shows
an arbitrarily connected neural network that is setup to solve a
parity 5 problem using four bipolar neurons. The following is
an example of what the input file would look like for this
network

//Network Architecture for Network shown infigure 2
N6 mbip12345
N7 mbip12345
N8 mbip12345
N9 mbip12345678
/Optional Initial Weights
W-3.65 3.65 3.65 1.83
W 1 -27.6 27.6 27.6
W 1.01 -97.2 81.5 5.89 46.2 69.8
W 5.24 2658 1.14 7.13 4.8
//Model Definitions
model mbipfun=bip, gain=2, der=0. 01
.model mufun=uni, gain=2, der=0. 01
model mlinfun=lin, gain=1, der=0. 05

The user also has the option of setting the initial weights.
However, if the user does not specify initial weights, then the
program will automatically generate a set of random weights.
The weight structure is very similar to the topology except all
weights are specified as inputs rather than node numbers. This
means the location of the output node in the topology is
actually the weight of the input bias. The remaining weights
correspond with the input connections of the topology.

The user specifies a model for each neuron, with each
model defined on a single line. The user has the ability to
specify the activation function, gain, and neuron type
(unipolar, bipolar or linear) for each model. The user may also
include neurons with different activation functions.

B. Training set

The second required file contains training patterns. The
name of this file is included in the input file. The training set
is a standard text file with the data separated by spaces or
commas. Each row should contain all of the data for a
particular pattern with the inputs first followed by the outputs.
The number of inputs and outputs is defined by the topology
given in the input file and does not need to be separated in the
data file.

C. Implemented algorithms
The user can easily train a network with multiple different

algorithms and unique training parameters by simply changing
a pull down menu. The developed trainer has several different
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algorithms for the user to choose from:
EBP - traditional Error Back Propagation
BMW - a modified Levenberg-Marquardt algorithm for

arbitrarily connected neural networks.
SA - Self Aware algorithm which is a modification of

BMW. It evaluates the progress of the algorithms training and
determines if the algorithm is failing to converge. If the
algorithm begins to fail the weights are reset and another trial
is attempted. In this situation the program displays its progress
to the user as dotted red line on the display and begins again.
The algorithm continues to attempt to solve the problem until
either it is successful or the user cancels the process.
ESA - Enhanced Self Aware algorithm, which is also a

modification of the BMW algorithm, is used in order to
increase chances for convergence. The modification was made
to the Jacobian Matrix in order to allow the algorithm to be
more successful in solving very difficult problems with deep
local minima. It is also aware of its current solving status and
will reset when necessary.

F- ESA -Another modification of the BMW algorithm
where an alternative method for calculating the Jacobian
matrix is used. The calculation of Jacobian is unique in the
sense that only feed-forward calculations are needed. This
approach is then paired with the Enhanced Self-Aware LM
algorithm.

Evolutionary Gradient - newly developed algorithm
which evaluates gradients from randomly generated weight
sets and uses the gradient information to generate new
populations of weights. This is a hybrid algorithm which
combines the use ofrandom populations with an approximated
gradient approach. Like standard methods of evolutionary
computation, the algorithm is better suited for avoiding local
minima when compared to common gradient methods such as
EBP. What sets the method apart is the use of an
approximated gradient which is calculated with each
population. By generating successive populations in the
gradient direction, the algorithm is able to converge much
faster than other forms of evolutionary computation. This
combination of gradient and evolutionary methods essentially
offers the best of both worlds.
The BMW algorithm was briefly described in [15] and the

Evolutionary Gradient algorithm was described in [16].

III. ESA - ENHANCED SELF AWARE ALGORITHM

A common problem with many training algorithms is that
local minima often cause some weights to get pushed into the
saturated portion of the tangent hyperbolic curve (see Fig. 4).

In the saturated region, the slope is nearly zero and
therefore the derivative is also nearly zero. This is a problem
when a particular pattern has a large error while in saturation.
In this case when the error is multiplied by the slope the error
is lost. This causes the algorithms to frequently get stuck in
local minima. By scaling the Jacobian by a constant, this
allows the patterns to remain in the linear region longer in
order to allow all of the patterns to be correctly classified. The
downfall of this scaling is that it makes it more difficult to find

the exact solution when the errors are small. To account for
this, the algorithm monitors the errors for each pattern and
when the errors for all patterns are small the algorithm no
longer scales the Jacobian Matrix. This allows the algorithm
to converge to a very small error.

Saturation _

/
-11, \XJ Linear Region

Fig. 4Typical acti ationfunt2i4 o

Fig. 4 Typical activation function

Algorithm Success Scale
______ _____ Rate Sc l

orBMW | 79% N/A

n ESA 94% 2.9

LO BMW 21% N/A

n ESA 70% 2.5

BMW 0% N/A

n ESA 43% 4

CD BMW 17% N/A

n ESA 59% 4

TABLE 1. Comparison ofBMW and ESA algorithms

The ESA algorithm was compared with the BMW
algorithm. At the beginning of each training session random
weights are generated as the starting weights for the
calculation. These weights can play a significant role in
whether or not the algorithm will converge. This makes it
difficult to determine if the algorithm is converging because it
is working properly or simply because it had a good set of
starting weights. In order to remove this variable, a library of
random weight sets was generated for each neural network and
saved. Each algorithm was tested for each starting set and its
convergence was recorded.

Based on success rate of the ESA algorithm, it was better
than that of the BMW algorithm on every training set
compared. The enhanced in many cases took more iterations
but this cost is heavily out weighed by the shear ability to
converge with a reasonable success rate.

Despite the better success rate, the ESA algorithm's
convergence was consistently slower then the BMW
algorithm. Therefore, it should be used only for very difficult
problems.
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IV. F-BMW - FEED-FORWARD JACOBIAN CALCULATION

Calculation of the Jacobian matrix is an essential part of the
Levenberg-Marquardt algorithm. Although using the Jacobian
for approximating the Hessian matrix significantly reduces
computational complexity, calculating the Jacobian can be
rather involved by itself. The method for calculation
traditionally used by the Levenberg-Marquardt training
algorithm requires both forward and backward calculations.
First, feed forward calculations are made to determine the
error. The elements of the Jacobian matrix are then obtained
by propagating this error back through the network. It is this
backwards calculation which is largely responsible for the
algorithm's relative complexity. A simpler method is proposed
which closely approximates the Jacobian matrix using only
feed-forward calculations.

A. A short derivation
The proposed method requires that the elements of the

Jacobian matrix be expressed as a function of the net input for
each neuron in a given network. A short derivation is required
in order to obtain this relationship.

The Levenberg-Marquardt algorithm computes the elements
of the Jacobian matrix in the form

ae1
J(i, j)= i (1)awj

where e1 is the error for the input pattern xi, and Wj is a

specific weight. The first step in the derivation is to find a
relation between ao andae .

The error associated with a given input pattern is defined as
the difference between the desired output and the actual output
for a specified set of weights, or

ek = od Ok (2)

where od is the desired output for the given pattern and ok is

the actual output generated using the weight set wk, with

k being the number of the current iteration. The change in
outputs between iterations k and k -1 is simply

o-=ok -°k-I (3)
Thus, solving (2) for ok and substituting into (3),

ao= od ek °k-I (4)
Finally, substituting k -1 for k in (2) and combining it with
(4) yields the desired relationship between ao and ae.

aO = -d °k-l ek
= ek -Iek

> ao =-e
The Jacobian can now be expressed in terms of the change in
output rather than error.

J(i,) = -
aOi

O = f(net)

wheref is the activation function of the neuron. For the
general case in which the neuron has n inputs including the
bias,

net =w1 X1 +W2 .X2 +***+Wn Xn (6)

With this in mind (5) can again be rewritten, this time relating
it to net.

Doi =_
awj

aoi anet
anet aw,

It is clear from (6) that for any wj,
anet

JX
Thus

Do1J(i,j= - 8ni x
anet

(7)

B. Approximating the Jacobian

The only unknown term in (7) is aoi anet, which
corresponds to the gain between the input of the given neuron
and the output of the network. This gain can be approximated
numerically by slightly incrementing the value of net and
then dividing the corresponding change in output by the size
of the increment. With this value for aoi I anet, the
corresponding element of the Jacobian matrix can be easily
approximated using (7). By this method, the entire Jacobian
matrix can be obtained using the gains associated with each of
the neurons. Because these gains can be computed using only
feed-forward calculations, no back-propagation is required.
The single drawback to this method is that its accuracy
depends entirely on the size ofanet . As anet approaches
zero, the accuracy of the approximation increases, however
the bit precision required to compute each of the elements also
increases. This puts a limit on the level of accuracy which can
be achieved.

C. Resultsfrom testing
Three separate networks were trained using the proposed

method in conjunction with the modified LM algorithm
described in section IV. The networks were trained 100 times
each using a set of one hundred randomly generated starting
weights. Each network was then retrained using the
unmodified LM algorithm and standard Jacobian. The same
set of initial weights was used for comparison. A comparison
of the results is shown in the table below.

(5)

This relationship is useful since, for a given neuron, the output
is a function of the net input, or
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|Algorithm | Jacobian |Success FailureAlgorithm Jacobian Rate Rate

> BMW Standard 79% 21%

. ESA Feed-forward 95% 5%

LO BMW Standard 21% 79%

0- ESA Feed-forward 59% 41%

.> BMW Standard 0% 100%

0- ESA Feed-forward 37% 63%

TABLE 2. Comparison ofBMW and ESA algorithms using
feedforward computation of Jacobian

Although the feed-forward method for calculating the
Jacobian is only an approximation, when paired with the ESA
algorithm, it has a better success rate than BMW algorithm.
However for BMW it converges much faster if it converges at
all.

V. EXPERIMENTAL RESULTS

Algorithms implemented in the Neural Network Trainer
(NNT) were compared on several difficult problems starting
with parity problems. Figures 5 and 6 show results for the
parity 3 problem using EBP. The figures were generated using
layered and fully connected networks respectively. One may
notice that for a fully connected network EBP converges faster
and has a better success rate.

10
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Fig. 5 Results ofEBP algorithm using a traditionally connected
network for a parity-3 problem.
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When the BMW algorithm was applied for the same set of
patterns and the same starting weights, both the success rate
and convergence time were improved drastically. Results are
shown in Figs. 7 and 8.
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Fig. 7. Results ofBMW algorithm using a traditionally connected
network for a parity-3 problem.
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Fig. 8 Results ofBMW algorithm using a fully connected network
for a parity-3 problem.
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Fig. 6. Results ofEBP algorithm using a fully connected network
for a parity-3 problem.
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Fig. 9. Results ofEBP algorithm a fully connected network for a
parity-5 problem.

For a more complex problem like parity 5, the EBP algorithm
failed in all tried cases despite 50,000 iterations (Fig. 9). When
ESA algorithm was used, it reached the solution in 100% of
the cases with an average of about 100 iterations. The results
are shown in Fig. 10. The ESA algorithm was also successful
in 48% of cases for the parity-7 problem (Fig. 11).
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Fig. 10. Results ofESA algorithm a fully connected network for a
parity-S problem.
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Fig. 11. Results ofESA algorithm a fully connected network for a
parity-7 problem.

VI. CONCLUSION
The Neural Network Trainer with Second Order Learning
Algorithms was described. The software was developed in the
MIATLAB environment and has a user friendly interface. It is
capable of training feed-forward neural networks with
arbitrary architectures. The network topology is entered in a
manner similar to the SPICE program. Several second order
algorithms are implemented which are able to more efficiently
train neural networks. It was also shown that fully connected
neural network architectures are more efficient than
commonly used layer by layer architectures. The NNT
software is available as either a stand alone executable or as a
p-file which will run in MIATLAB. Both versions are available
for download at
http:/www.eng.auburn.edu/-wilambm/NNT.zip.
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