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Abstract - Digital implementations of neurocomputers are 
presently quite expensive, they require excessive power, they 
suffer from a number of issues that cause performance 
characteristics to differ from the theoretical model of the 
system, and they are relatively intolerant of fault conditions. 
The inherent advantages of the massively parallel structure of 
these systems are also lost in the common practice of executing 
algorithms sequentially on a conventional computer. The 
paper presents nonlinear analog signal methodology where for 
nonlinear processing nonlinear characteristics o f  MOS 
transistors are used. 

I. INTRODUCTION 

Electro-mechanical devices require sophisticated 
nonlinear controllers. Design and implementation of such 
controllers are not easy. Often computational 
methodologies are needed and this requires combination of 
several techniques such as neural networks fuzzy systems 
or evolutionary computation. 

As a likely result of the on-going development of 
computer technology we may expect that massive parallel 
processing and. soft computing will significantly enhance 
traditional computation methods. A natural consequence of 
this rapid growth is the emergence of $e field of intelligent 
systems. The machine-intelligent behavior is determined by 
the flexibility of the architecture, the ability to  realize 
machine incorporations of human expertise, laws of 
inference procedure and the speed of learning. All these 
titles are the main constituents of the research area named 
Computational Intelligence or Sol7 Computing. It is a 
practical alternative for solving mathematically intractable 
and complex problems. The main subdivisions of the area 
are artificial neural networks and fuzzy inference systems 

The mathematical power of machine intelligence is 
commonly attributed to the neural-like system architecture 
used and the fault tolerance arising from the massively 
interconnected structure. Such systems are characterized by 
heavy parallel processing. The last feature is unfortunately 
lost if algorithms are implemented using conventional 
microprocessors or digital computers. 

Another aspect of soft computing systems is that 
instead of "zero" and "one" digital levels, they use 
huyicontinuous levels and in this way much more 
information is passed through the system. Conventional 
digital computers are not well suited for such signal 
processing. 

[l-4]. 

A third feature of soft computing systems is their 
survivability in the presence of faults; this means they may 
work correctly if they are partially damaged. In contrast, a 
one-bit fault in traditional computers may lead to 
catastrophic results. Therefore there is a significant interest 
in development of special hardware for soft computing. 
Several special issues of various journals have been devoted 
to these topics and several reference books of collected 
articles on the subject have been published [5-71. 

Computationally intelligent methodologies are 
commonly used for identification and/or control of 
nonlinear dynamic systems, the behaviour of which can 
usually be described by a set of nonlinear differential 
equations in state variable form as indicated in Fig. 1. 
Integrators can easily be implemented in silicon. It could be 
for example an operational amplifier with a feedback 
capacitor, but other simpler circuits are also possible. The 
difficult task in hardware realization is to implement 
arbitrary nonlinear terms. Fuzzy or neural systems are the 
prime candidates for that purpose. The focus of this 
proposal is on hardware implementation of computationally 
intelligent systems and on methods to designhain them. 
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Fig. 1. Block diagram o f  an arbitrary nonlinear dynamic 
system. 
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11. COMPARISON OF NEURAL AND FUZZY 
SYSTEMS FOR NONLINEAR FUNCTION MAPPING 

Both neural networks and fuzzy systems are capable of 
approximating any nonlinear function, but their 
implementation in silicon is not easy. Both neural and fuzzy 
systems have their advantages and limitations. 

Fuzzy systems utilize the expert information in the 
form of a set of rules. There are several reasons for using 
fuzzy systems in control engineering practice. First, the 
dynamics of the system under interest is generally 
complicated, but sometimes its behavior can be defined 
more easily in linguistic terms. Second, fuzzy systems are 
suitable architectures for modification and tuning process, 
which provides some kind of adaptiveness through the on- 
line adjustment of parameters. The major advantage of 
fuzzy logic based systems is their ability to utilize expert 
knowledge and perception based information. 

Artificial neural networks are well known by their 
property of performing complex nonlinear mappings. 
Earlier works on the mapping properties of these 
architectures have shown that neural networks are universal 
approximators [8-IO]. Even though neural networks today 
are primarily implemented in software, their good 
approximation properties make them an attractive 
alternative for hardware implementation. One concern in 
digital implementation is related to the quantization of 
weights required by digital hardware [ 111. Another 
difficulty is caused by the fact that the activation functions 
obtained in practical digital VLSI implementation are 
different from those used in neural network design 
software. This means that standard neural network software 
cannot accurately represent the solutions one will get by 
actual circuit realization. 

Currently, fuzzy controllers are the most popular 
choice for hardware implementation of complex control 
surfaces because they are easy to design. Neural controllers 
are more complex and harder to train, but provide an 
outstanding control surface with much less error than that 
of a fuzzy controller. Figures 2,3,  and 4 show a comparison 
of fuzzy and neural network based system implemented in 
Motorola HC11 microcontroller. Motorola's 68HC711E9 is 
a low cost, %bit microprocessor; the on-board features of 
which are 512 bytes of RAM and EEPROM and 12K bytes 
of UV erasable EPROM. The processor was used with an 8 
MHz crystal, allowing an internal clock frequency of 2 
MHz. 

A drawback of neural controllers is that the design 
process is more complicated than that of fuzzy controllers. 
However, this difficulty can be easily overcome with proper 
design tools. One severe disadvantage of a fuzzy system is its 
limited ability of handling problems with multiple inputs. In 
the case of neural networks such a limitation does not exist. 
Furthermore, control surfaces obtained from neural 
controllers also do not exhibit the roughness of fuzzy 
controllers that can lead to unstable or rough control. 
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Before neural networks can be implemented on VLSI 
chips several problems have to be solved. First, an 
approximation function needs to be developed because 
CMOS neural networks have an activation function 
different than any function used in neural network software. 
Next, this function has to be used to train the network. 
Finally, the last problem for VLSI designers is the 
quantization effect caused by discrete values of the channel 
length (L) and width (W) of MOS transistor geometries. 

System System Network Network 
(Zadeh) (Tagagi- 2-1-1-1 2-1-1-1- 

Su eno 

1.95 28.5 I .72 3.3 
0.945 0.309 0.000578 0.000093 

Error 

During the last decade many, more or less efficient 
algorithms for neural network traning have been developed. 
This proposal does not have the objective of developing 
better algorithms for the general purpose of neural network 
training, but it aims, based on the experience previously 
gained during a NSF sponsored project, to adopt or develop 
special algorithms for specific hardware architectures. 
During the course of the research activities, the project may 
also branch into easily retrainable algorithms where only a 
few new patterns are being replaced in.the training batch. 

This is especially important adaptive systems or 
adaptive critics metodology is used. Significant progress 
has already been made in learning algorithms and dedicated 
neural network architectures[ 121. As has previously been 
discussed, the major advantage of neural systems is its 
parallel computation. Most current implementations of 
neural networks are done on Neumann type digital 
computers where all computation is done sequentially and 
as result, the unique advantage of neural network 
parallelism is being lost. 
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Fig. 2. Required control funtion and a comparison of the 
results obtained with microcontroller implementation using 
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fuzzy (details of which are given in Fig. 3) and neural 
(details ofwhich are given in Fig. 4) approaches. [I31 
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Fig. 3. Control surfaces obtained with Motorola 
microcontroller HC1 I using fuzzy approach with 
trapezoidal membership functions (7 functions per input) 
and Tagagi-Sugeno defuzzification [ 131 ’ 
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111. HARDWARE IMPLEMENTATION OF FUZZY 
SYSTEMS 

Fuzzy systems dominate current trends in both 
microprocessor applications [ 131 and in custom designed 
VLSl chips (141. Fuzzy controllers are especially useful in 
nonlinear systems since such systems are difficult to 
describe using conventional mathematical models. The use 
of an analog approach is an attractive alternative for this 
nonlinear signal processing. It  provides parallel processing 
with a speed limited only by the delay of signals through 
the network. However, membership functions and fuzzy 
rules are chosen arbitrarily and therefore’ fuzzy controllers 
are often good but not optimal. Nevertheless, in many cases, 
simple fuzzy controllm perform beeer than traditional ones, 
especially if systems are very nonlinear. Their performance can 
significantly be improved when they are tuned with neural 
networks or by evolutionary algorithms [15]. It should be 
pointed out that the classical approach to fuzzy control [16], 
although possible [17-201 is dificult to implement in analog 
harhvare. 

Analog signal processing is usually much faster than 
digital. Several computation processes can be done 
simultaneously, and AD and DA conversion are not 
required. Analog integration or differentiation has already 
been used for many years. Analog summation and 
multiplication are also quite common. For computational 
intelligence, more sophisticated nonlinear function 
realizations are required such as WTA (Winner Takes All), 
fuzzy membership functions, normalization circuits, MIN 
and MAX operators, division circuits, and others [ I  7-231. 
In realizing such nonlinear signal processing, the nonlinear 
characteristics o f  MOS devices can provide an advantage. 
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(a) (h) 
Fig. 5. Fuvifier circuit with four differential pairs creating 
six membership functions: (a) circuit diagram and (b) 
fuzzifier characteristics. 

As is stated above, the classical approach to fuzzy 
systems as presented by Zadeh [16] is difficult to 
implement in analog hardware. Especially difficult is the 
defuzzifier where signal division has to he implemented. 

Fig. 4. Control surfaces obtained with Motorola 
microcontroller HC11 using fuzzy approach with six 
neurons 2-I-I-1-1-1 architecture and Elliot activation 
function. [ 131 

‘ 
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The division problcm can be avoided through the use of 
feedback loops, but this approach can lead to limited 
accuracy and to stability problems. An alternative approach, 
taken here, is the use of simplilied Takagi-Sugcno singleton 
inference rules [ 131, where normalization is used. 

Consider, as an example, the analog 
implementation of a fuzzifier, which must convert crisp 
analog values into several fuzzy variables. The conversion 
takes place using membership functions of triangular, 
trapezoidal or Gaussian type shapes. Several different 
circuits have already been proposed [17-231. In the circuit 
shown in Fig. 5. only one differential pair is required per 
membership function and one current source per fuzzifier. 
Note that several different shapes of the membership 
function can be obtained by selecting different WIL 
(widthilength) ratios of MOS .transistors. This circuit was 
used in the fabricated fuzzy chip shown in Fig. 6, and the 
measured characteristics are shown in Fig. 7. A relatively 
smooth control surface (better than what can be obtained by 
microprocessor implementation) was a result of non- 
ideality of transistor characteristics, which do not exhibit 
sharp transitions (which means that the first and the second 
derivatives are continuous). 

The design of an FPGA (Field Programmable Gate 
Array)-based fkzy controller can be very simple. As 
shown in Fig.8, it consists of an FPGA, analog-to-digital 
(A/D) converters for the inputs, a digital-to-analog (D/A) 
converter for the output and a ROM chip. The design is 
done on the 4010 FPGA using 97% of the chips resources. 
The maximum delay between flip-flops determines the 
clock frequency. The maximum clock frequency for this 
design is 9.6MHz. The size of the look up table grows 
exponentially as the number of inputs increases. This is the 
downfall of the solution of Fig. 4(a). The size of ROM can 
he significantly reduced ifthe concept presented in Fig. 5 is 
used. In this approach only three or four most significant 
bits of each input determine the address for the lookup 
table. A weighted average of least significant bits is used to 
eliminate rawness (Fig. 8). 

Fig. 7. Control surfaces: (a) desired control surface, (b) 
information stored in defuzzifier as weights, and (c) 
measured control surface of VLSI [4] 

Microprocessor systems are fast enough for most 
mechatronics systems. The control surfaces obtained by 
their use can be rather rough but the roughness can partially 
be compensated by using product encoding instead of min 
encoding or by the use soft membership functions (for 
example Gaussian). Another way to eliminate roughness is 
to use second order approximation algorithms [25-261. 
Unfortunately these improvements are more 
computationally intensive and result in much slower 
pcrformance. 
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Fig. 8. FPGA implemented fuzzy controller(a) , the 
required (b) , and obtained (c) control surfaces. 

IV. HARDWARE IMPLEMENTATIONS OF NEURAL 
NETWORKS 

It has been stated above that, in hardware implementations 
of  soft computing methodologies, fuzzy systems dominate 
current trends in both microprocessor applications [13] and 
in custom designed VLSI chips [4]. However control 
surfaces obtained from fuzzy controllers are rough, which 
can cause unstable control. On the other hand, neural 
networks usually require a computation of tangent 
hyperbolic activation functions. This task it often too 
complex for simple microprocessors. When the tangent 
hyperbolic function is replaced by the Ellion function then 
the computations are relatively simple. 

- 1  
2 

f i n e t )  = tanh(net) = 
I -exp(-2net) 

(2) net 
f (net )  = ~ 

I + Iner/ 

With such an approach, neural network implementation 
can be done with shorter code, resulting in faster operation, 
and much more accurate results. Figs. 2, 3 and 4 show the 
comparison of several controllers for the same desired 
control surface implemented in the popular HCI 1 micro- 
controller using various fuzzy and neural network 
architectures. A microprocessor based system can easily be 
reprogrammed, but training them on fly would be a real 
challenge (fuzzy approaches are better from this point of 
view). The major disadvantage of microprocessor-based 
implementations is that they do not take advantage of 
massive parallel computing as occurs in nervous systems. 

Most common neural systems use neurons with sigmoid 
activation functions. Other activation functions such as 
Gaussian or cosine are also used. The problem is that 
neither of the latter functions can easily be implemented in 
silicon. However, this can be solved by the use of existing 
nonlinear characteristics of silicon devices, rather than 
focusing on implementing traditional functions (like tanh()) 
in silicon which is rather difficult). Such an approach 
would require a modification of training algorithms, but this 
is a small price to pay. 
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Fig. 9. “Squashed function” generated by differential pair 

There are some problems that have to he solved before 
neural networks can he implemented in VLSI chips in an 
effective manner. First, a new approximation function 
needs to be developed because CMOS neural networks can 
produce activation functions different than any function 
used in standard neural networks. One of the simplest 
approaches would be the usage of a “squashed function” 
produced by a differential pair as shown in Fig. 9. Next, the 
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network must he trainable using this function and this 
requires a specially developed algorithm. 

The on-going miniaturization of silicon chips leads to 
problems with device tolerance limits. Cutting edge 
technology is limited by tolerances. When we become able 
to produce devices with acceptable tolerances, size is 
reduced once more and we are brought hack to facing the 
tolerance dilemma again. However, the biological nervous 
system is not so sensitive to such tolerance elements [I]. 
The prime reason is that in the vertebrate nervous system, 
communication between distant neurons is accomplished 
using encoded pulse streams [29]. Pulse-stream encoding 
techniques use pulse streams to carry information and 
control analog circuitry, while storing further analog 
information on the time axis. The tiring rate of action 
potentials in biological neurons is roughly proportional to 
the change in the original graded potential, which is 
categorized as frequency modulation. Padgen, Werhos, and 
Kohonen [2] present an overview of the use of PCiiN in 
pattem recognition applications. In a special issue of IEEE 
Trans. on Neural Networks [28] a number of good 
references of PCNN technologies are given. PCNN are not 
sensitive to the magnitude of the signal since information is 
coded in signal timing. In the case of digital 
implementations there are several ways to code the 
information as is illustrated in Fig. 10-12. 
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Fig. 10 Electronic implementation of Pulse Couple Neural 
Networks 

V. SILICON DEVICES FOR NONLINEAR SIGNAL 
PROCESSING 

It is also possible to use other approaches than fuzzy or 
neural systems for nonlinear mapping. For example, several 
nonlinear blocks implemented in VLSl could he linked 
together, more or less in a random way, and the desired 
nonlinear characteristics could he obtained by tuning links 

and device parameters. Several development methods could 
he implemented for such systems. One way would he to use 
genetic algorithms to find close to optimum architectures 
and then gradient based methods could he used (similar to 
those used for neural networks) for final tuning. 

Fixed pulse shape and infomation is coded in a 
freiluencv .~ n n - n  n 

Frequency is fixed and information i s  coded in 

Both duN cvcle and fresuencv are chaneine. 

Pseudorandom pulse generation 

Fig. 11. Various method of implementation of the pulse 
nature of real nervous system into digital hardware. 

/ 

Fig. 12. Neuron circuit working in the pulse mode with 
duty cycle modulation. It has two outputs, positive and 
negative, therefore it is relatively easy to implement both 
positive and negative weights. Nonlinear activation 
function (squashed type) is automatically generated by the 
differential pair MI M2. 

As is stated above, nonlinear functions can he directly 
implemented by VLSl circuits. For example, exponential 
and logarithmic functions can he accomplished by using the 
nonlinear characteristics of p-n junction, bipolar transistor 
characteristics, or MOS transistor characteristics operating 
in sub threshold conduction mode. There are several 
examples that can be given to illustrate the creation of 
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arbitrary nonlinear blocks using nonlinear characteristics of 
MOS transistors. For the square relationship, the MOS 
transistor characteristics operating in strong inversion mode 
can be used. The circuit shown in Fig. 13 can approximate 
sine and cosine functions, which are required for robot 
kinematics. Figure 14 shows a four quadrant multiplier, 
implementcd with MOS transistors operating in sub- implemented. 
threshold conduction mode. 

Neural networks could be implemented as VLSl chips in 
several ways. The circuit in Fig. 15 works as a nonlinear 
transconductance amplifier where inputs and outputs are 
currents. Weights are implemented by selecting different 
WIL ratios. With positive and negative outputs of the 
differential pair both positive and negative weights can be 

(C) 

Fig. 15. Current mirrors and nonlinear processing units [29] 
for piecewise approximations: (a) using NMOS transistors, 
(b) using PMOS transistors, (c) combining NMOS and 
PMOS Fig. 14. Four quadrant multiplier (a) circuit diagram (b) 

multiplier used as the frequency doubler. 
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VI. CONCLUSION 

Nonlinear characteristics of semiconductor devices in VLSl 
circuits were used to synthesize arbitrary nonlinear 
functions. Several ways of nonlinear signal processing were 
proposed including neural networks, fuzzy systems, and 
application spccific synthesis. The later one includes piece- 
wise approximations. 
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