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Abstract - Several neural network architectures for computing parity 
problems are described. Feedforward networks with one hidden 
layer require N neurons in the hidden layer. If fully connected feed-
forward networks are considered, the number of neurons in the 
hidden layer is reduced to N/2. In the case of fully connected 
networks with neurons connected in cascade, the minimum number 
of hidden neurons is between log2(N+1)-1 and log2(N+1). This 
paper also describes hybrid neuron architectures with linear and 
threshold-like activation functions. These hybrid architectures 
require the least number of  weights. The described architectures are 
suitable for hardware implementation since the majority of weights 
equal +1 and weight multiplication is not required. The simplest 
network structures are pipeline architectures where all neurons and 
their weights are identical. All presented architectures and equations 
were verified with MATLAB code for parity-N problems as large as 
N=100. 
 

I.  INTRODUCTION 
 
There has been a significant research effort made toward 
optimum design of threshold logic networks for many decades 
[1-8].  The results of this effort can be applied to unipolar neural 
networks based on the McCulloch and Pitts model [9], but 
cannot be applied to networks with bipolar neurons. There is 
also a parallel effort by many researchers to solve parity-N 
problems using “neurons” with special activation functions [10-
14]. However, the work presented here is limited to neural 
networks with classical McCulloch-Pitts neurons or neurons 
with sigmoid-like activation functions. 
    In 1961, Minnink [1] showed that threshold networks with 
one hidden layer require N hidden threshold units to solve the 
parity-N problem. Stork and Allen [14] reduced this problem 
to two hidden units with diode-like activation functions. Fung 
and Li [15] also demonstrated that the minimum size of the 
hidden layer required to solve the N-bit parity problem is N 
neurons. If the network is fully connected (output neuron is 
also directly connected to inputs) then, as shown by Minnink 
[1], the number of hidden threshold units can be reduced by 
half. In this case, only N/2 neurons are required in the hidden 
layer for the parity–N problem.  More recently, Paturi and 
Saks [3] showed that only N/log2N neurons are required. Siu, 
Roychowdhury, and Kailath [6] showed that when one more 
hidden layer is introduced, the total number of hidden units 
could be only N2 . Cotofana and Vassiliadis [8] 
demonstrated many compact neural network architectures. 
They derived an asymptotic bound for O(log N) for the neural 
realization size and depth for a larger class of symmetric 
functions. They also stated that “…the realization of generic 

symmetric functions, possibly O(log N)  depth and size 
network still remain open and subject of further research…”  
This paper addresses this issue and demonstrates neural 
networks for parity-N problems with the total number of 
neurons equal to log2N. We also demonstrate several 
modifications of these minimal networks where the number 
of weights is minimal too. In contrast to all previously 
published results, we demonstrate both unipolar and bipolar 
implementations of parity-N networks. 
 
II.  SOLVING PARITY-N PROBLEMS USING BOOLEAN LOGIC 
 
The XOR and parity-N problems are used very frequently in 
digital systems. For example, conversion of Gray code to 
binary code uses a chain of XOR operators. Parity-N circuits 
are essential for error detection and correction.  Digital 
additions and multiplications also require parity-N circuits. 
Parity-N systems are often used in digital transmission to 
detect errors or to detect hardware failures in digital memory. 

Logic function implementation of XOR and XNOR gates 
is more complicated than implementation of NAND and 
NOR gates. The most common XOR realizations require 
several digital primitives. Parity-N problems are usually 
implemented in digital system by cascading XOR gates. This 
solution for the parity-N problem requires N-1 XOR gates. 
Circuits for parity-N computations consist of several layers 
and introduce significant delays. 
      Franco and Cannas [17] introduced modular neural 
networks suitable to solve parity problems. Their concept 
basically follows the traditional digital approach where 
parity-N problems can be solved using cascade connected 
XOR blocks. Two advantages of their architectures are a 
limited number of inputs for each neuron and an error surface 
with less local minima. These architectures lead to multi-
layer networks and a larger number of neurons than in other 
architectures.   
 

III.  XOR AND PARITY-3 PROBLEMS IN NEURAL NETWORK 
IMPLEMENTATIONS. 

 
Both the XOR and parity-3 problems can be visually 
illustrates in two and three dimensions respectively as shown 
in Fig. 1. For simplicity purposes, let us consider hard 
threshold bipolar neurons with signal levels –1 and + 1.  As 
shown in Fig. 1(a), the hidden neuron separation lines are 
described by: 
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(b) 
Fig. 1. Graphical interpretation of pattern separation by hidden layer and 
network implementation for (a) the XOR problem and (b) Parity-3 problem. 
 
One may notice that for the XOR problem:  

(1) All weights in the hidden layer connected to inputs 
are equal to +1. 

(2) Biasing weights for the two hidden neurons are +1 
and –1.  This fulfills (1). 

(3) Weights for the output neuron are +1 and –1 and the 
bias is –1. 

 
In the case of the Parity-3 problem (see Fig. 1(b)), the 
equations for the neurons in the hidden layer are given by: 
 

02 >−++ zyx   (3) 
00 >+++ zyx  (4) 
02 >+++ zyx  (5) 

 
Please notice that (3) is only fulfilled when all inputs are +1,  
(4) is fulfilled when at least two inputs are +1, and (5) is 
fulfilled if one or more inputs are +1. In other words, the 
hidden neurons are counting the number of ones on the 
inputs. Neuron 1 only responds if there are three ones on the 
input. Neuron 2 responds if there are two or more ones on the 
inputs, and neuron 3 responds if there is a one on any input.  
For the parity-3 problem, one may notice that: 

(1) All weights in the hidden layer connected to inputs 
are equal to +1. 

(2) Biasing weights for the three hidden neurons are +2, 
0, and –2.  This fulfills (3), (4), and (5). 

(3) Weights for the output neuron are +1, -1, and +1 
and the bias is 0. 

The same architectures can be used for bipolar neurons, but 
the weights have to be transformed accordingly. For bipolar 
neurons: 
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The bipolar signal xbip  (in –1 to +1 range) can be computed 
as a function of the unipolar signal xuni (in 0 to +1 range): 
   

12 −= unibip xx  (7) 
 
By inserting (7) into (6) one may obtain: 
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The division of both sides of (8) by 2 leads to: 
 

( )1,05.05.0 1
11

+∈






 +−+= +
==
∑∑ xforwwxwnet N

N

i
i

N

i

uni
ii

 (9) 

 
Therefore, to transform bipolar networks into unipolar 
networks, only the bias weights (thresholds) have to be 
recalculated.  The input weights remain the same.  
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Using (10) and (11), the bipolar circuits from Fig. 1 can be 
transformed to the unipolar circuits shown in Fig. 2. 
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(a)                                                        (b) 

Fig. 2.  Unipolar implementations of (a) XOR and (b) Parity-3 problems. 
 
By using a fully connected network, the number of neurons in 
the hidden layer can be reduced. Fig. 3 and Fig. 4 illustrate 
two implementations of the XOR problem using only one 
neuron in the hidden layer. These circuits can be easily 
derived from functional link networks [16-17]. In the first 
circuit, the AND operator is used as the nonlinear element 
while in the second circuit, the OR operator is used as the 
nonlinear element. 
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(a)                                              (b)   

Fig 3.  XOR implemetation with one neuron in the hidden layer performing 
AND operation (a) graphical interpretations and (b) diagram. 
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(a)                                              (b)   

Fig 4. XOR implementation with one neuron in the hidden layer performing 
OR operation (a) graphical interpretations and (b) diagram. 
 
This time, the graphical interpretations of the circuits were 
done for unipolar neurons. These unipolar circuits can be 
transformed into bipolar ones using the following formulas: 
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These formulas are derived by a method similar to (10) and 
(11).  
 
 
IV.  SOLUTION FOR PARITY-N PROBLEM IN NETWORKS WITH 

ONE HIDDEN LAYER 
 
Solutions presented in Fig. 1 for the XOR and parity-3 
problems can be generalized to parity-N cases. The values for 
the hidden neurons are given by: 
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Therefore, the first neuron only responds if all N inputs are 
+1. The j-th neuron only responds if more than j-1 inputs are 
activated with +1. For the N-th neuron, no inputs must be 
activated. As one can see from (14), the bias for the j-th 
neuron is: 
 

12 −−= Njbias j  (16) 
 
The output neuron performs the AND operation on all 
outputs of odd neurons with negation from all outputs of even 
neurons. This may be accomplished by assigning +1 weight 
values to all inputs coming from neurons with odd numbers 
and –1 weight values to the remaining inputs.  
    For the parity-N problem with layered neural networks 
containing one hidden layer, the weight calculations for the 
hidden neurons are: 
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NjforNjw jN L,2,112,1 =−−=+  (18) 
 
While weights for the output neurons are: 
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Fig. 5. Layered bipolar neural network with one hidden layer for the parity-8 

problem. 
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For example, the architecture for the parity-8 problem with 
bipolar neurons is shown in Fig. 5.  The same architecture 
can be used for a unipolar network. In this case:  
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Please notice that in a layered feed forward network (no 
direct connections between inputs and the output neuron) for 
the parity-N problem, the number of hidden neurons is equal 
to N. The network complexity can be reduced if a fully 
connected network is considered. This issue is discussed in 
the next section.  

 
 
V. FULLY CONNECTED NETWORK WITH ONE HIDDEN LAYER 

 
The XOR architecture shown in Fig. 4 can be expanded for 
parity-N problems. Please notice that parity-N problems are 
symmetrical. This means that when inputs are mutually 
switched, the output remains the same. In other words, it is 
not important which inputs are excited, only that the total 
number of excited inputs is the same.  Figure 6 shows the 
architecture for the parity-5 problem with two hidden 
unipolar neurons.  Fig. 7 is a table that describes the state of 
the network for all possible input combinations. 
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Fig. 6.  Parity-5 implemented with 2 hidden neurons 
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Fig. 7.  Table describing all possible states of network from Fig. 6 

Similar architectures can be used for bipolar networks. The 
network diagram for the parity-11 problem is shown in Fig. 8 

and the corresponding table describing all possible states is 
shown in Fig. 9.  
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Fig. 8. Parity-11 implemented in fully connected bipolar neural networks 

with five neurons in the hidden layer. 
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Fig. 9. Parity-11 case with the net and out values calculated for the bipolar 
architecture in Fig. 8. 

 
Notice that the examples shown in Fig. 6 and Fig. 8 can be 
generalized for any value of N. Both bipolar and unipolar 
implementations are possible. Weights associated with all 
inputs are equal to +1. The bias weights for the hidden 
neurons, j, are: 
 

( ) JjforJjw jN L,2,1122,1 =−−=+  (24) 
 
The weights for the output neuron are: 
 

Jjforv j L,2,12 =−=   (25) 
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VI. FULLY CONNECTED NETWORK WITH ONE NEURON PER 
LAYER 

 
By connecting neurons in cascade, the number of required 
neurons can be significantly reduced. Fig. 10 shows the 
architecture for the parity-15 problem. Notice that only three 
hidden neurons are needed for this complex problem.   

unipolarweights = +1

1

2

3

out

+1

+1

+1

+1

-8

-4

-2

-3.5

-7.5

-1.5

-0.5

 
Fig. 10. Parity-15 implemented with 4 neurons in one cascade 
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Fig. 11. State table for parity-15 with three hidden unipolar neurons in 

cascade connection as show in Fig. 10. 
 

VII. HYBRID NETWORKS 
 
One may notice that the networks described in previous 
sections contain a large number of weights (see Fig. 8 and 
10). These networks can be further simplified by introducing 
a linear neuron, which operates as a simple summator of the 
incoming signals. Figure 10 can be reduced to the diagram in 
Fig. 12. 
    Further network simplification is possible when each 
neuron is considered as a composition of a summator and a 
threshold unit. Figure 13 shows a pipline network 
architecture where all hidden neurons are identical and only 

have two weights. The connection coming from the 
summator of the previous neuron always has a weight of +2. 
The connection coming from the output of the previous 
neuron always has a weight of ( ) 21+− N  (for parity 16 this 
is –8). The state-table for the bipolar pipeline architecture is 
shown in Fig. 14. 
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Fig. 12.  Parity-15 implemented in hybride architecture with 5 neurons in one 
cascade and one neuron with a linear activation function. 
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 Fig. 13 Parity-15 implemented with 4 bipolar neurons in pipeline hybrid 
architecture with identical neurons and weights. 
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Fig. 14 State-table for parity-15 implemented with 4 neurons in pipeline 
architecture with identical neurons and weights. 
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VIII. EXPERIMENTS 

 
It is not practical to test the described neural network 
architectures for all possible patterns. For example, if N=24, 
there are 224 = 16,777,216 24-bit patterns to be applied to the 
system for full verification.  The testing procedure can be 
significantly shortened.  To verify correctness of the network, 
it is enough to apply N patterns (24 patterns for the given 
example). 
    Notice that the number of patterns required to test a 
network depends on the network architecture. To verify the 
architecture, there is no need to apply all possible patterns.  It 
is enough to: 

(A) Prove that the same response will be obtained for the 
same number of ones at the input, no matter which 
inputs are activated. 

(B) Apply only N test patterns with a different number 
of ones in each pattern: 

(1,0,0,….0), (1,1,0,….0), (1,1,1,….0), …,(1,1,1,….1), 
The proof (A) is very simple. Notice that the weights for all 
inputs are the same, +1. Therefore, inputs are exchangeable. 
This means that only the number of +1’s and –1’s is 
important, not their association with a particular input. 
 

IX.  CONCLUSION 
 
Several neural network architectures for computing parity 
problems were described and tested. All architectures can be 
implemented with both bipolar and unipolar neurons. 
Feedforward networks with one hidden layer as described in 
Section IV require N neurons in the hidden layer. If a fully 
connected feed forward network is considered (Section V), 
then the number of neurons in the hidden layer is reduced to 
N/2. In the case of a fully connected network with neurons 
connected in cascade (Section VI), the minimum number of 
hidden neurons is between log2(N+1)-1 and log2(N+1). The 
paper described hybrid neuron architectures with linear and 
threshold-like activation functions. These hybrid architectures 
(Section VII) require the least number of connections. The 
described architectures are all suitable for hardware 
implementation since the majority of the weights are equal to 
+1 and a weight multiplication process is not required. The 
simplest network structure is the pipeline architecture where 
all neurons and their weights are identical.  All presented 
architectures and equations were verified with MATLAB 
code for parity-N problems as large as N=100. 
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