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Abstract 
 

Fuzzy controllers are traditionally implemented in a 
microprocessor and they produce relatively raw surfaces. 
The purpose of this work is to implement a fuzzy control 
system in a FPGA and to have resulted control surface as 
smooth as possible. The FPGA has allowed designers to 
create large designs test them and make modifications 
very easily and quickly.  This approach uses a new 
weighted average concept to keep the fuzzy lookup table 
small, yet the input sizes can be large.  This is 
implemented by using three or four most significant bits of 
each input to determine the address for the lookup table.  
A weighted average is performed using the remaining bits 
to eliminate rawness.  
 

1   Introduction 
 
In recent years, fuzzy systems have become very popular 
and are being used in many applications [1][2][3][4].  
Fuzzy systems give the digital designer the ability to use 
non-linear controllers for their application.  Fuzzy 
controllers are traditionally implemented in a 
microprocessor [5] but also dedicated VLSI chips have 
been developed [6][7][8][9][10].  The purpose of this 
work is to implement a fuzzy control system in a Field 
Programmable Gate Array type chip.  The project is being 
done on this type of chip so if design changes are needed 
the chip can be reprogrammed for the new design in a 
matter of seconds.  The traditional fuzzy systems work 
well for inputs that have 8 bits or less.  The number of 
inputs is also a factor in these designs since as the number 
of inputs increases the size of the lookup table increases 
exponentially.  The design will use a high-level 
programming language for the simulation of the weighted 
averaging technique and Hardware Description Language 
(HDL) will be used for the implementation.  The FPGA 
has allowed designers to create large designs test them 
and make modifications very easily and quickly.  This 
project is aimed for lab experiments and will not be tested 
or used on any actual systems.   
     Traditional fuzzy controllers use a minimum, a 
maximum, and inversion operators.  A minimum operator 
does exactly what the name says; find the minimum of the 
inputs.  In a Boolean system there are two states that a 

signal can be in: a high state and a low state.  A “1” for 
high and a “0” for low represent these two states.  In a 
fuzzy system there can be several states between “0” and 
“1.”  The digital AND gate works as a minimum function 
by finding the minimum of the two inputs.  The digital 
OR gate works for the maximum function.  In a binary 
system, taking the input value and bitwise inverting (each 
bit individually) them can accomplish the inversion 
function.   
      There are four main steps to a fuzzy controller (Fig. 
1).  The first step is converting an analog input into fuzzy 
variables, which is done in the block named fuzzifier.  
There are usually three to nine fuzzy variables that are 
produced for each analog input.  The general block 
diagram of a fuzzy controller can be seen below. 
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Fig. 1  Block diagram for a fuzzy system. 

 
Fig 2  Desired control surface. 
 
     The fuzzifiers can apply several different membership 
functions to the analog inputs.  The most common are the 
trapezoidal, triangular and the gaussian functions.  If the 
surface illustrated in Fig 2 is the desired output surface.  
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As seen in Fig 3 the output of the trapezoidal membership 
function is very choppy as compared to the desired 
surface in Fig 2.  Traditional fuzzy systems that are 
implemented in hardware are often done in Hardware 
Description Languages. 
 

 
Fig 3  Control surface using the trapezoidal membership 
functions. 
 

2. Hardware Description Languages  (HDL) 
 
Hardware Description Languages (HDL) were developed 
to describe how hardware behaves.  There are two main 
differences between traditional programming languages 
and HDL: 
1) Traditional languages are a sequential process 

whereas HDL is a parallel process, 
2) HDL runs forever whereas traditional programming 

languages will only run forever if directed.   
This leads to confusion as to why some things may be 
implemented in HDL and why other things are not.  For 
example, if the following two lines of code: 

C=A+B;   (1) 
A=C+D;   (2) 

 were analyzed using a software approach and a hardware 
approach one will find both of the differences and the 
different mindset one needs to write HDL.  In traditional 
programming languages, the first line of code in equation 
(1) would execute and result in the addition of A and B 
and storing it into C, and then taking C and D and adding 
them together and storing it back in A.  In software this is 
possible and is used very often.  In HDL the two lines 
would execute at the same time causing combinational 
logic feedback.  The most popular style of HDL is high 
level behavioral.  This is the highest level and can model 
large designs.  Behavioral style uses many of the same 
syntax that traditional programming languages use.  This 
style of HDL is the most powerful level of HDL and can 
be written much faster than a schematic can be drawn.  
Schematic capture is often thought of as the way an 
electrical engineer creates digital hardware but this 
approach is only used in very limited cases.  

     The advantages of a custom VLSI chip are that it will 
run faster and (once the prototypes are tested) be very 
cheap to produce.  The reason they are cheap to produce is 
once the mask is created, millions of chips can be made 
very inexpensively.  The disadvantages of a custom VLSI 
design are that the time to create the first chip and receive 
it back is often months and that if the design is incorrect 
the chip is no good and must be thrown away.  The 
advantages of the FPGA are that the time it takes to 
program one is on the order of seconds, so if the design is 
wrong they can be reprogrammed with the fixes and they 
are relatively cheap if only a few chips are required. An 
FPGA will also run slower than the custom VLSI chip.  
This project is being implemented in an FPGA so it could 
be reprogrammed and tested on site. 
 

3   Field Programmable Gate Array (FPGA) 
 
A Field Programmable Gate Array (FPGA) is a 

digital integrated circuit that can be programmed to do 
any type of digital function.  There are three main 
advantages of an FPGA over a microprocessor chip for 
fuzzy systems: 
(1) An FPGA has the ability to be reprogrammed on the 

fly, 
(2) The new FPGA’s that are on the market will support 

hardware that is upwards of 1 million gates, 
(3) An FPGA used as a fuzzy controller will be semi-

custom hardware, and 
(4)  The FPGA will operate faster than a microprocessor 

chip. 
FPGA’s are programmed using support software and 

a download cable connected to a host computer.  Once 
they are programmed, they can be disconnected from the 
computer and will retain their functionality until the 
power is removed from the chip.  A Read Only Memory 
(ROM) type of a chip that is connected to the FPGA’s 
programmable inputs can also program the FPGA upon 
power-up.  This means that when a board is in place in a 
remote location, the chip can keep running while the 
designer updates the design back at a lab.  Once the 
designer updates the design he or she can program another 
ROM chip and take it to the site and replace the old ROM 
chip; upon the next power-up the chip will be 
reprogrammed to the new design.  The other aspect of 
being able to be reprogrammed on the fly means that there 
does not need to be any down time for the controller.  
Down time is when the entire system has to be shut down.  
If a microprocessor needs to be reprogrammed then the 
entire system must be taken down and the microprocessor 
will be reprogrammed and then the system can be brought 
back up on line.  The FPGA’s can be programmed while 
they are running, because they have reprogram times on 
the order of microseconds.  This short time means that the 
system will not even know that the chip was 
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reprogrammed and there may be a small waiting period 
but the system will not have to be shut down.   
      The fact that an FPGA is a programmable chip means 
that the controller will be running as an Application 
Specific Integrated Circuit (ASIC).  When a piece of 
hardware is custom made for an application the design 
will be able to run much faster than a general purpose 
microprocessor that is running from software that has 
been downloaded on it.  Part of the FPGA is made up of 
Combinational Logic Blocks (CLB).  These blocks are 
made up of an array of digital AND, OR and INVERT 
gates.  The CLB’s are implemented in all FPGA chips and 
are used to implement asynchronous Boolean equations 
inside the chip.       Combining the FPGA and the HDL 
with fuzzy system concept the design process can begin.  
The goal of this project is to implement a fuzzy system on 
an FPGA using HDL and a weighted averaging technique. 

 
4   Implementing a Fuzzy System on a FPGA 

 
     The design of an FPGA-based fuzzy controller can be 
very simple.  It consists of an FPGA, analog-to-digital 
(A/D) converters for the inputs, a digital-to-analog (D/A) 
converter for the output and a ROM chip.  The ROM chip 
is used as a fuzzy lookup table (LUT).  The reason the 
LUT is on an external chip is so the entire FPGA doesn’t 
have to be reprogrammed if the control surface changes.  
Only the external ROM chip needs to be changed.  A 
block diagram of an FPGA-based fuzzy controller is 
illustrated in the Fig 4. 
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Fig 4  Block diagram of fuzzy control board with FPGA 

 
The traditional fuzzy system implementation is easily 

programmed into an FPGA and works well as long as 
there are only two inputs.  However if the inputs are 
increased to three then the LUT using traditional 
implementation methods becomes very difficult to handle.  
The size of the LUT also grows exponentially as inputs 
are added.  This is the downfall of a fuzzy controller.  
There have been attempts to correct this problem by 
combining two or more inputs together before the fuzzy 
controller so the number of inputs would remain around 
two. 

      The first design step was to select a FPGA.  The 
Xilinx 4000 series FPGA chip was chosen to implement 
this design on.  Xilinx recommends the 4000 series when 
the primary functionality of the design is computing 
arithmetic functions.  Since the fuzzy systems main 
functionality is to do multiplication and addition then this 
chip is the natural choice.  The drawback of this chip is 
that the designer must remove chip power for 
reprogramming.  This means it cannot be programmed on 
the fly.  This is acceptable because the scope of this 
project does not require system reprogramming on the fly.  
The presented approach uses a new weighted average 
concept to keep the fuzzy lookup table small, yet the input 
sizes can be large.  This is implemented by using three or 
four most significant bits of each input to determine the 
address for the lookup table.  A weighted average is 
performed using the remaining bits to eliminate rawness. 
The block diagram of the system is shown in Fig. 1. This 
new method may cause a decrease in speed (which is not 
crucial in FPGA implementation) but could result in a 
smoother surface, and has the ability for designs with a 
larger number of inputs.   
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Fig 5. Block diagram of the proposed approach  
 
As seen in this Fig, there are four inputs.  This is a good 
test to determine if the weighted average approach works 
with more than two inputs.  The difficult part of the 
project was implementation of the novel weighted sum 
approach.   
      The concept of weighted averaging was verified using 
a high level programming language.  In this case 
MATLAB was used for the simulations.  The first 
simulation was done with only two inputs.  With two 
inputs there are four random discrete values from the 
lookup table that are needed when the weighted averaging 
is used.  The following MATLAB code was used to 
perform the simulation.   
w(1,1)=(1-w1) * (1-w2);   
w(1,2)= w1 * (1-w2);  
w(2,1)=(1-w1) * w2; 
w(2,2)= w1 * w2; 
z=y11*w(1,1)+y12*w(1,2) +y21*w(2,1)+y22*w(2,2);

where:
z = the output 
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y = the look up table values 
w = least significant bits of the inputs 
(1-w) = the inversion of the least significant bits of 
the inputs 

This code was found to be correct by looking at the values 
that are created between the poles.  Once it was found that 
this approach of weighted values would work the code 
was then placed into two nested for loops to generate a 
control surface.   
     With the weighted average concept complete, the next 
concern was to determine if the edges of this control 
surface would match that of the neighboring control 
surface.  The address provider block in Fig 5 was broken 
up into a more detailed schematic and Verilog code was 
then written for the entire diagram.  The new schematic 
can be seen in Fig 6. 
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Fig. 6.  Block Diagram of the Address Provider. 
 
This block diagram has a large multiplexer for the inputs.  
It had to be designed so the Xilinx Software would be able 
to efficiently place and route it.  The design in the Fig 7 
was created to efficiently implement the multiplexer by 
breaking it up into four smaller multiplexers.   
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Fig. 7.  Block Diagram for the Input Multiplexer Structure  
 
With this part of the design complete, the next task was to 
design the weighted average part so those values could be 
multiplied by the lookup table values and then 
accumulated for the final answer.  The weighted average 
block diagram can be seen in Fig 8. 
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Fig. 8  Block Diagram of the Weighted Average Block  
 
In Fig 5.8 the input blocks labeled “Least Significant bits 
of the Input” are the least significant bits that are inverted 
or passed through in a specific pattern.  The Verilog code 
for this pattern can be seen below.   
assign z11=~A[3:1]; assign z12=~B[3:1]; 
assign z21=~A[3:1]; assign z22=B[3:1];  
assign z31=A[3:1]; assign z32=~B[3:1];  
assign z41=A[3:1]; assign z42=B[3:1];
 
     The purpose of the processing block is to multiply the 
proper weighted average values by the LUT values.  The 
process then sums all of the values to create the output.  
The first design attempted of the processing block, 
resulted in 16 parallel multipliers followed by 15 adders.  
This caused the design to be very large and thus unable to 
fit on the targeted chip.  This was 183% larger than the 
capacity of the chip, which was selected for this project.  
The second design approach to the processing block was 
done in a lookup table fashion.  Taking the two input 
values and concatenating them together to create an 
address constructed a lookup table.  This design approach 
took 175% of the targeted chip and therefore could not be 
used either.  The third design approach was to replace the 
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parallel multipliers with one single multiplier and use it 
sequentially.  The block diagram for this approach to the 
processing unit can be seen in Fig 9. 
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Fig. 9  Block Diagram for the Processing Unit  
 
The sharing of resources eliminates a lot of the gate count.  
The entire design with this approach used 97% of the 
targeted chip.   Another approach that could be taken is to 
share some of the adders along with the multiplier if space 
was still an issue. 
     The PC84 pin package is the standard package 
normally used at the University of Wyoming.  The design 
could not fit in this package.  This is because the PC84 
package has 61 user available input/output pins.  This 
design needs 68 input/output pins.  There are four 7 bit 
inputs, two 16 bit output lines and one more 8 bit input.  
The four 7 bit inputs are the inputs to the design.  The first 
16 bit output is the addressing lines for the lookup table 
and the 8 bit input is the data lines from the lookup table.  
The final 16 bit output is the output of the design.  A 
block diagram of the input/output structure can be seen in 
Fig 10.   
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Fig.10  Final Block Diagram of the Input/Output of the 
FPGA 

 
With the number of in/out pins needed, a PC84 pin 
package could not be used.  The package selected for the 
design is the PQ160.  This pin package is a surface mount 
package that has 129 available user input/output pins.   
 

The nonlinear function of four variables used to 
verify the concept of this project is given by the equation 
(3).  The graph of this equation is shown in Fig. 11. 
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An example this surface using a lookup table of 65K in 
size can be seen in Fig 12. 

 
Fig. 11  Desired Surface. 
 

 
Fig. 12  Control Surface Rendered using the Traditional 
Method with a 64K Lookup Table with MATLAB. 
 
The Fig 12 clearly shows extreme roughness on the 
control surface; therefore, the traditional method would 
not work for many applications.  When the output surface 
is very choppy, a very unstable system may result if this 
surface was used in a control application.   
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5    HDL Design 
 

The design was then placed into Veribest using Verilog 
type HDL.  The code was written to send each input 
address, one at a time, to the lookup table, get a value 
back and store it in the register bank, this sharing resource 
code structure is used two more times for each multiplier.  
The reason for sharing resources is so the hardware will 
not become too large to fit in the chip.  The code was 
written for two inputs to correct any coding mistakes and 
then adapted to four inputs for the finished design. The 
design was then synthesized using FPGA Express. This 
program does the fitting, place and route, timing, and 
generates the bitstream that is used to program the chip.  
This file has a log of the inputs and the output results may 
be plotted.  The design fit on the 4010 FPGA using 97% 
of the chips resources.  The maximum delay between flip-
flops determines the clock frequency.  FPGA Express 
provides this number for the designer based on the chip 
selected and the way the software did the place and route 
part of the design.  The maximum clock frequency for this 
design is 9.6MHz. This means that the design can easily 
be run in the order of microseconds, which is very fast 
when controlling a mechanical system. The plot from 
actual hardware results can be seen in the Fig below. 

 
Fig. 13  Actual Output from FPGA 
 
As seen in Fig 12 the actual results are very close to the 
desired results in Fig 11.  Clearly, the weighted approach 
to the traditional fuzzy system works very well when it is 
simulated using actual hardware.  This plot is very smooth 
and would offer a very good control surface.   
 

6    Conclusion 
 
     In conclusion the design works very well and the 
outputs are very smooth. The new method of weighted 
averaging is far superior to the traditional ways of doing 
fuzzy control.  The traditional fuzzy systems provide a 

very rough control surface, which can cause the system 
being controlled to become unstable.  With smoother 
surfaces the system being controlled by the new weighted 
averaging fuzzy controller will be more stable in 
comparison with traditional methods. In traditional fuzzy 
systems number of inputs are usually limited to 2 or 3. 
This method will allow much larger number of inputs.  
The weighted average method helps solve the exponential 
growth problem and complexity of the LUT by allowing 
very smooth surfaces with small a simple LUT.         
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