
 
 

VLSI Implementation of Neural Networks  
B. M. Wilamowski, J. Binfet, and M. O. Kaynak 

 
 
 

 
Abstract 
Currently, fuzzy controllers are the most popular choice 

for hardware implementation of complex control surfaces 
because they are easy to design. Neural controllers are more 
complex and hard to train, but provide an outstanding control 
surface with much less error than that of a fuzzy controller. 
There are also some problems that have to be solved before 
the networks can be implemented on VLSI chips. First, an 
approximation function needs to be developed because 
CMOS neural networks have an activation function different 
than any function used in neural network software. Next, this 
function has to be used to train the network. Finally, the last 
problem for VLSI designers is the quantization effect caused 
by discrete values of the channel length (L) and width (W) of 
MOS transistor geometries.  

Two neural networks were designed in 1.5 µm 
technology. Using adequate approximation functions solved 
the problem of activation function. With this approach, 
trained networks were characterized by very small errors. 
Unfortunately, when the weights were quantized, errors were 
increased by an order of magnitude. However, even though 
the errors were enlarged, the results obtained from neural 
network hardware implementations were superior to the 
results obtained with fuzzy system approach. 

 
I. INTRODUCTION  
 
The analog approach is an attractive alternative for 

nonlinear signal processing. It provides parallel processing 
with a speed limited only by the delay of signals through the 
network. In recent years, a significant amount of research has 
been devoted in the development of fuzzy controllers [1]. In 
hardware, fuzzy systems dominate current trends in both 
microprocessor applications [2] and in custom designed VLSI 
chips [3]. Fuzzy controllers are especially useful for 
nonlinear systems, which are difficult to describe by 
mathematical models.  Fuzzy controllers are also easier to 
implement [4][5][6][7].  Membership functions and fuzzy 
rules are chosen arbitrarily and therefore, fuzzy controllers 
are often good but not optimal.  

 Even though neural networks are primarily 
implemented in software, their good approximation 
properties make them an attractive alternative in hardware 
[8][9]. One concern in hardware implementation is related to 
the quantized values for the weights enforced by hardware 
[10][11][12].  Another difficulty is caused by fact that the 
activation functions obtained in VLSI implementation are 
different from these used in neural network software. 
Traditionally, neurons use sigmoidal type activation 

functions. Granted, other types of functions can be used, but 
sigmoidal type functions allow simple networks the ability to 
describe complex surfaces.  This is due to the bell shaped 
derivative characteristics of a sigmoidal function.  In the case 
presented, the neuron has a sigmoidal type activation. 
However, the function to describe this is not readily apparent 
such as the tangent hyperbolic commonly used in neural 
network software. This means that standard neural network 
training software cannot be used because it will produce 
incorrect solutions for the circuit realization.   

In the presented approach, the difficulty with VLSI neural 
network implementation was overcome in the following way. 
The “measured” activation function is used for neural 
network training (Section III) and the training algorithm was 
adapted to quantized values of weights (Section IV). 

 
II. NEURAL NETWORK CIRCUIT  
 
Nonlinear activation functions of neurons are essential for 

neural network operation. Such sigmoidal functions can be 
created in the differential pair shown in Fig. 1.  
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Fig. 1. Sigmoidal function generated by differential pair 
Using a simple Shichman-Hodges MOS transistor model 

for strong inversion, the output currents for the MOS 
differential pair M3-M4 operating in strong inversion is given 
by: 
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combining equations (1) through (3) one may find [13]: 
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This is a nonlinear transconductance circuit with voltage 
type input and current outputs. The transfer characteristics of 
the circuit obtained with SPICE program are shown in Fig. 2.  
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Fig. 2. Transfer characteristics of the circuit of Fig.1. 

 
 The circuit does yield a bipolar activation function and its 

shape can be adjusted by W/L ratios of M3 and M4 
transistors.  This circuit produces two types of current outputs 
positive and negative. The weight circuit shown in Fig. 3 can 
then multiply these currents from the differential pair of Fig. 
1. 

Mb

M5
Ma

+VDD

Mb

Ma

Mb

Ma

Mb

Ma

IREF

M1

IM3

 
Fig. 3. Weight circuits 
 
 Transistor pairs Ma and Mb generate several currents. 

Each output may have a different weight adjusted by the W/L 
ratios of transistor pairs Ma and Mc. Each neuron has two 
weight circuits, one connected to positive output, which 
generate signals with positive weights, and another one 
connected to negative output, which generates signals with 
negative weights. 

Fig. 4 shows connection of differential pair circuit of Fig. 
1 combined with two weights circuits for positive and 
negative weights. 
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Fig. 4. The neuron circuit with voltage type input and 

weighted current outputs. 
 
   Since this neuron has a bipolar activation function, all 

output signals could have positive or negative direction on 
both positive and negative outputs depending on the 
excitation.  A positive output current may have current flow 
in both directions and the same is possible on the negative 
output. All positive weights are connected to the positive 
outputs while all negative weights are connected to negative 
outputs. These are the desired characteristics, but the circuit 
had to be modified to remove the straying and biasing effects. 
Another problem with the conceptual neuron circuit is that 
the input is a voltage and the output is a current.  The circuit 
had to be modified so that the input would also be a current. 

Since the neuron circuit of Fig. 4 has voltage type input 
and current type outputs a circuit for current to voltage 
conversion is required. This could be a simple resistor, but in 



VLSI, a complex transistor circuit must be used. The current 
to voltage conversion is done with the circuit composed of 
transistors M11 and M12 (Fig. 5). 
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Fig. 5. Circuit for current to voltage conversion 
 
 The output characteristics seen from drains of M11 and 

M12 are given by the equation: 
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where KP and KN are transconductance parameters and VP 
and VN are the transconductance parameters for transistors 
M11 and M12. When W/L ratios are chosen properly (K = 
K’*W/L), then KP = KN = K, and equation (1) simplifies to 
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If the input current 0=INI  and KP = KN = K then the 

above equation can be solved for the input voltage. 
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If the threshold voltages are equal,

TPTN VV −= , then for the 

case where 0=TNI , DDREFIN VVV 5.0== . Note that for KP 
= KN = K, all nonlinear terms are canceled and the circuit 
composed of transistors M11 and M12 has linear input 
resistance equal to  
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With real transistors or with more accurate transistor 

models, slight non-linearity of the M11-M12 circuit in Fig. 5 
may be observed. However, this is not important since it is 
superimposed with the nonlinear activation function shaped 
by M3-M4 differential pair. The value of VREF can be 
adjusted by changing the relation of the W/L ratios for the 
PMOS and NMOS transistors. The input resistance is 

inversely proportional to the K parameters of transistors M11 
and M12, which can be controlled by W/L ratio. 

The positive and negative weights are set by the W/L 
ratios of transistors Ma and Mb respectively, while the 
relationship between the pair is kept constant. Note that each 
weight is set by one transistor and number of weights can be 
as large as needed.  

 
III. Activation Functions 
 
In traditional feed-forward neural networks, the most 

commonly used activation functions are sigmoidal and 
hyperbolic tangent. For microprocessor implementation, the 
Elliott function can be used since it can be easily evaluated 
with limited computation resources [2]. For special 
applications, Gaussian, sinusoidal, cosine, or linear functions 
can also be used but this is definitely not the current trend. In 
the case of the VLSI circuit, an activation function similar to 
the sigmoidal can be obtained, but it cannot be described by a 
simple function. The activation function for the circuit of Fig. 
4 was obtained with a SPICE simulation using BSIM3 [14] 
transistor model and is shown in Fig. 6. This “measured” 
function was then approximated by various analytical 
formulas shown in Table 1 and are shown in Fig. 7. Note that 
there are very small differences between required and 
approximate functions. In order to evaluate the quality of 
approximation differences between required and 
approximation functions are plotted in Fig. 8.   
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Fig. 6. Activation function of the enhanced neuron circuit 

obtained using SPICE simulation. 
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Fig. 7. Various approximations of the activation function 
obtained using functions of Table 1. 
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Fig. 8. Differences between the required activation 

function and approximation functions listed in Table 1. 
 

Table 1. Functions used to approximate the transfer function in the neuron VLSI circuit 

 
The best results were obtained with function number 9 of 

Table 1.   
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where A = 9.25  µA 
B = 0.1081 µA-1 
C = 1.7635 
D = 2.2375 µA 
E = -14.075 µA 
F = 18.55 µA 

 
This approximation was used in the training. As the 

derivative of the function 9 the following expression was 
used: 
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The additional term 0.01 was essential to eliminate the 
flat-spot problem [15] which was more likely to occur with 
the used function than in traditional sigmoidal functions, due 
to zero derivative values for large net excitations.  

 
Fig. 9. Required control surface 

 
IV. EXPERIMENTAL EXAMPLES 
 
A special MATLAB code was written to train the 

network, since a custom activation function was used. There 
are programs available to train neural networks, but using 
them would require difficult modifications in order to train 
with a custom activation function. While any training 
algorithm, such as error back propagation, can be used to 
train the network, an efficient one should be used in order to 
speed up the training process. The  Lavenberg-Marquardt 
algorithm [16] was chosen for this task.   

   Various neural network architectures were trained to the 
required control surface shown in Fig. 9. During training, the 
activation function given by Eq. 9 was used. Table 2 shows 
errors obtained for different neural network architectures. 
Figure 10 shows the architectures used and Figure 11 shows 
the control surfaces obtained from training for 1-1-1-1-1 and 
6-3-1 architectures. 

 
Table 2. Training errors obtained for various neural network 
architectures 

Neural network architectures Error
No. Layers No. Weights Architecture (SSE )

3 9       1 1 1 1.207 
4 14       1 1 1 1 0.2336
5 20       1 1 1 1 1 0.07 
3 18       2 2 1  1.6268
2 17       5 1 0.8713
3 29       3 3 1 0.4844
3 49       5 4 1 0.0843
3 47       6 3 1 0.0312
4 53       4 4 1 1 0.0173
4 55       4 3 2 1 0.0525
2 32       10 1 0.1258
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Fig. 10.  Neuron structures (a) for 1-1-1-1-1 architecture and 
(b) for 6-3-1 architecture 

 
(a) 

 
(b) 
Fig. 11.  Examples control surfaces obtained after training (a) 
for 1-1-1-1-1 architecture and (b) for 6-3-1 architecture  



   These two architectures were implemented in 1.5µm n-
well technology using the MAGIC package for VLSI layout. 
During the design process, the required W and L values were 
rounded to the nearest integer values. The maximum 
transistor size was limited to 3λ≤W≤40λ and 2λ≤L≤40λ. 
This way there are 38*39 = 1482 possible combinations of 
W/L ratios and some of them give repeated values. Removing 
the repeated values yielded 922 possible combinations. 
Finally, applying an additional constraint that the total gate 
area must be smaller than 100λ2, the number of possible 
weights is limited to 166.  

 After designing the VLSI layout using the above 
constraints, the circuit net list was extracted. Then using the 
extracted net list, the circuits were simulated with the SPICE 
program VBase from Veribest using the BSIM3 [14] 
transistor model. The resulting surfaces for the two 
implemented circuits are shown in Fig. 12. The error (SSE) 
was increased from 0.07 to 2.8111 and from 0.0312 to 6.0012 
for 1-1-1-1-1 and 6-3-1 architectures respectively.  Note that 
the weight quantization has very significant effect on the 
quality of control surface. 

   The quantization process strongly depends on the 
quality of the layout tools. With a simple tool and scalable 
design rules, the minimum raster size is comparable to the 
minimum feature size. For example, with MAGIC layout 
software and the scalable CMOS technology, the minimum 
channel length is equal to 2λ, where λ is the raster size 
(0.8µm in our case). With this approach, both W and L may 
have only integer values and this enforces a very strong 
quantization effect. With more powerful layout design tools 
such as Mentor Graphics or LASI, where pattern rotation is 
allowed, the quantization effect is not as critical, since the 
raster has at least 10 times larger resolution. 

(a) 

(b) 
 

Fig. 12.  Control surfaces obtained with SPICE simulation 
(weights were quantized for transistors Ma, Mc and Mbd). (a) 
for 1-1-1-1-1 architecture and (b) for 6-3-1 architecture 

 

 
(a) 

 
(b) 

Fig. 13. Control surface using fuzzy approaches (a) obtained 
with trapezoidal membership functions and Zadeh approach and 
(b) obtained with trapezoidal membership functions and 
Tagagi-Sugeno approach. 

 



V. CONCLUSION 
 
 Fuzzy controllers do have several advantages such as 

simple rule based design, but they usually produce relatively 
raw control surfaces, which are not acceptable for precision 
control [2]. The control surfaces obtained with fuzzy systems 
are shown in Figure 13 for the same required surface as 
shown in Fig. 8. No matter if the Zadeh [17] (Fig. 12(a)) or 
Tagagi-Sugeno [18] (Fig. 13(b)) approach was used, a 
relatively raw control surface was obtained. These fuzzy 
control surfaces also exhibit larger errors, 908.4 and 296.5 for 
Fig. 13 (a) and (b) respectively. With the neural network 
approach presented in this paper, the resulting control 
surfaces are very smooth. 

 Although the presented examples were for a two input 
case, the general nature of neural systems is such that they 
can easily handle multidimensional problems. This is not true 
for the fuzzy systems where the number of inputs is severely 
limited because with an increased number of inputs, the size of 
the rule table grows exponentially.  
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