

VLSI Implementation of Neural Networks
B. M. Wilamowski, J. Binfet, and M. O. Kaynak

Abstract
Currently, fuzzy controllers are the most popular choice

for hardware implementation of complex control surfaces
because they are easy to design. Neural controllers are more
complex and hard to train, but provide an outstanding control
surface with much less error than that of a fuzzy controller.
There are also some problems that have to be solved before
the networks can be implemented on VLSI chips. First, an
approximation function needs to be developed because
CMOS neural networks have an activation function different
than any function used in neural network software. Next, this
function has to be used to train the network. Finally, the last
problem for VLSI designers is the quantization effect caused
by discrete values of the channel length (L) and width (W) of
MOS transistor geometries.

Two neural networks were designed in 1.5 µm
technology. Using adequate approximation functions solved
the problem of activation function. With this approach,
trained networks were characterized by very small errors.
Unfortunately, when the weights were quantized, errors were
increased by an order of magnitude. However, even though
the errors were enlarged, the results obtained from neural
network hardware implementations were superior to the
results obtained with fuzzy system approach.

I. INTRODUCTION

The analog approach is an attractive alternative for

nonlinear signal processing. It provides parallel processing
with a speed limited only by the delay of signals through the
network. In recent years, a significant amount of research has
been devoted in the development of fuzzy controllers [1]. In
hardware, fuzzy systems dominate current trends in both
microprocessor applications [2] and in custom designed VLSI
chips [3]. Fuzzy controllers are especially useful for
nonlinear systems, which are difficult to describe by
mathematical models. Fuzzy controllers are also easier to
implement [4][5][6][7]. Membership functions and fuzzy
rules are chosen arbitrarily and therefore, fuzzy controllers
are often good but not optimal.

 Even though neural networks are primarily
implemented in software, their good approximation
properties make them an attractive alternative in hardware
[8][9]. One concern in hardware implementation is related to
the quantized values for the weights enforced by hardware
[10][11][12]. Another difficulty is caused by fact that the
activation functions obtained in VLSI implementation are
different from these used in neural network software.
Traditionally, neurons use sigmoidal type activation

functions. Granted, other types of functions can be used, but
sigmoidal type functions allow simple networks the ability to
describe complex surfaces. This is due to the bell shaped
derivative characteristics of a sigmoidal function. In the case
presented, the neuron has a sigmoidal type activation.
However, the function to describe this is not readily apparent
such as the tangent hyperbolic commonly used in neural
network software. This means that standard neural network
training software cannot be used because it will produce
incorrect solutions for the circuit realization.

In the presented approach, the difficulty with VLSI neural
network implementation was overcome in the following way.
The “measured” activation function is used for neural
network training (Section III) and the training algorithm was
adapted to quantized values of weights (Section IV).

II. NEURAL NETWORK CIRCUIT

Nonlinear activation functions of neurons are essential for

neural network operation. Such sigmoidal functions can be
created in the differential pair shown in Fig. 1.

M2

M3 M4
VIN

M1

IREFVX

IM3 IM4

IM2

Fig. 1. Sigmoidal function generated by differential pair
Using a simple Shichman-Hodges MOS transistor model

for strong inversion, the output currents for the MOS
differential pair M3-M4 operating in strong inversion is given
by:

()2
3 2 TNXINM VVVKI −−=

 (1)

()2
4 0

2 TNXM VVKI −−=
 (2)

and from Kirchhoff’s Law

432 MMM III +=
 (3)

combining equations (1) through (3) one may find [13]:

for
β

α 1−≤ 03 =MI (4)

for
β

α 1≥ 23 MM II = (5)

and for
β

α
β

11 <<−

()22
23 215.0 βαβα −±= MM II (6)

where:

2

2

2 M

TN

TN

IN

I
VK

V
V

== βα (7)

This is a nonlinear transconductance circuit with voltage
type input and current outputs. The transfer characteristics of
the circuit obtained with SPICE program are shown in Fig. 2.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

L
W

L
W

o
u

tp
u

t
cu

rr
e

n
ts

input voltage

negative
output

positive
output

20

15

10

5

0

-15

-10

-5

[µ
A

]

[V]
Fig. 2. Transfer characteristics of the circuit of Fig.1.

 The circuit does yield a bipolar activation function and its

shape can be adjusted by W/L ratios of M3 and M4
transistors. This circuit produces two types of current outputs
positive and negative. The weight circuit shown in Fig. 3 can
then multiply these currents from the differential pair of Fig.
1.

Mb

M5
Ma

+VDD

Mb

Ma

Mb

Ma

Mb

Ma

IREF

M1

IM3

Fig. 3. Weight circuits

 Transistor pairs Ma and Mb generate several currents.

Each output may have a different weight adjusted by the W/L
ratios of transistor pairs Ma and Mc. Each neuron has two
weight circuits, one connected to positive output, which
generate signals with positive weights, and another one
connected to negative output, which generates signals with
negative weights.

Fig. 4 shows connection of differential pair circuit of Fig.
1 combined with two weights circuits for positive and
negative weights.

M2 Md

M3 M4

M5 M6
Mc

+OUT -OUT

+VDD

IN

Mb

Ma

Mb

Ma

Mb

Ma

Mb

Ma

Md

Mc

M1

IREF

Md

Mc

Md

Mc

Fig. 4. The neuron circuit with voltage type input and

weighted current outputs.

 Since this neuron has a bipolar activation function, all

output signals could have positive or negative direction on
both positive and negative outputs depending on the
excitation. A positive output current may have current flow
in both directions and the same is possible on the negative
output. All positive weights are connected to the positive
outputs while all negative weights are connected to negative
outputs. These are the desired characteristics, but the circuit
had to be modified to remove the straying and biasing effects.
Another problem with the conceptual neuron circuit is that
the input is a voltage and the output is a current. The circuit
had to be modified so that the input would also be a current.

Since the neuron circuit of Fig. 4 has voltage type input
and current type outputs a circuit for current to voltage
conversion is required. This could be a simple resistor, but in

VLSI, a complex transistor circuit must be used. The current
to voltage conversion is done with the circuit composed of
transistors M11 and M12 (Fig. 5).

IIN

+VDD

M11

M12 VIN

+

-

+
-VREF

RIN

VIN

+

-

IIN

Fig. 5. Circuit for current to voltage conversion

 The output characteristics seen from drains of M11 and

M12 are given by the equation:

()

()() () �

�
�
�

� −
−−+−

�
�
�

�
�
�

�
−−=

2

2
2

2

INDD
INDDTPDDP

IN
INTNDDNIN

VV
VVVVK

V
VVVKI

 (8)

where KP and KN are transconductance parameters and VP
and VN are the transconductance parameters for transistors
M11 and M12. When W/L ratios are chosen properly (K =
K’*W/L), then KP = KN = K, and equation (1) simplifies to

 () �
�
�

�
�
�

�
�
	

 +−+−= TP
DD

DDTPTNDDININ V
V

VVVVVKI
2

 (9)

If the input current 0=INI and KP = KN = K then the

above equation can be solved for the input voltage.

TPTNDD

TPDDDD
IN VVV

VVV
V

+−
+

=
2

2
 (10)

If the threshold voltages are equal,

TPTN VV −= , then for the

case where 0=TNI , DDREFIN VVV 5.0== . Note that for KP
= KN = K, all nonlinear terms are canceled and the circuit
composed of transistors M11 and M12 has linear input
resistance equal to

 ()TPTNDDIN

IN
IN VVVKI

VR
+−

== 1
 (11)

With real transistors or with more accurate transistor

models, slight non-linearity of the M11-M12 circuit in Fig. 5
may be observed. However, this is not important since it is
superimposed with the nonlinear activation function shaped
by M3-M4 differential pair. The value of VREF can be
adjusted by changing the relation of the W/L ratios for the
PMOS and NMOS transistors. The input resistance is

inversely proportional to the K parameters of transistors M11
and M12, which can be controlled by W/L ratio.

The positive and negative weights are set by the W/L
ratios of transistors Ma and Mb respectively, while the
relationship between the pair is kept constant. Note that each
weight is set by one transistor and number of weights can be
as large as needed.

III. Activation Functions

In traditional feed-forward neural networks, the most

commonly used activation functions are sigmoidal and
hyperbolic tangent. For microprocessor implementation, the
Elliott function can be used since it can be easily evaluated
with limited computation resources [2]. For special
applications, Gaussian, sinusoidal, cosine, or linear functions
can also be used but this is definitely not the current trend. In
the case of the VLSI circuit, an activation function similar to
the sigmoidal can be obtained, but it cannot be described by a
simple function. The activation function for the circuit of Fig.
4 was obtained with a SPICE simulation using BSIM3 [14]
transistor model and is shown in Fig. 6. This “measured”
function was then approximated by various analytical
formulas shown in Table 1 and are shown in Fig. 7. Note that
there are very small differences between required and
approximate functions. In order to evaluate the quality of
approximation differences between required and
approximation functions are plotted in Fig. 8.

-25 -20 -15 -10 -5 0 5 10 15 20 25
-15

-10

-5

0

5

10

15

20

cu
rre

nt

[u
A]

current [uA]

activation function

Fig. 6. Activation function of the enhanced neuron circuit

obtained using SPICE simulation.

-25 -20 -15 -10 -5 0 5 10 15 20 25
-15

-10

-5

0

5

10

15

20
cu

rre
nt

[u

A]

current [uA]

required and approximate functions

Fig. 7. Various approximations of the activation function
obtained using functions of Table 1.

-25 -20 -15 -10 -5 0 5 10 15 20 25

-
0.25

-
0.2

-
0.15

-
0.1

-
0.05

0

0.0
5

0.
1

0.1
5

0.
2

0.2
5

cu
rre

nt

[u
A]

current [uA]

errors of approximations

#
9

#
2

#
3

#
4

#
1 #

5

#
6

#
7

#
8

Fig. 8. Differences between the required activation

function and approximation functions listed in Table 1.

Table 1. Functions used to approximate the transfer function in the neuron VLSI circuit

The best results were obtained with function number 9 of

Table 1.

�

�

�

≥
<<−+−

−≤
=

AnetforF
AnetAforDnetBnetC

AnetforE
netf 222)(

 (12)

where A = 9.25 µA
B = 0.1081 µA-1
C = 1.7635
D = 2.2375 µA
E = -14.075 µA
F = 18.55 µA

This approximation was used in the training. As the

derivative of the function 9 the following expression was
used:

 ()

�

�

�

≥

<<−+
−
−

−≤

=

Anetfor

AnetAfor
netB
netBC

Anetfor

netf

01.0

01.0
2
12

01.0

)(' 22

22 (13)

No Function Error

1 () 1
2exp1

2)tanh()(−
−−

==
Bnet

ABnetAnetf 0.2114

2 Bnet
BnetAnetf

+
=

1
)(Elliott 0.5569

3)tanh(
1

)(DnetC
Bnet

BnetAnetf +
+

= 0.0978

4)tanh()tanh()(DnetCBnetAnetf += 0.2183
5)tanh()tanh()tanh()(FnetEDnetCBnetAnetf ++= 0.0761

6 9753)(EnetDnetCnetBnetAnetnetf ++++= 0.9121

7 () () ()FnetEDnetCBnetAnetf sinsinsin)(++= 1.4693

8
() () ()
() ()AnetFAnetE

AnetDAnetCAnetBnetf
5sin4sin

3sin2sinsin)(
++

+++=
 0.0500

9

�

�

�

≥
<<−+−

−≤
=

AnetforF
AnetAforDnetBnetC

AnetforE
netf 222)(0.0005

The additional term 0.01 was essential to eliminate the
flat-spot problem [15] which was more likely to occur with
the used function than in traditional sigmoidal functions, due
to zero derivative values for large net excitations.

Fig. 9. Required control surface

IV. EXPERIMENTAL EXAMPLES

A special MATLAB code was written to train the

network, since a custom activation function was used. There
are programs available to train neural networks, but using
them would require difficult modifications in order to train
with a custom activation function. While any training
algorithm, such as error back propagation, can be used to
train the network, an efficient one should be used in order to
speed up the training process. The Lavenberg-Marquardt
algorithm [16] was chosen for this task.

 Various neural network architectures were trained to the
required control surface shown in Fig. 9. During training, the
activation function given by Eq. 9 was used. Table 2 shows
errors obtained for different neural network architectures.
Figure 10 shows the architectures used and Figure 11 shows
the control surfaces obtained from training for 1-1-1-1-1 and
6-3-1 architectures.

Table 2. Training errors obtained for various neural network
architectures

Neural network architectures Error
No. Layers No. Weights Architecture (SSE)

3 9 1 1 1 1.207
4 14 1 1 1 1 0.2336
5 20 1 1 1 1 1 0.07
3 18 2 2 1 1.6268
2 17 5 1 0.8713
3 29 3 3 1 0.4844
3 49 5 4 1 0.0843
3 47 6 3 1 0.0312
4 53 4 4 1 1 0.0173
4 55 4 3 2 1 0.0525
2 32 10 1 0.1258

out

(a)

out

(b)

Fig. 10. Neuron structures (a) for 1-1-1-1-1 architecture and
(b) for 6-3-1 architecture

(a)

(b)
Fig. 11. Examples control surfaces obtained after training (a)
for 1-1-1-1-1 architecture and (b) for 6-3-1 architecture

 These two architectures were implemented in 1.5µm n-
well technology using the MAGIC package for VLSI layout.
During the design process, the required W and L values were
rounded to the nearest integer values. The maximum
transistor size was limited to 3λ≤W≤40λ and 2λ≤L≤40λ.
This way there are 38*39 = 1482 possible combinations of
W/L ratios and some of them give repeated values. Removing
the repeated values yielded 922 possible combinations.
Finally, applying an additional constraint that the total gate
area must be smaller than 100λ2, the number of possible
weights is limited to 166.

 After designing the VLSI layout using the above
constraints, the circuit net list was extracted. Then using the
extracted net list, the circuits were simulated with the SPICE
program VBase from Veribest using the BSIM3 [14]
transistor model. The resulting surfaces for the two
implemented circuits are shown in Fig. 12. The error (SSE)
was increased from 0.07 to 2.8111 and from 0.0312 to 6.0012
for 1-1-1-1-1 and 6-3-1 architectures respectively. Note that
the weight quantization has very significant effect on the
quality of control surface.

 The quantization process strongly depends on the
quality of the layout tools. With a simple tool and scalable
design rules, the minimum raster size is comparable to the
minimum feature size. For example, with MAGIC layout
software and the scalable CMOS technology, the minimum
channel length is equal to 2λ, where λ is the raster size
(0.8µm in our case). With this approach, both W and L may
have only integer values and this enforces a very strong
quantization effect. With more powerful layout design tools
such as Mentor Graphics or LASI, where pattern rotation is
allowed, the quantization effect is not as critical, since the
raster has at least 10 times larger resolution.

(a)

(b)

Fig. 12. Control surfaces obtained with SPICE simulation
(weights were quantized for transistors Ma, Mc and Mbd). (a)
for 1-1-1-1-1 architecture and (b) for 6-3-1 architecture

(a)

(b)

Fig. 13. Control surface using fuzzy approaches (a) obtained
with trapezoidal membership functions and Zadeh approach and
(b) obtained with trapezoidal membership functions and
Tagagi-Sugeno approach.

V. CONCLUSION

 Fuzzy controllers do have several advantages such as

simple rule based design, but they usually produce relatively
raw control surfaces, which are not acceptable for precision
control [2]. The control surfaces obtained with fuzzy systems
are shown in Figure 13 for the same required surface as
shown in Fig. 8. No matter if the Zadeh [17] (Fig. 12(a)) or
Tagagi-Sugeno [18] (Fig. 13(b)) approach was used, a
relatively raw control surface was obtained. These fuzzy
control surfaces also exhibit larger errors, 908.4 and 296.5 for
Fig. 13 (a) and (b) respectively. With the neural network
approach presented in this paper, the resulting control
surfaces are very smooth.

 Although the presented examples were for a two input
case, the general nature of neural systems is such that they
can easily handle multidimensional problems. This is not true
for the fuzzy systems where the number of inputs is severely
limited because with an increased number of inputs, the size of
the rule table grows exponentially.

References

[1] Wilamowski B. M. "Neuro-Fuzzy Systems and its
applications" tutorial at 24th IEEE International
Industrial Electronics Conference - IECON'98 August
31 - September 4, 1998, Aachen, Germany, vol. 1, pp.
t35-t49.

[2] Wilamowski B.M. and J. Binfet, "Do Fuzzy Controllers
Have Advantages over Neural Controllers in
Microprocessor Implementation" Proc. of. 2-nd
International Conference on Recent Advances in
Mechatronics - ICRAM'99, Istanbul, Turkey, pp. 342-
347, May 24-26, 1999.

[3] Wilamowski B. M. and R. C. Jaeger, "Neuro-Fuzzy
Architecture for CMOS Implementation" IEEE Transaction
on Industrial Electronics vol. 46, no.6, Dec. 1999.

[4] Choi J., B.J.Sheu, and J.C.F. Chang, (1994) A Gaussian
Synapse Circuit for Analog VLSI Neural Networks.
IEEE Trans. on Very Large Scale Integration (VLSI)
Systems, vol. 2, no. 1, pp. 129-133.

[5] Rodriguez-Vazquez A. and F. Vidal-Verdu, Learning in
Neuro/Fuzzy Analog Chips, IEEE International
Symposium on Circuits and Systems, Seattle WA, vol. 3,
pp. 2325-2328, April 30-May 3 1995.

[6] Yamakawa, A fuzzy Inference Engine in Nonlinear
Analog Mode and its Application to a Fuzzy Logic
Control, IEEE Trans. on Neural Networks, vol. 4, pp.
496-522, 1993.

[7] Ota, Y. and B. M. Wilamowski, " CMOS Implementation of a
Voltage-Mode Fuzzy Min-Max Controller", Journal of
Circuits, Systems and Computers, vol. 6, No 2, pp. 171-184,
April 1996.

[8] Hornik, K., “Multilayer Feedforward Networks as
Universal Approximators,” Neural Networks, v.2, pp
359-366, 1989.

[9] Funahashi, K., “On the Approximate Realization of
Continuous Mappings by Neural Networks,” Neural
Networks, v.2, pp 183-192, 1989.

[10] Draghici S., Sethi, I.K. - On the possibilities of the
limited precision weights neural networks in
classification problems in Biological and Artificial
Computation: From Neuroscience to Technology,
Lecture Notes in Computer Science, J. Mira, R. Moreno-
Diaz, J. Cabestany (Eds.), p. 753-762, Springer Verlag,
1997

[11] Beiu, V, Draghici S. - Limited weights neural networks:
very tight entropy based bounds in Proc. 2nd Intl. ICSC
Symposium On Soft Computing, Fuzzy Logic, Artificial
Neural Networks, and Genetic Algorithms - SOCO'97,
Nimes, France, September 14-17, 1997).

[12] Cupal, J.J., B. M. Wilamowski, R. S. Sandige, and J.
Miller, " A Fractional Powers-of-Two Number System
for Digital Neural Networks, International Journal of
Modeling and Simulation, vol. 16, No 3, pp. 123-128,
1996

[13] Wilamowski, B. M. and R. C. Jaeger, "VLSI
Implementation of a Universal Fuzzy Controller,"
Intelligent Engineering Systems Through Artificial
Neural Networks, vol. 7, ed. C. H. Dagli and others, by
ASME Press, New York 1997, pp. 351- 356.

[14] Huang J. H., Z. H. Liu, M. C. Jeng, K. Hui, M. Chan, P.
K. Ko, and C. Hu, “BSIM3 Manual,” Department of
Electrical Engineering and Computer Science,
University of California, Berkeley.

[15] Wilamowski, B.M. and L. Torvik, "Modification of
Gradient Computation in the Back-Propagation
Algorithm", presented at Artificial Neural Networks in
Engineering - ANNIE'93, St. Louis, Missouri,
November 14-17, 1993; also in Intelligent Engineering
Systems Through Artificial Neural Networks vol. 3, pp.
175-180, ed. C. H. Dagli, L. I. Burke, B. R. Fernandez,
J. Gosh, R.T., ASME PRESS, New York 1993.

[16] Hagan M. T. and M. Menhaj, “Training feedforward
networks with the Marquardt algorithm,” IEEE
Transactions on Neural Networks, vol. 5, no. 6, pp. 989-
993, 1994.

[17] Zadeh L. A., “Fuzzy sets”. Information and Control, New
York, Academic Press vol 8, pp. 338-353, 1965.

[18] Takagi T. and M. Sugeno, Derivation of Fuzzy Control Rules
from Human Operator's Control Action. Proc. of the IFAC
Symp. on Fuzzy Inf. Knowledge Representation and Decision
Analysis, pp. 55-60, July 1989.

