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An example of the three layer feedforward neural network, which is sometimes known
also as the backpropagation network.
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An example of the bi-directional autoassociative memory - BAM: (a) drawn as
a two layer network with circulating signals () drawn as two layer network
with bi-directional signal flow.
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Several logical operations using networks with McCulloch-Pitts neurons.

Threshold implementation
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Threshold implementation with an additional weight and constant input with
+1 value : (@) neuron with threshold 7, (b)) modified neuron with threshold
T=0 and additional weight equal to -7
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Typical activation functions: (@) hard threshold unipolar, (b) hard
threshold bipolar, (¢) continuous unipolar, (d) continuous bipolar.




Activation functions
bipolar

0=f(net)= 1+ exp(— 2k net)

unipolar

o= f(net)=

~I=tanh(kner)  f'(0)=k(1-0?)

1
1+ exp(~ 4k net) ['(0) =4k o(1-0)

Learning rules for single neuron Awi =« 5 X

Hebb rule (unsupervised): O=o0
correlation rule (supervised): o=d
perceptron fixed rule: d=d-o
perceptron adjustable rule - as above but the learning constant is modified to:
T
* Xw net
a =al—7z= —
xx [~
LMS (Widrow-Hoff) rule: O =d —net
delta rule: o= (d - O)f'
TV ' T
pseudoinverse rule (for linear system): w=IX'x) x'd

iterative pseudoinverse rule (for nonlinear system): W= (XTX)*1 XT d-o

LMS AND REGRESSION ALGORITHMS

If a single layer of neurons is considered, error back propagation type of
algorithms minimize global error as shown in equation 1:

P J
2
TotalError = 2. 2.(d pj—0p))
p=1j=1
where P is the number of patterns and J is the number of outputs. A similar
approach is taken in the Widrow-Hoff (LMS) algorithm:

P J 2
TotalError = %, 2.(d pj—net ;)
p=1j=1

I
Where net pj= Xw;

i X jip
i=1

and / is the size of the augmented input vector i.e. x; =+1.

For any given neuron the training data is given in two arrays:
[ X1 x12 X130 xir | Moot [d ]
| X21 X22 cev ven X2j |

i X31 X32 +en enn X3 |><

XPLXPD cvn onn Xpr dp
where / is the number of augmented inputs. The over-determinated set of
equations can be solved in a least mean square sense:

wj= (XT X)_l Xde

where w;=unknown vector of the weights of the j™ neuron. The matrix x must
be converted only once, and the weights for all the neurons (=1 to N) can be
found. Regardless of whether the regression algorithm or the LMS algorithm is
used, the outcome will be the same.

LMS algorithm
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Two examples of non-optimum solutions, where line A is the result of the
regression (LMS) algorithm, and line B is the separation generated by the
minimum distance classifier.

AW ALGORITHM
The total error for one neuron j and pattern p is now defined by a simple difference:
E jpo =D jp=0 jp(ner)

where net=w x,+w,x,+....w,x,. The derivative of this error with respect to the "

weight of the j neuron can be written as
dE j, d0j

dw;  dnet  dwj

The error function can then be approximated by the first two terms of the linear

approximation around a given point:
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Therefore:
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The Y matrix is composed of input patterns, and must be
computed only once !

AW ALGORITHM 3

Comparison of Algorithms where the algorithms can be identified by the labels A-
regression, B-minimum distances C-modified minimum distance, and D-modified
regression and delta (back propagation) algorithm.
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An example of the three layer feedforward neural network, which is sometimes known
also as the backpropagation network.
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Illustration of the property of linear separation of patterns in the two-dimensional space
by a single neuron.
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An example of the three layer neural network with two inputs for separation of three
clusters into one category. This network can be generalized and can be used for
solution all classification problems.
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An example with a comparison of results obtained using LMS and Delta training
algorithms. Note that LMS is not able to find the proper solution




Error Backpropagation
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Illustration of the concept of the gain computation in neural networks

* Although the error backpropagation algorithm (EBP) was a significant
breakthrough in neural network research, it is known as an algorithm
with a very poor convergence rate.

* Many attempts have been made to speed up the EBP algorithm:
— heuristics approaches such as momentum,
— variable learning rate
— stochastic learning
— artificial enlarging of errors for neurons operating in saturation
region

* More significant improvement was possible by using various second
order approaches:
— Newton,
— conjugate gradient,
— Levenberg-Marquardt (LM) method. The LM algorithm is now
considered as the most efficient one It combines the speed of the
Newton algorithm with the stability of the steepest decent method.

Levenberg - Marquardt
Steepest decent method: W,,.=W,—ag
-1

Newton method: Wi =W, — Ak g

where A, is Hessian and g is gradient vector

Assuming: A~x2J'] ad = 2J7v

where J is Jacobian and v is error vector
-1
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Levenberg - Marquardt 2

LM algorithm combines the speed of the Newton algorithm with the
stability of the steepest decent method. The LM algorithm uses the
following formula to calculate weights in subsequent iterations:

W, =W, —(73, ) IR

where E is the cumulative (for all patterns) error vector I is identity unit
matrix, # is a learning parameter and J is Jacobian of m output errors with
respect to n weights of neural network. For 2= 0 it becomes the Gauss-
Newton method. For very large z the LM algorithm becomes the steepest
decent or the EBP algorithm. The x parameter is automatically adjusted at
each iteration in order to secure convergence.

Error Back Propagation Algorithm

Ermor Back Propagation

|
Sum of squared errors as a function Sum of squared errors as a function
of number of iterations for the of number of iterations for
“XOR” problem using EBP the“XOR” problem using EBP
algorithm  with  Nguyen-Widrow algorithm with unfavorable weight

weight initialization initialization




Levenberg-Marquardt Algorithm

Levenberg-Marquardt

3,

globalerror
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number ofiterations

Sum of squared errors as a function of number of iterations for the “XOR”
problem using LM algorithm with Nguyen-Widrow weight initialization.
Algorithm failed in 15% to 25% cases
When initial weight were chosen
purposely very far from the solution the
LM algorithm failed in 100% cases

A poor convergence of EBP algorithm is not because of local mimima but it is
due to plateaus on the error surface. This problem is also known as “flat spot”
problem. The prime reason for the plateau formations is a characteristic shape
of the sigmoidal activation functions.

Sinet) .
outpu
actual derivative +1

output

Illustration of the modified derivative calculation for faster convergence of the
error backpropagation algorithm

Results of flat spot elimination

Modified EBP Algorithm | Madified EBP Algorithm

10' "
number of erations number of trations

Sum of squared errors as a function of Sum of squared errors as a function of
number of iterations for the “XOR” number of iterations for the “XOR”
problem using modified EBP algorithm ~ Problem using modified EBP

with Nguyen-Widrow weight algorithm with unfavorable weight
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A winner take all - WTA architecture for cluster extracting in the unsupervised
training mode: (@) network connections, (b) single layer network arranged into a
hexagonal shape

Find number and location of clusters in 4-dim. space
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The cascade correlation architecture
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A typical structure of the radial basis function network.

A Hopfield network or autoassociative memory
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An example of the bi-directional autoassociative memory - BAM: (a) drawn as
a two layer network with circulating signals () drawn as two layer network
with bi-directional signal flow.
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The functional link network

unipolar neuron bipolar neuron

output X output

. XOR

Functional link networks for solution of the XOR problem: (a) using unipolar signals,
(b) using bipolar signals.




Sarajedini and Hecht-Nielsen network

Let us consider stored vector w and input pattern x. Both input and stored
patterns have the same dimension n. The square Euclidean distance between x
and w is:

2 2 2
I~ wi? :(xl_wl) +(xz_wz) +“'+(xn_wm)

After defactorization
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Input pattern transformation on a sphere

Input pattern transformation on a sphere 2
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Network with two neurons capable of separating crescent shape of patterns (a) input-
output mapping, (b) network diagram

Input pattern transformation on a sphere 3

Spiral problem solved with sigmoidal type neurons (a) network diagram, (b) input-
output mapping.

Pulse Coded Neural Networks
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Pulse Coded Neural Networks 3
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Pulse Coded Neural Networks 4
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Fuzzy systems

 Inputs can be any value from 0 to 1.

» The basic fuzzy principle is similar to Boolean logic.

* Max and min operators are used instead of AND and OR. The NOT
operator also becomes 1 - #.

ANBNC= min{A,B,C} —smallest value of A,BorC
AUBUC = max{A,B,C} - largest value of A,Bor C

Fuzzy systems 2

n and m membership
functions

k membership
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defuzzifier

1 output
(analog),

defuzzifier
normalization

Takagi-Sugeno type defuzzifier

weighted sum

1 output
(analog)

A =1-A —one minus A

Boolean Fuzzy
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Fuzzification

e There are three major types of membership functions
— Gausian, Triangular and Trapezoidal
e Three basic membership function rules
1. Each point of an input should belong to one
membership function
2. The sum of two overlapping functions should never
be greater than 1.
3. For higher accuracy, more membership functions can
be used, but this can lead to system instability and
will require a larger fuzzy table.
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Trapezoidal Membership Function Results from Fuzzification

Rule Evaluation

Input 2 Input 2
Input 1 - Input 1 -
v cold cool | nomal | warm hot 4 cold cool | nomal | wam hot
old A A A B A old o1 02 03 04 05
cool A A B [ B cool 06 [12 08 09 010
norma A B [ [ [ normal | 011 012 013 014 o15
wam A B [ D ) wam | 016 o7 018 019 020
ot B c 5] E E ot 021 022 023 02 025
Input 2 Input 2
Input 1 - Input 1 >
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0.7 cold 02A | 078 07 cold 0203 | 0.7°04
03 cool 028 | 03C 03 cool 0208 | 0.3°08
0 nomal 0 nomal 0 0
0 warm 0 warm 0 0
0 hot 0 hot 0 0

Zadeh fuzzy tables Tagagi-Sugeno fuzzy tables

Defuzzification

* The equation to describe the defuzzification process.
— n— Number of membership functions
— zk — Fuzzy output variables
— zck — analog values from table Output =
* Outputs:
— Zadeh

02*A+0.7*B+0.3*C
0.2+0.7+0.3

Output =
— Tagagi-Sugeno

0.2*03+0.7*04+0.2*08+0.3*09
0.24+0.7+0.3+0.2

Output =

Fuzzy systems VLSI implementation
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Control surfaces: (a) desired control surface, (b) information stored in defuzzifier as
weights, and (c) measured control surface of VLSI chip

Fuzzy systems VLSI implementation 2

fuzzy current variables

1, 12, 13, 14, 15, 16
PR S 2 A A
’J L‘ Fuzzyfier with Six Diffient Membership Functions
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reference voltages

Fuzzifier (a) circuit diagram of fuzzifier, (b) example of the SPICE simulation

Fuzzy systems VLSI implementation 3
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Fuzzy systems VLSI implementation 4

Comparison of MAX circuits
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The cluster cell with rule selection (transistors Six bit programmable current sources
M1-M4) and defuzzification (source I, and
transistors M4-M6)

Fuzzy systems VLSI implementation 6

Normalization Circuit

0.16
ST TRV
@ ® @ 0.12

0.1

0.08

0.06 N

0.04 BN
0.02 BN

1 [uA]

Normalization circuit (a) circuit diagram and (b) characteristics

Fuzzy systems - microprocessor implementation

Required control surface Zadeh with trapezoidal Zadeh with triangular
membership functions membership functions

N i i

% A &

S it
e
Zadeh with Gaussian Tagagi-Sugeno with Tagagi-Sugeno with
membership functions trapezoidal membership triangular membership
functions functions

Fuzzy systems - microprocessor implementation 2

Approach used Error SSE | Error MSE

1 Zadeh fuzzy controller with trapezoidal 908.4 0.945
membership function

2 Zadeh fuzzy controller with triangular 644.4 0.671
membership function

3 Zadeh fuzzy controller with Gaussian 562.0 0.585
membership function

4 Tagagi-Sugeno fuzzy controller with 296.5 0.309
trapezoidal membership function

5 Tagagi-Sugeno fuzzy controller with 210.8 0.219
triangular membership function

6 Tagagi-Sugeno fuzzy controller with 294.2 0.306
Gaussian membership function

Neural systems -
microprocessor
implementation

Required control surface




Neural systems - microprocessor implementation 2

Comparison of various fuzzy and neural controllers

Type of controller length of | processing Error
code time (ms) MSE
Zadeh with trapezoidal 2324 1.95 0.945
Zadeh with triangular 2324 1.95 0.671
Zadeh with Gaussian 3245 39.8 0.585
Tagagi-Sugeno with trapezoidal 1502 28.5 0.309
Tagagi-Sugeno with triangulal 1502 28.5 0.219
Tagagi-Sugeno with Gaussian 2845 523 0.306
Neural network with 3 neurons in 680 1.72 0.00057
cascade
Neural network with 5 neurons in 1070 33 0.00009
cascade
Neural network with 6 neurons in one 660 38 0.00030
hidden layer

Approach used Error SSE Error MSE

1 Neural network with 3 neurons in 0.5559 0.000578
cascade

2 Neural network with 5 neurons in 0.0895 0.000093
cascade

3 | Neural network with 6 neurons in one 0.2902 0.000302

hidden layer
Genetic Algorithms

The genetic algorithms follow the evolution process in the nature
to find the better solutions of some complicated problems.
Foundations of genetic algorithms are given in Holland (1975) and
Goldberg (1989) books.

Genetic algorithms consist the following steps:
»Initialization
»Selection

»Reproduction with crossover and mutation

Selection and reproduction are repeated for each generation until a
solution is reached

During this procedure a certain strings of symbols, known as
chromosomes, evaluate toward better solution.

Genetic Algorithms 2

All significant steps of the genetic algorithm will be explained
using a simple example of finding a maximum of the function
(sin?(x)-0.5*x)? with the range of x from 0 to 1.6. Note, that in this
range the function has global maximum at x=/.309, and local
maximum at x=0.262.
Coding and initialization

At first, the variable x has to be represented as a string of
symbols. With longer strings process converges usually faster, so
less symbols for one string field are used it is the better. While
this string may be the sequence of any symbols, the binary
symbols "0" and "1" are usually used. In our example, let us use
for coding six bit binary numbers having a decimal value of 40x.
Process starts with a random generation of the initial population
given in Table

Genetic Algorithms 3

Initial Population

string decimal variable function fraction

value value value of total

1 101101 45 1.125 0.0633 0.2465
2 101000 40 1.000 0.0433 0.1686
3 010100 20 0.500 0.0004 0.0016
4 100101 37 0.925 0.0307 0.1197
5 001010 10 0.250 0.0041 0.0158
6 110001 49 1.225 0.0743 0.2895
7 100111 39 0.975 0.0390 0.1521
8 000100 4 0.100 0.0016 0.0062

Total 0.2568 1.0000

Genetic Algorithms 4

Selection and reproduction

Selection of the best members of the population is an important
step in the genetic algorithm. Many different approaches can be used to
rank individuals. In our example the ranking function is given. Highest
rank has member number 6 and lowest rank has member number 3.
Members with higher rank should have higher chances to reproduce.
The probability of reproduction for each member can be obtained as
fraction of the sum of all objective function values. This fraction is
shown in the last column of the Table.

Using a random reproduction process the following population
arranged in pairs could be generated:

101101 -> 45 110001 -> 49 100101 -> 37 110001 -> 49
100111 -> 39 101101 ->45 110001 -> 49 101000 -> 40
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Reproduction
101101 -> 45 110001 -> 49 100101 -> 37 110001 -> 49
100111 -> 39 101101 -> 45 110001 -> 49 101000 -> 40

If size of the population from one generation to another is the same,
therefore two parents should generate two children. By combining
two strings two another strings should be generated. The simples
way to do it is to split in half each of the parent string and exchange
substrings between parents. For example from parent strings
010100 and 100111 the following child strings will be generated
010111 and 100100. This process is known as the crossover and
resultant children are shown below

101111 -> 47 110101 -> 53 100001 -> 33 110000 -> 48
100101 -> 37 101001 -> 41 110101 -> 53 101001 -> 41

Genetic Algorithms 6

Mutation

On the top of properties inherited from parents they are
acquiring some new random properties. This process is known as
mutation. In most cases mutation generates low ranked children,
which are eliminated in reproduction process. Sometimes however,
the mutation may introduce a better individual with a new property
into. This prevents process of reproduction from degeneration. In
genetic algorithms mutation plays usually secondary role. Mutation
rate is usually assumed on the level much below 1%. In our
example mutation is equivalent to the random bit change of a given
pattern. In this simple example with short strings and small
population with a typical mutation rate of 0.1%, our patterns remain
practically unchanged by the mutation process. The second
generation for our example is shown in Table

Genetic Algorithms 7

Population of Second Generation

string string decimal variable function fraction
number value value value of total
1 010111 47 1175 0.0696 0.1587
2 100100 37 0.925 0.0307 0.0701

3 110101 53 1.325 0.0774 0.1766
4 010001 41 1.025 0.0475 0.1084

5 100001 33 0.825 0.0161 0.0368

6 110101 53 1.325 0.0774 0.1766
7 110000 48 1.200 0.0722 0.1646
8 101001 41 1.025 0.0475 0.1084
Total 0.4387 1.0000

Genetic Algorithms 8

Note, that two identical highest ranking members of the
second generation are very close to the solution x=7.309. The
randomly chosen parents for third generation are

010111 ->47 110101 -> 53 110000 -> 48 101001 -> 41

110101 -> 53 110000 -> 48 101001 -> 41 110101 -> 53
which produces following children:

010101 -> 21 110000 -> 48 110001 -> 49 101101 -> 45

110111 -> 55 110101 -> 53 101000 -> 40 110001 -> 49

The best result in the third population is the same as in the
second one. By careful inspection of all strings from second or third
generation one may conclude that using crossover, where strings are
always split into half, the best solution /70100 -> 52 will never be
reached no matter how many generations are created.

The genetic algorithm is very rapid and it leads to a good
solution within a few generations. This solution is usually close to
global maximum, but not the best.
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