
1

Soft Computing and its Application

B. M. ‘Dan’ Wilamowski

University of Idaho

Introduction

Neural networks

Learning Algorithms

Advanced Neural Network Architectures

Pulse Coded Neural Networks

Fuzzy Systems

Genetic Algorithms

Hardware implementation of neuro-fuzzy systems

Conclusion

nn.uidaho.edu

wialm@ieee.org

An example of the three layer feedforward neural network, which is sometimes known
also as the backpropagation network.

+1 +1 +1

hidden
layer #1

hidden
layer #2

output
layer

W

W

WT

WT

a a
b

b

a

(a) (b)

An example of the bi-directional autoassociative memory - BAM: (a) drawn as
a two layer network with circulating signals (b) drawn as two layer network

with bi-directional signal flow. Several logical operations using networks with McCulloch-Pitts neurons.

memory

net = w x
i=1

n

i i∑ o
if net
if net

=
≥
<





1 0
0 0

net = w x
i=1

n

i i∑ net = w x + w
i=1

n

i i n+1∑

o f net net if net
if net

= =
+

=
≥
<





() sgn() 1
2

1 0
0 0 




<−
≥

===
01

01
)sgn()(

netif
netif

netnetfo

()
o = f(net) = 1

1 + - netexp λ
() ()

o = f(net) = 0.5 net = 2
1 + - net

 - 1tanh
exp

λ
λ

Threshold implementation

Threshold implementation with an additional weight and constant input with
+1 value : (a) neuron with threshold T, (b) modified neuron with threshold
T=0 and additional weight equal to -T

T = t T = 0

x1
x2
x3
x4

xn

+1

x1
x2
x3
x4

xn wn+1
= -T

(a) (b)

Typical activation functions: (a) hard threshold unipolar, (b) hard
threshold bipolar, (c) continuous unipolar, (d) continuous bipolar.

(a) (b)

(c) (d)

o f net net if net
if net

= =
+

=
≥
<





() sgn() 1
2

1 0
0 0 




<−
≥

===
01

01
)sgn()(

netif
netif

netnetfo

()
o = f(net) = 1

1 + - netexp λ
() ()

o = f(net) = 0.5 net = 2
1 + - net

 - 1tanh
exp

λ
λ

2

Activation functions

bipolar

() ()netk
netk

netfo tanh1
2exp1

2)(=−
−+

== ()21)(' okof −=

()netk
netfo

4exp1
1)(
−+

== ()ookof −= 14)('

unipolar

Learning rules for single neuron xw δα=∆ i
Hebb rule (unsupervised): o=δ

correlation rule (supervised): d=δ

perceptron fixed rule: od −=δ
perceptron adjustable rule - as above but the learning constant is modified to:

2
*

xxx
wx net

T

T

λαλαα ==

LMS (Widrow-Hoff) rule: netd −=δ
delta rule: () 'fod −=δ
pseudoinverse rule (for linear system): () dTT xxxw 1−

=

iterative pseudoinverse rule (for nonlinear system): ()
'

1

f
odTT −

=
− xxxw

LMS AND REGRESSION ALGORITHMS
If a single layer of neurons is considered, error back propagation type of
algorithms minimize global error as shown in equation 1:

TotalError d opj pj
j

J

p

P
= −∑∑

==

2

11
()

where P is the number of patterns and J is the number of outputs. A similar
approach is taken in the Widrow-Hoff (LMS) algorithm:

TotalError d netpj pj
j

J

p

P
= −∑∑

==

2

11
()

Where

and I is the size of the augmented input vector i.e. xjIp=+1.

pj ji
i

I
jipnet w x= ∑

=1

For any given neuron the training data is given in two arrays:

11 12 13

21 22 2

31 32 3

1 2

1

2

1

2

3

x x x x
x x x
x x x

x x x

w
w

w

d
d
d

d

iI

i

i

P P PI
I

P

K

KK

KK

M M O M

KK

M
M





















×



















=





















where I is the number of augmented inputs. The over-determinated set of
equations can be solved in a least mean square sense:

()j
T 1 T

jw x x x d=
−

where wj=unknown vector of the weights of the jth neuron. The matrix x must
be converted only once, and the weights for all the neurons (j=1 to N) can be
found. Regardless of whether the regression algorithm or the LMS algorithm is
used, the outcome will be the same.

0 2 4 6 8
-1

0

1

2

3

4

5

6

7

8

A

B

0 2 4 6 8
-1

0

1

2

3

4

5

6

7

8

B
A

Two examples of non-optimum solutions, where line A is the result of the
regression (LMS) algorithm, and line B is the separation generated by the

minimum distance classifier.

LMS algorithm AW ALGORITHM
The total error for one neuron j and pattern p is now defined by a simple difference:

jpo jp jpE D O net= − ()
where net=w1x1+w2x2+.....wnxn. The derivative of this error with respect to the ith

weight of the jth neuron can be written as

jp

i

jp
jp

dE

dw

dO

dnet

dnet

dw
f ijpx

i
= = − ′

The error function can then be approximated by the first two terms of the linear
approximation around a given point:

jp jpo
jp jp jp

n
nE E

dE
dw

w
dE
dw

w
dE
dw

w= + + +
1

1
2

2∆ ∆ ∆........

Therefore:

3





































=















































′

−

′

−

′

−

′

−

∇

∇

f P

O PD P

f p

O pD p

f

OD

f

OD

w

w
w

xxxx

xxxx

xxxx
xxxx

I

PIPPP

pIppp

I

I

M

M

M

L

MMMM

L

MMMM

L

L

2

22

1

11

2

1

111

321

2232321

1131211

AW ALGORITHM 2

()∆w X X X del Y del=
−

=T T1

The Y matrix is composed of input patterns, and must be
computed only once !

0 2 4 6 8
-1

0

1

2

3

4

5

6

7

8

D

A

B

C

0 2 4 6 8
-1

0

1

2

3

4

5

6

7

8

A

B

C

D

Comparison of Algorithms where the algorithms can be identified by the labels A-
regression, B-minimum distances C-modified minimum distance, and D-modified

regression and delta (back propagation) algorithm.

AW ALGORITHM 3

An example of the three layer feedforward neural network, which is sometimes known
also as the backpropagation network.

+1 +1 +1

hidden
layer #1

hidden
layer #2

output
layer

Illustration of the property of linear separation of patterns in the two-dimensional space
by a single neuron.

x

x

x

x

1

2

10

20

+1

w2

w1

w1=

w2=

w3=

x1

x2
w3

1

1

-1

x10

x20

inputs

hidden
layer #1

hidden
layer #2

output

+1

+1
+1

AND

OR

An example of the three layer neural network with two inputs for separation of three
clusters into one category. This network can be generalized and can be used for

solution all classification problems.
An example with a comparison of results obtained using LMS and Delta training

algorithms. Note that LMS is not able to find the proper solution.

1 2

1

2

3

4

6

3 4 5 6 7

-1

-2

-2 -1

5

x1

x2

LM
S

x 1
1

2.
5

=

D
el

ta
x 2

x 1
-

1.
4 1

24
=

1

4

Weights

V

Neurons Weights Neurons

W

Layer j Layer k

net j net k

y = f(net j) o = f(net k)
1

2

K

1

J

2

f' (net j)

-+

d
d - o

initial
weight
vector

w j

∆W = ηδoy

δo = [(dk-ok)f'(netk)]w jδo

η

Output
vector

Desired
output
vector

Input
vector

learning
constant

η
δy = w jδof'(netj)

∆V = ηδyz
f' (net j)

z

Feed
forward

Back-
propagation

Error Backpropagation

xi wij ojj-th

o1

ok

oK
+1

+1

Ej

Aij =
d ok

d netj

netj

Illustration of the concept of the gain computation in neural networks

• Although the error backpropagation algorithm (EBP) was a significant
breakthrough in neural network research, it is known as an algorithm
with a very poor convergence rate.

• Many attempts have been made to speed up the EBP algorithm:
– heuristics approaches such as momentum,
– variable learning rate
– stochastic learning
– artificial enlarging of errors for neurons operating in saturation

region

• More significant improvement was possible by using various second
order approaches:
– Newton,
– conjugate gradient,
– Levenberg-Marquardt (LM) method. The LM algorithm is now

considered as the most efficient one It combines the speed of the
Newton algorithm with the stability of the steepest decent method.

Levenberg - Marquardt
Steepest decent method: gww α−=+ kk 1

Newton method: gAww 1
1

−
+ −= kkk

where Ak is Hessian and g is gradient vector

Assuming: JJA T2≈ and vJg T2≈
where J is Jacobian and v is error vector

() vJJJww T
kk

T
kkk 22 1

1
−

+ −= () vJJJww T
kk

T
kkk

1
1

−

+ −=or

Levenberg - Marquardt method: () vJIJJww T
kk

T
kkk

1
1

−

+ +−= µ

⋅⋅⋅⋅

⋅
∂
∂

∂∂
∂

∂∂
∂

⋅
∂∂

∂
∂
∂

∂∂
∂

⋅
∂∂

∂
∂∂

∂
∂
∂

⇔

2
3

2

23

2

13

2
32

2

2
2

2

12

2
31

2

21

2

2
1

2

x
v

xx
v

xx
v

xx
v

x
v

xx
v

xx
v

xx
v

x
v

Hessian

⋅⋅⋅⋅

⋅
∂
∂

∂
∂

∂
∂

⋅
∂
∂

∂
∂

∂
∂

⋅
∂
∂

∂
∂

∂
∂

⇔

3

3

2

3

1

3

3

2

2

2

1

2

3

1

2

1

1

1

x
v

x
v

x
v

x
v

x
v

x
v

x
v

x
v

x
v

Jacobian

LM algorithm combines the speed of the Newton algorithm with the
stability of the steepest decent method. The LM algorithm uses the
following formula to calculate weights in subsequent iterations:

() EJIJJww T
kk

T
kkk

1
1

−

+ +−= µ

where E is the cumulative (for all patterns) error vector I is identity unit
matrix, µ is a learning parameter and J is Jacobian of m output errors with
respect to n weights of neural network. For µ = 0 it becomes the Gauss-
Newton method. For very large µ the LM algorithm becomes the steepest
decent or the EBP algorithm. The µ parameter is automatically adjusted at
each iteration in order to secure convergence.

Levenberg - Marquardt 2 Error Back Propagation Algorithm

10-1

100

101
Error Back P ropaga tion

100

101

102

Sum of squared errors as a function
of number of iterations for the
“XOR” problem using EBP
algorithm with Nguyen-Widrow
weight initialization

Sum of squared errors as a function
of number of iterations for
the“XOR” problem using EBP
algorithm with unfavorable weight
initialization

5

100 101 102
10-4

10-3

10-2

10-1

100

101
Levenberg-Marqua rdt

number of ite ra tions

gl
ob

al
 e

rro
r

Levenberg-Marquardt Algorithm

 Sum of squared errors as a function of number of iterations for the “XOR”
problem using LM algorithm with Nguyen-Widrow weight initialization.
Algorithm failed in 15% to 25% cases

WW hheenn iinn iitt iiaa ll wwee iigghhtt wweerree cchhoosseenn
ppuurrppoossee llyy vveerryy ffaarr ffrroomm tthhee ssoo lluutt iioonn tthhee

LLMM aa llggoorr iitthhmm ffaa ii lleedd iinn 110000%% ccaasseess

-1

+1 output

desired
output

net

f(net)

actual derivative

modified derivative

Illustration of the modified derivative calculation for faster convergence of the
error backpropagation algorithm

A poor convergence of EBP algorithm is not because of local mimima but it is
due to plateaus on the error surface. This problem is also known as “flat spot”
problem. The prime reason for the plateau formations is a characteristic shape
of the sigmoidal activation functions.

100 101 102
10-4

10-3

10-2

10-1

100

101

102
Modified EBP Algorithm

number of ite ra tions

gl
ob

al
 e

rro
r

100 101 102
10-4

10-3

10-2

10-1

100

101

102
Modified EBP Algorithm

number of ite ra tions

gl
ob

al
 e

rro
r

Sum of squared errors as a function of
number of iterations for the “XOR”
problem using modified EBP
algorithm with unfavorable weight
initialization

Sum of squared errors as a function of
number of iterations for the “XOR”
problem using modified EBP algorithm
with Nguyen-Widrow weight
initialization

Results of flat spot elimination

unipolar
neurons

Kohonen
 layer

Grossberg
 layer

no
rm

al
ize

d
in

pu
ts

ou
tp

ut
s

summing
 circuits

0

1

0

0

0

The counterpropagation network.

Kohonen
 layer

no
rm

al
ize

d
 in

pu
ts

winner

w

(a) (b)

A winner take all - WTA architecture for cluster extracting in the unsupervised
training mode: (a) network connections, (b) single layer network arranged into a

hexagonal shape.

-2 2 -3 6
4 -4 4 3

-2 3 -4 3
-2 6 -8 8
0 2 -5 4
2 -4 5 2

-4 8 -4 9
0 -2 6 3
4 -1 4 1

-3 7 -6 7
-2 3 -2 4
3 -2 6 2
0 2 -3 4

-6 4 -8 7
-3 5 -3 6
-3 5 -4 4
-3 2 -5 2
-1 3 -3 3

-2 2 -2 5
-5 4 -5 8
0 1 -3 3

-2 1 -5 3
-2 6 -7 6
-6 6 -7 8
-2 2 -2 6
-3 6 -5 7
-4 6 -6 6
-6 7 -5 9
-2 5 -6 8
0 3 -2 6
3 -2 4 4

-6 6 -6 6
-3 6 -7 7
-3 8 -5 10
-2 7 -6 6
2 -2 4 4

-5 7 -5 8
-3 8 -8 9
2 -2 2 2

-2 6 -8 9
2 -2 3 2

-2 1 -5 3
2 -1 4 1

-6 4 -6 6
-2 3 -2 5
-1 2 -3 2
-2 5 -2 2
0 -2 4 0

-6 4 -6 8
-2 3 -4 4
1 0 6 2

-4 4 -6 10
-1 3 -4 6
-4 5 -8 6

-4 4 -1 4
-1 1 -2 2
-4 3 -3 2
0 3 -4 6

-4 5 -5 7
-4 3 -2 4
4 0 2 4

-2 3 -3 4
-2 1 -3 6
-2 1 -3 4
4 -3 5 0
2 -4 4 0

-3 6 -6 7
4 -4 3 2

-1 4 -3 5
-2 5 -1 5
-3 6 -6 9
-4 4 -2 4

Find number and location of clusters in 4-dim. space

(-2 3 –3 4) (4 –4 6 –6) (2 –2 4 2)

6

hidden neurons

output
neurons

in
pu

ts

ou
tp

ut
s

+1

+1

+1

+1
once adjusted weights and then frozen
weights adjusted every step

The cascade correlation architecture

in
pu

ts

ou
tp

ut
s

summing
 circuit

y2

y3

y1

D

D

D

hidden "neurons"

w1

w
2

y1

y2

y3

D

0

1

0

0

 output
normalization

s1

s4

s3

s2

stored

stored

stored

stored

x
 is

 c
l o

se
 t

o
 s

2

A typical structure of the radial basis function network.

v1 v1

v2
v2

v3 v3

v4
v4

v5
v5

W

A Hopfield network or autoassociative memory

W

W

WT

WT

a a
b

b

a

(a) (b)

An example of the bi-directional autoassociative memory - BAM: (a) drawn as
a two layer network with circulating signals (b) drawn as two layer network

with bi-directional signal flow.

+1

ou
tp

ut
s

in
pu

ts

no
nl

in
ea

r e
le

m
en

ts

The functional link network

x1 x2

x1

x2

output
+1

+1
+1

-3

-0.5

x1 x2

x1

x2

output
+1

-0.5

+1
XOR XOR

(a) (b)

unipolar neuron bipolar neuron

Functional link networks for solution of the XOR problem: (a) using unipolar signals,
(b) using bipolar signals.

7

Sarajedini and Hecht-Nielsen network

Let us consider stored vector w and input pattern x. Both input and stored
patterns have the same dimension n. The square Euclidean distance between x
and w is:

After defactorization

finally

() () ()x w− = − + − + ⋅ ⋅ ⋅ + −2
1 1

2

2 2

2 2
x w x w x wn n

()x w− = + + ⋅ ⋅ ⋅ + + + + ⋅ ⋅ ⋅ + − + + ⋅ ⋅ ⋅ +2
1
2

2
2 2

1
2

2
2 2

1 1 2 22x x x w w w x w x w x wn n n n

x w x x w w x w x w− = + − = + −2 2 22 2T T T net

x 2

x1

x2

xn

+1

+1

-2w1 w 2

-2w2

-2wn

x w− 2

∑

0
10

20
30

0

10

20

30
0

100

200

300

400

500

Input pattern transformation on a sphere

xc3

xc1

xc2

xe1

xe2

xe3

-10
-5

0
5

10

-10
-5

0
5

10
-1

-0.5

0

0.5

1

R2 2− x

x1

x2

xn

z1

z2

zn+1

zn

...

Input pattern transformation on a sphere 2

Network with two neurons capable of separating crescent shape of patterns (a) input-
output mapping, (b) network diagram

(b)-10

-5
0

5

10

-10

-5

0

5

10
0

0.5

1

(a)

+1

r x x2
1
2

2
2− −

+1

-1

x1

x2

Input pattern transformation on a sphere 3

Spiral problem solved with sigmoidal type neurons (a) network diagram, (b) input-
output mapping.

(a)

+1

+1
+1

x1

x2

-10

-5

0

5

10

-10

-5

0

5

10
-1

0

1

(b)

+1

+1

+1

+1

-1
-1

-1

-1

-1

M1

M2M3

C1 R1 R2C2

VDD

NC
Neural

Cell

MP

MNM4

w
ei

gh
te

d
ou

tp
ut

 c
ur

re
nt

s

in
pu

t n
od

e

Pulse Coded Neural Networks

time
0.0 0.1 0.2mS

0
1
2
3
4
5
6
7
8
9V

Transient Graph

VC1 VC2

Pulse Coded Neural Networks 2

X

Y

RC

NC

NC

0 50 100 150 200 250 30
0

5

10

0 50 100 150 200 250 30
0

5

10

8

Pulse Coded Neural Networks 3 Pulse Coded Neural Networks 4
VDD

C1
R1

C2
R2

in
pu

t

ou
tp

ut

coupling with
neighbors

coupling with

neighbors

in
pu

t s
pa

tia
l i

m
ag

e

ou
tp

ut
 te

m
po

ra
l p

at
te

rn

m
ut

ua
ly

 c
ou

pl
ed

 n
eu

ro
ns

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

20

time

of

 e
ve

nt
s

Burning Fire (comple te image)

Pulse Coded Neural Networks 5 Fuzzy systems
• Inputs can be any value from 0 to 1.
• The basic fuzzy principle is similar to Boolean logic.
• Max and min operators are used instead of AND and OR. The NOT

operator also becomes 1 - #.

A minus one A -1 A
Cor BA, of luelargest va C}B,max{A,CBA
Cor BA, of aluesmallest v C}B,min{A,CBA

−⇒

−⇒∪∪
−⇒∩∩

BA∩

11
01
10
00

1
0
0
0

Boolean Fuzzy
BA∪

11
01
10
00

1
0
0
0

BA∩

0.80.7
0.30.7
0.80.2
0.30.2

0.7
0.3
0.2
0.2

BA∪

0.80.7
0.30.7
0.80.2
0.30.2

0.8
0.7
0.8
0.3

Fuzzy systems 2

Block diagram for Zadeh fuzzy controller

Takagi-Sugeno type defuzzifier

fu
zz

ifi
er

s

se
le

ct
io

n
of

n*
m

 a
re

as

n+m
(fuzzy)

k
(fuzzy)

2 inputs
(analog)

1 output
(analog)

de
fu

zz
ifi

er

m
ax

 o
pe

ra
to

rs
fo

r e
ac

h
k

ca
te

go
rie

s

n*m
(fuzzy)

n and m membership
functions

k membership
functions

n*m
(fuzzy)

se
gr

eg
at

io
n

in
to

k
ca

te
go

rie
s

k
(fuzzy)

1 output
(analog)

de
fu

zz
ifi

er

k
(fuzzy)

1 output
(analog)

w
ei

gh
te

d
su

m

no
rm

al
iz

at
io

n

k
(fuzzy)

Fuzzification

• There are three major types of membership functions
– Gausian, Triangular and Trapezoidal

• Three basic membership function rules
1. Each point of an input should belong to one

membership function
2. The sum of two overlapping functions should never

be greater than 1.
3. For higher accuracy, more membership functions can

be used, but this can lead to system instability and
will require a larger fuzzy table.

9

Fuzzification

20 30 40 50 60 70 80 90 100 110 120
0

1

Degrees F

Normal Warm HotCold Cool

38 deg F 83 deg F

fu
zz

ifi
er

38 deg F

cool

cold

warm

hot

normal

0

0.7

0.3

0

0

fu
zz

ifi
er

83 deg F

cool

cold

warm

hot

normal

0

0

0.2

0.8

0

Trapezoidal Membership Function Results from Fuzzification

Rule Evaluation
Input 2

Input 1 J
 L cold cool normal warm hot
cold A A A B A
cool A A B C B

norma A B C C C
warm A B C D D
hot B C D E E

Input 2
Input 1 J
 L 0 cold 0 cool 0.2 normal 0.8 warm 0 hot

0.7 cold A A A B A
0.3 cool A A B C B
0 normal A B C C C
0 warm A B C D D
0 hot B C D E E

Input 2
Input 1 J
 L 0 cold 0 cool 0.2 normal 0.8 warm 0 hot

0.7 cold 0 0 0.2 A 0.7B 0
0.3 cool 0 0 0.2 B 0.3 C 0
0 normal 0 0 0 0 0
0 warm 0 0 0 0 0
0 hot 0 0 0 0 0

Zadeh fuzzy tables

Input 2
Input 1 J
 L cold cool normal warm hot
cold O1 O2 O3 O4 O5
cool O6 O7 O8 O9 O10

normal O11 O12 O13 O14 O15
warm O16 O17 O18 O19 O20
hot O21 O22 O23 O24 O25

Input 2
Input 1 J
 L 0 cold 0 cool 0.2 normal 0.8 warm 0 hot

0.7 cold O1 O2 O3 O4 O5
0.3 cool O6 O7 O8 O9 O10
0 normal O11 O12 O13 O14 O15
0 warm O16 O17 O18 O19 O20
0 hot O21 O22 O23 O24 O25

Input 2
Input 1 J
 L 0 cold 0 cool 0.2 normal 0.8 warm 0 hot

0.7 cold 0 0 0.2*O3 0.7*O4 0
0.3 cool 0 0 0.2*O8 0.3*O9 0
0 normal 0 0 0 0 0
0 warm 0 0 0 0 0
0 hot 0 0 0 0 0

Tagagi-Sugeno fuzzy tables

Defuzzification

• The equation to describe the defuzzification process.
– n – Number of membership functions
– zk – Fuzzy output variables
– zck – analog values from table

• Outputs:
– Zadeh

– Tagagi-Sugeno

∑

∑

=

== n

1k
k

n

1k
kk

z

zcz
 Output

0.30.70.2
C*0.3B*0.7A*0.2 Output

++
++

=

0.20.30.70.2
O9*0.3O8*0.2O4*0.7O3*0.2 Output

+++
+++

=

Fuzzy systems VLSI implementation

Block diagrams of the fuzzy VLSI chip

fu
zz

yf
ie

rs

64
 M

IN
op

er
at

or
s

8+8
(fuzzy)

64
(fuzzy)

2 inputs
(analog)

1 output
(analog)

w
ei

gh
te

d
su

m

no
rm

al
iz

ar
io

n

64
(fuzzy)

0

5

10

0

5

10
0

2

4

6

8

10

0

5

10

0
5

10
15
0

50

100

150

200

Control surfaces: (a) desired control surface, (b) information stored in defuzzifier as
weights, and (c) measured control surface of VLSI chip

Fu
zz

yf
ie

r
Fu

zz
yf

ie
r

X

Y

Array of
cluster cells

out

weighted
currents

voltages

0

5

10

0

5

10
0

2

4

6

8

10

X
Y

Fuzzy systems VLSI implementation 2

re
fe

re
n
c
e
 v

o
lt
a
g
e
s

fuzzy current variables

VIN

I1 I2 I3 I4 I5 I6

(a)

8

9

10

[u
A

]

I1 I2 I3 I4 I5 I6

Fuzzyfier with Six Diffrent Membership Functions

Fuzzifier (a) circuit diagram of fuzzifier, (b) example of the SPICE simulation

Fuzzy systems VLSI implementation 3

ou
tp

ut
 to

 s
um

m
in

g
no

de

W/LW/L W/L

fu
zz

y
in

pu
ts

Defuzzifier using normalization and weighted
sum

M
IN

(A
,B

)

A

B

(a) (b)

IA

IB

ITH IBIAS

VREF

VDD

IOUT

Selection circuits (a) MIN circuit in
voltage mode (b) neuron circuit with

threshold in the current mode

10

Fuzzy systems VLSI implementation 4

MAX operators (a) concept diagram and (b) simulation results for MAX1 and for the
proposed MAX2.

M1

+VDD

I1 I2

IMAX

IBIAS

M3M2

M4 M5
1 2

3

VBIAS6 7 8

5
M6 M7 M8

0 0.5 1 1.5 2 2.5 3 3.5 4
9

9.2

9.4

9.6

9.8

10

10.2

10.4

10.6

10.8

11

I1

I2

MAX2
MAX1

Comparison of MAX circuits

TIME

C
ur

re
nt

s

[s]

[u
A

]

Fuzzy systems VLSI implementation 5

The cluster cell with rule selection (transistors
M1-M4) and defuzzification (source I0 and

transistors M4-M6)

Six bit programmable current sources

 X i-th fuzzy voltage

 Z k-th fuzzy voltage

 Y j-th fuzzy voltage

to global
summing node

 common node
supplied by single
constant current

source

W/L sets the output
value for the cluster

+12V

I0

M1 M2 M3

M4

M5 M6

1 2 4

1 2 4

IREF

14

4 1

2

1

1 2 4

8 16 32

W/L are marked

Fuzzy systems VLSI implementation 6

Normalization circuit (a) circuit diagram and (b) characteristics

I1 I3

1

M1 M2 M3 M4

+
- IBIASVREF

M5 M6

I2

7
8

IN1 IN3IN2

2 3

0 0.05 0.1 0.15 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

I1

I2

I3

I1N

I2N
I3N

Normaliza tion Circuit

I1

C
ur

re
nt

s

[uA]

[u
A

]

Fuzzy systems - microprocessor implementation

Required control surface Zadeh with trapezoidal
membership functions

Zadeh with triangular
membership functions

Zadeh with Gaussian
membership functions

Tagagi-Sugeno with
trapezoidal membership

functions

Tagagi-Sugeno with
triangular membership

functions

Fuzzy systems - microprocessor implementation 2

0.306294.2Tagagi-Sugeno fuzzy controller with
Gaussian membership function

6

0.219210.8Tagagi-Sugeno fuzzy controller with
triangular membership function

5

0.309296.5Tagagi-Sugeno fuzzy controller with
trapezoidal membership function

4

0.585562.0Zadeh fuzzy controller with Gaussian
membership function

3

0.671644.4Zadeh fuzzy controller with triangular
membership function

2

0.945908.4Zadeh fuzzy controller with trapezoidal
membership function

1

Error MSEError SSEApproach used

Neural systems -
microprocessor
implementation

Required control surface

11

Neural systems - microprocessor implementation 2

0.0003020.2902Neural network with 6 neurons in one
hidden layer

3

0.0000930.0895Neural network with 5 neurons in
cascade

2

0.0005780.5559Neural network with 3 neurons in
cascade

1

Error MSEError SSEApproach used

Comparison of various fuzzy and neural controllers

0.000303.8660Neural network with 6 neurons in one
hidden layer

0.000093.31070Neural network with 5 neurons in
cascade

0.000571.72680Neural network with 3 neurons in
cascade

0.30652.32845Tagagi-Sugeno with Gaussian

0.21928.51502Tagagi-Sugeno with triangulal
0.30928.51502Tagagi-Sugeno with trapezoidal

0.58539.83245Zadeh with Gaussian

0.6711.952324Zadeh with triangular

0.9451.952324Zadeh with trapezoidal

Error
MSE

processing
time (ms)

length of
code

Type of controller

Genetic Algorithms
The genetic algorithms follow the evolution process in the nature
to find the better solutions of some complicated problems.
Foundations of genetic algorithms are given in Holland (1975) and
Goldberg (1989) books.

Genetic algorithms consist the following steps:

Initialization
Selection
Reproduction with crossover and mutation

Selection and reproduction are repeated for each generation until a
solution is reached

During this procedure a certain strings of symbols, known as
chromosomes, evaluate toward better solution.

Genetic Algorithms 2

All significant steps of the genetic algorithm will be explained
using a simple example of finding a maximum of the function
(sin2(x)-0.5*x)2 with the range of x from 0 to 1.6. Note, that in this
range the function has global maximum at x=1.309, and local
maximum at x=0.262.
Coding and initialization

At first, the variable x has to be represented as a string of
symbols. With longer strings process converges usually faster, so
less symbols for one string field are used it is the better. While
this string may be the sequence of any symbols, the binary
symbols "0" and "1" are usually used. In our example, let us use
for coding six bit binary numbers having a decimal value of 40x.
Process starts with a random generation of the initial population
given in Table

Genetic Algorithms 3

Initial Population
string decimal

value
variable

value
function

value
fraction
of total

1 101101 45 1.125 0.0633 0.2465

2 101000 40 1.000 0.0433 0.1686

3 010100 20 0.500 0.0004 0.0016

4 100101 37 0.925 0.0307 0.1197

5 001010 10 0.250 0.0041 0.0158

6 110001 49 1.225 0.0743 0.2895

7 100111 39 0.975 0.0390 0.1521

8 000100 4 0.100 0.0016 0.0062

Total 0.2568 1.0000

Initial Population
string decimal

value
variable

value
function

value
fraction
of total

1 101101 45 1.125 0.0633 0.2465

2 101000 40 1.000 0.0433 0.1686

3 010100 20 0.500 0.0004 0.0016

4 100101 37 0.925 0.0307 0.1197

5 001010 10 0.250 0.0041 0.0158

6 110001 49 1.225 0.0743 0.2895

7 100111 39 0.975 0.0390 0.1521

8 000100 4 0.100 0.0016 0.0062

Total 0.2568 1.0000

Initial PopulationInitial Population
stringstring decimal

value
decimal
value

variable
value

variable
value

function
value

function
value

fraction
of total
fraction
of total

11 101101101101 4545 1.1251.125 0.06330.0633 0.24650.2465

22 101000101000 4040 1.0001.000 0.04330.0433 0.16860.1686

33 010100010100 2020 0.5000.500 0.00040.0004 0.00160.0016

44 100101100101 3737 0.9250.925 0.03070.0307 0.11970.1197

55 001010001010 1010 0.2500.250 0.00410.0041 0.01580.0158

66 110001110001 4949 1.2251.225 0.07430.0743 0.28950.2895

77 100111100111 3939 0.9750.975 0.03900.0390 0.15210.1521

88 000100000100 44 0.1000.100 0.00160.0016 0.00620.0062

TotalTotal 0.25680.2568 1.00001.0000

Genetic Algorithms 4

Selection and reproduction
Selection of the best members of the population is an important

step in the genetic algorithm. Many different approaches can be used to
rank individuals. In our example the ranking function is given. Highest
rank has member number 6 and lowest rank has member number 3.
Members with higher rank should have higher chances to reproduce.
The probability of reproduction for each member can be obtained as
fraction of the sum of all objective function values. This fraction is
shown in the last column of the Table.

Using a random reproduction process the following population
arranged in pairs could be generated:

101101 -> 45 110001 -> 49 100101 -> 37 110001 -> 49
100111 -> 39 101101 -> 45 110001 -> 49 101000 -> 40

12

Genetic Algorithms 5

Reproduction
101101 -> 45 110001 -> 49 100101 -> 37 110001 -> 49
100111 -> 39 101101 -> 45 110001 -> 49 101000 -> 40

If size of the population from one generation to another is the same,
therefore two parents should generate two children. By combining
two strings two another strings should be generated. The simples
way to do it is to split in half each of the parent string and exchange
substrings between parents. For example from parent strings
010100 and 100111 the following child strings will be generated
010111 and 100100. This process is known as the crossover and
resultant children are shown below

101111 -> 47 110101 -> 53 100001 -> 33 110000 -> 48
100101 -> 37 101001 -> 41 110101 -> 53 101001 -> 41

Genetic Algorithms 6

Mutation
On the top of properties inherited from parents they are

acquiring some new random properties. This process is known as
mutation. In most cases mutation generates low ranked children,
which are eliminated in reproduction process. Sometimes however,
the mutation may introduce a better individual with a new property
into. This prevents process of reproduction from degeneration. In
genetic algorithms mutation plays usually secondary role. Mutation
rate is usually assumed on the level much below 1%. In our
example mutation is equivalent to the random bit change of a given
pattern. In this simple example with short strings and small
population with a typical mutation rate of 0.1%, our patterns remain
practically unchanged by the mutation process. The second
generation for our example is shown in Table

Genetic Algorithms 7

Population of Second Generation
string

number
string decimal

value
variable

value
function

value
fraction
of total

1 010111 47 1.175 0.0696 0.1587

2 100100 37 0.925 0.0307 0.0701

3 110101 53 1.325 0.0774 0.1766

4 010001 41 1.025 0.0475 0.1084

5 100001 33 0.825 0.0161 0.0368

6 110101 53 1.325 0.0774 0.1766

7 110000 48 1.200 0.0722 0.1646

8 101001 41 1.025 0.0475 0.1084

Total 0.4387 1.0000

Population of Second Generation
string

number
string decimal

value
variable

value
function

value
fraction
of total

1 010111 47 1.175 0.0696 0.1587

2 100100 37 0.925 0.0307 0.0701

3 110101 53 1.325 0.0774 0.1766

4 010001 41 1.025 0.0475 0.1084

5 100001 33 0.825 0.0161 0.0368

6 110101 53 1.325 0.0774 0.1766

7 110000 48 1.200 0.0722 0.1646

8 101001 41 1.025 0.0475 0.1084

Total 0.4387 1.0000

Population of Second GenerationPopulation of Second Generation
string

number
string

number
stringstring decimal

value
decimal
value

variable
value

variable
value

function
value

function
value

fraction
of total
fraction
of total

11 010111010111 4747 1.1751.175 0.06960.0696 0.15870.1587

22 100100100100 3737 0.9250.925 0.03070.0307 0.07010.0701

33 110101110101 5353 1.3251.325 0.07740.0774 0.17660.1766

44 010001010001 4141 1.0251.025 0.04750.0475 0.10840.1084

55 100001100001 3333 0.8250.825 0.01610.0161 0.03680.0368

66 110101110101 5353 1.3251.325 0.07740.0774 0.17660.1766

77 110000110000 4848 1.2001.200 0.07220.0722 0.16460.1646

88 101001101001 4141 1.0251.025 0.04750.0475 0.10840.1084

TotalTotal 0.43870.4387 1.00001.0000

Genetic Algorithms 8
Note, that two identical highest ranking members of the

second generation are very close to the solution x=1.309. The
randomly chosen parents for third generation are

010111 -> 47 110101 -> 53 110000 -> 48 101001 -> 41
110101 -> 53 110000 -> 48 101001 -> 41 110101 -> 53

which produces following children:
010101 -> 21 110000 -> 48 110001 -> 49 101101 -> 45
110111 -> 55 110101 -> 53 101000 -> 40 110001 -> 49
The best result in the third population is the same as in the

second one. By careful inspection of all strings from second or third
generation one may conclude that using crossover, where strings are
always split into half, the best solution 110100 -> 52 will never be
reached no matter how many generations are created.

The genetic algorithm is very rapid and it leads to a good
solution within a few generations. This solution is usually close to
global maximum, but not the best.

Genetic Algorithms 9 Genetic Algorithms 10

13

Genetic Algorithms 11 Genetic Algorithms 12

Soft Computing and its Application

B. M. ‘Dan’ Wilamowski

University of Idaho

nn.uidaho.edu

wialm@ieee.org

