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An example of the three layer feedforward neural network, which is sometimes known 
also as the backpropagation network.
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An example of the bi-directional autoassociative memory - BAM: (a) drawn as 
a two layer network with circulating signals (b) drawn as two layer network 

with bi-directional signal flow. Several logical operations using networks with McCulloch-Pitts neurons.

memory

net =  w x
i=1

n

i i∑ o
if net
if net

=
≥
<





1 0
0 0

net =  w x
i=1

n

i i∑ net =  w x  +  w
i=1

n

i i n+1∑

o f net net if net
if net

= =
+

=
≥
<





( ) sgn( ) 1
2

1 0
0 0 




<−
≥

===
01

01
)sgn()(

netif
netif

netnetfo

( )
o =  f(net) =  1

1 +  - netexp λ
( ) ( )

o =  f(net) =  0.5 net  =  2
1 +  - net

 -  1tanh
exp

λ
λ

Threshold implementation

Threshold implementation with an additional weight and constant input with  
+1 value : (a) neuron with threshold T, (b) modified neuron  with threshold 
T=0 and additional weight equal to -T
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Typical activation functions: (a) hard threshold unipolar, (b) hard 
threshold bipolar, (c) continuous unipolar, (d) continuous bipolar.
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Activation functions

bipolar     
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Learning rules for single neuron xw δα=∆ i
Hebb rule (unsupervised): o=δ

correlation rule (supervised): d=δ

perceptron fixed rule: od −=δ
perceptron adjustable rule - as above but the learning constant is modified to:
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LMS (Widrow-Hoff) rule: netd −=δ
delta rule: ( ) 'fod −=δ
pseudoinverse rule (for linear system): ( ) dTT xxxw 1−
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LMS AND REGRESSION ALGORITHMS
If a single layer of neurons is considered, error back propagation type of 
algorithms minimize global error as shown in equation 1:
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where P is the number of patterns and J is the number of outputs.  A similar 
approach is taken in the Widrow-Hoff (LMS) algorithm:
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Where

and I is the size of the augmented input vector i.e. xjIp=+1.

pj ji
i

I
jipnet w x= ∑

=1

For any given neuron the training data is given in two arrays:
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where I is the number of augmented inputs.  The over-determinated set of 
equations can be solved in a least mean square sense:

( )j
T 1 T

jw x x x d=
−

where wj=unknown vector of the weights of the jth neuron.  The matrix x must 
be converted only once, and the weights for all the neurons (j=1 to N) can be 
found.  Regardless of whether the regression algorithm or the LMS algorithm is 
used, the outcome will be the same.
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Two examples of non-optimum solutions, where line A is the result of the 
regression (LMS) algorithm, and line B is the separation generated by the 

minimum distance classifier. 

LMS algorithm AW ALGORITHM
The total error for one neuron j and pattern p is now defined by a simple difference:

jpo jp jpE D O net= − ( )
where net=w1x1+w2x2+.....wnxn.  The derivative of this error with respect to the ith

weight of the jth neuron can be written as
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The error function can then be approximated by the first two terms of the linear 
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AW ALGORITHM    2

( )∆w X X X del Y del=
−

=T T1

The Y matrix is composed of input patterns, and must be 
computed only once !
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Comparison of Algorithms where the algorithms can be identified by the labels A-
regression, B-minimum distances C-modified minimum distance, and D-modified 

regression and delta (back propagation) algorithm.

AW ALGORITHM    3

An example of the three layer feedforward neural network, which is sometimes known 
also as the backpropagation network.
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Illustration of the property of linear separation of patterns in the two-dimensional space 
by a single neuron.
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solution all classification problems.
An example with a comparison of results obtained using LMS and Delta training 

algorithms. Note that LMS is not able to find the proper solution.
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Illustration of the concept of the gain computation in neural networks

• Although the error backpropagation algorithm (EBP) was a significant 
breakthrough in neural network research, it is known as an algorithm 
with a very poor convergence rate.

• Many attempts have been made to speed up the EBP algorithm:
– heuristics approaches such as momentum,
– variable learning rate
– stochastic learning
– artificial enlarging of errors for neurons operating in saturation 

region 

• More significant improvement was possible by using various second 
order approaches:
– Newton, 
– conjugate gradient,
– Levenberg-Marquardt (LM) method.   The LM algorithm is now 

considered as the most efficient one It combines the speed of the 
Newton algorithm with the stability of the steepest decent method.  

Levenberg - Marquardt
Steepest decent method: gww α−=+ kk 1

Newton method: gAww 1
1

−
+ −= kkk

where Ak is Hessian and g is gradient vector

Assuming: JJA T2≈ and vJg T2≈
where J is Jacobian and v is error vector
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LM algorithm combines the speed of the Newton algorithm with the 
stability of the steepest decent method.  The LM algorithm uses the 
following formula to calculate weights in subsequent iterations:

( ) EJIJJww T
kk

T
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where E is the cumulative (for all patterns) error vector I is identity unit 
matrix, µ is a learning parameter and J is Jacobian of m output errors with 
respect to n weights of neural network. For µ = 0 it becomes the Gauss-
Newton method. For very large µ the LM algorithm becomes the steepest 
decent or the EBP algorithm.  The µ parameter is automatically adjusted at 
each iteration in order to secure convergence. 

Levenberg - Marquardt 2 Error Back Propagation Algorithm
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 Sum of squared errors as a function of number of iterations for the “XOR”
problem using LM algorithm with Nguyen-Widrow weight initialization.
Algorithm failed in 15% to 25% cases 
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Illustration of the modified derivative calculation for faster convergence of the 
error backpropagation algorithm

A poor convergence of EBP algorithm is not because of local mimima but it is 
due to plateaus on the error surface. This problem is also known as “flat spot”
problem. The prime reason for the plateau formations is a characteristic shape 
of the sigmoidal activation functions. 
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Results of flat spot elimination
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A winner take all - WTA architecture for cluster extracting in the unsupervised 
training mode: (a) network connections, (b) single layer network arranged into a 

hexagonal shape.
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with bi-directional signal flow.
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Sarajedini  and Hecht-Nielsen network

Let us consider stored vector w and input pattern x. Both input and stored 
patterns have the same dimension n. The square Euclidean distance between x 
and w is:

After defactorization

finally 
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Network with two neurons capable of separating crescent shape of patterns (a) input-
output mapping, (b) network diagram
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Spiral problem solved with sigmoidal type neurons  (a) network diagram, (b) input-
output mapping.
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Pulse Coded Neural Networks      3 Pulse Coded Neural Networks      4
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Burning Fire  (comple te  image)

Pulse Coded Neural Networks      5 Fuzzy  systems
• Inputs can be any value from 0 to 1.
• The basic fuzzy principle is similar to Boolean logic.
• Max and min operators are used instead of AND and OR.  The NOT 

operator also becomes 1 - #.
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Block diagram for Zadeh fuzzy controller
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Fuzzification

• There are three major types of membership functions
– Gausian, Triangular and Trapezoidal

• Three basic membership function rules
1. Each point of an input should belong to one 

membership function
2. The sum of two overlapping functions should never 

be greater than 1.
3. For higher accuracy, more membership functions can 

be used, but this can lead to system instability and 
will require a larger fuzzy table.
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Fuzzification
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Trapezoidal Membership Function Results from Fuzzification

Rule Evaluation
Input 2

Input 1  J
 L cold cool normal warm hot
cold A A A B A
cool A A B C B

norma A B C C C
warm A B C D D
hot B C D E E

Input 2
Input 1  J
 L 0 cold 0 cool 0.2 normal 0.8 warm 0 hot

0.7 cold A A A B A
0.3 cool A A B C B
0 normal A B C C C
0 warm A B C D D
0 hot B C D E E

Input 2
Input 1  J
 L 0 cold 0 cool 0.2 normal 0.8 warm 0 hot

0.7 cold 0 0 0.2 A 0.7B 0
0.3 cool 0 0 0.2 B 0.3 C 0
0 normal 0 0 0 0 0
0 warm 0 0 0 0 0
0 hot 0 0 0 0 0

Zadeh fuzzy tables

Input 2
Input 1  J
 L cold cool normal warm hot
cold O1 O2 O3 O4 O5
cool O6 O7 O8 O9 O10

normal O11 O12 O13 O14 O15
warm O16 O17 O18 O19 O20
hot O21 O22 O23 O24 O25

Input 2
Input 1  J
 L 0 cold 0 cool 0.2 normal 0.8 warm 0 hot

0.7 cold O1 O2 O3 O4 O5
0.3 cool O6 O7 O8 O9 O10
0 normal O11 O12 O13 O14 O15
0 warm O16 O17 O18 O19 O20
0 hot O21 O22 O23 O24 O25

Input 2
Input 1  J
 L 0 cold 0 cool 0.2 normal 0.8 warm 0 hot

0.7 cold 0 0 0.2*O3 0.7*O4 0
0.3 cool 0 0 0.2*O8 0.3*O9 0
0 normal 0 0 0 0 0
0 warm 0 0 0 0 0
0 hot 0 0 0 0 0

Tagagi-Sugeno fuzzy tables

Defuzzification

• The equation to describe the defuzzification process.
– n – Number of membership functions
– zk – Fuzzy output variables
– zck – analog values from table

• Outputs:
– Zadeh 

– Tagagi-Sugeno

∑

∑

=

== n

1k
k

n

1k
kk

z

zcz
 Output 

0.30.70.2
C*0.3B*0.7A*0.2 Output 

++
++

=

0.20.30.70.2
O9*0.3O8*0.2O4*0.7O3*0.2 Output 

+++
+++

=

Fuzzy  systems     VLSI implementation     

Block diagrams of the fuzzy VLSI chip
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Fuzzyfier with Six Diffrent Membership Functions

Fuzzifier (a) circuit diagram of fuzzifier, (b) example of the SPICE simulation
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Fuzzy  systems     VLSI implementation  4   

MAX operators (a) concept diagram and (b) simulation results for MAX1 and for the 
proposed MAX2. 
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Fuzzy  systems     VLSI implementation  5   

The cluster cell with rule selection (transistors 
M1-M4) and defuzzification (source I0 and 

transistors M4-M6)

Six bit programmable current sources
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Fuzzy  systems     VLSI implementation  6   

Normalization circuit (a) circuit diagram and (b) characteristics 
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Fuzzy  systems   - microprocessor implementation

Required control surface Zadeh with trapezoidal 
membership functions

Zadeh with triangular 
membership functions

Zadeh with Gaussian
membership functions

Tagagi-Sugeno with 
trapezoidal membership 

functions

Tagagi-Sugeno with 
triangular membership 

functions

Fuzzy  systems   - microprocessor implementation 2

0.306294.2Tagagi-Sugeno fuzzy controller with
Gaussian membership function

6

0.219210.8Tagagi-Sugeno fuzzy controller with 
triangular membership function

5

0.309296.5Tagagi-Sugeno fuzzy controller with 
trapezoidal membership function

4

0.585562.0Zadeh fuzzy controller with Gaussian
membership function

3

0.671644.4Zadeh fuzzy controller with triangular 
membership function

2

0.945908.4Zadeh fuzzy controller with trapezoidal 
membership function

1

Error MSEError SSEApproach used

Neural  systems   -
microprocessor 
implementation

Required control surface
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Neural  systems   - microprocessor implementation     2

0.0003020.2902Neural network with 6 neurons in one 
hidden layer

3

0.0000930.0895Neural network with 5 neurons in 
cascade

2

0.0005780.5559Neural network with 3 neurons in 
cascade

1

Error MSEError SSEApproach used

Comparison of various fuzzy and neural controllers

0.000303.8660Neural network with 6 neurons in one 
hidden layer

0.000093.31070Neural network with 5 neurons in 
cascade

0.000571.72680Neural network with 3 neurons in 
cascade

0.30652.32845Tagagi-Sugeno with Gaussian

0.21928.51502Tagagi-Sugeno with triangulal
0.30928.51502Tagagi-Sugeno with trapezoidal

0.58539.83245Zadeh with Gaussian

0.6711.952324Zadeh with triangular

0.9451.952324Zadeh with trapezoidal

Error 
MSE

processing 
time (ms)

length of 
code

Type of controller

Genetic Algorithms
The genetic algorithms follow the evolution process in the nature 
to find the better solutions of some complicated problems.  
Foundations of genetic algorithms are given in Holland (1975) and  
Goldberg (1989) books.  

Genetic algorithms consist the following steps:

Initialization
Selection
Reproduction with crossover and mutation

Selection and reproduction are repeated for each generation until a 
solution is reached

During this procedure a certain strings of symbols, known as 
chromosomes, evaluate toward better solution.

Genetic Algorithms 2

All significant steps of the genetic algorithm will be explained
using a simple example of finding a  maximum of the function
(sin2(x)-0.5*x)2 with the range of x from 0 to 1.6.  Note, that in this 
range the function has global maximum at x=1.309, and local 
maximum at x=0.262.
Coding and initialization

At first, the variable x has to be represented as a string of 
symbols.  With longer strings process converges usually faster, so 
less symbols for one string field are used it is the better.  While 
this string may be the sequence of any symbols, the binary 
symbols "0" and "1" are usually used.  In our example, let us use 
for coding six bit binary numbers having a decimal value of 40x.  
Process starts with a random generation of the initial population 
given in Table

Genetic Algorithms 3

Initial Population
string decimal

value
variable

value
function

value
fraction
of total

1 101101 45 1.125 0.0633 0.2465

2 101000 40 1.000 0.0433 0.1686

3 010100 20 0.500 0.0004 0.0016

4 100101 37 0.925 0.0307 0.1197

5 001010 10 0.250 0.0041 0.0158

6 110001 49 1.225 0.0743 0.2895

7 100111 39 0.975 0.0390 0.1521

8 000100 4 0.100 0.0016 0.0062

Total 0.2568 1.0000

Initial Population
string decimal

value
variable

value
function

value
fraction
of total

1 101101 45 1.125 0.0633 0.2465

2 101000 40 1.000 0.0433 0.1686

3 010100 20 0.500 0.0004 0.0016

4 100101 37 0.925 0.0307 0.1197

5 001010 10 0.250 0.0041 0.0158

6 110001 49 1.225 0.0743 0.2895

7 100111 39 0.975 0.0390 0.1521

8 000100 4 0.100 0.0016 0.0062

Total 0.2568 1.0000

Initial PopulationInitial Population
stringstring decimal

value
decimal
value

variable
value

variable
value

function
value

function
value

fraction
of total
fraction
of total

11 101101101101 4545 1.1251.125 0.06330.0633 0.24650.2465

22 101000101000 4040 1.0001.000 0.04330.0433 0.16860.1686

33 010100010100 2020 0.5000.500 0.00040.0004 0.00160.0016

44 100101100101 3737 0.9250.925 0.03070.0307 0.11970.1197

55 001010001010 1010 0.2500.250 0.00410.0041 0.01580.0158

66 110001110001 4949 1.2251.225 0.07430.0743 0.28950.2895

77 100111100111 3939 0.9750.975 0.03900.0390 0.15210.1521

88 000100000100 44 0.1000.100 0.00160.0016 0.00620.0062

TotalTotal 0.25680.2568 1.00001.0000

Genetic Algorithms 4

Selection and reproduction 
Selection of the best members of the population is an important 

step in the genetic algorithm.  Many different approaches can be used to 
rank individuals.  In our example the ranking function is given. Highest 
rank has member number 6 and lowest rank has member number 3.  
Members with higher rank should have higher chances to reproduce.  
The probability of reproduction for each member can be obtained as 
fraction of the sum of all objective function values.  This fraction is 
shown in the last column of the Table.  

Using a random reproduction process the following population 
arranged in pairs could be generated:

101101 -> 45 110001 -> 49 100101 -> 37 110001 -> 49 
100111 -> 39 101101 -> 45 110001 -> 49 101000 -> 40
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Genetic Algorithms 5

Reproduction
101101 -> 45 110001 -> 49 100101 -> 37 110001 -> 49 
100111 -> 39 101101 -> 45 110001 -> 49 101000 -> 40

If size of the population from one generation to another is the same, 
therefore two parents should generate two children.  By combining 
two strings two another strings should be generated.  The simples 
way to do it is to split in half each of the parent string and exchange
substrings between parents.  For example from parent strings 
010100 and 100111 the following child strings will be generated 
010111 and 100100.  This process is known as the crossover and 
resultant children are shown below

101111 -> 47 110101 -> 53 100001 -> 33 110000 -> 48
100101 -> 37 101001 -> 41 110101 -> 53 101001 -> 41

Genetic Algorithms 6

Mutation
On the top of properties inherited from parents they are 

acquiring  some new random properties.  This process is known as
mutation.  In most cases mutation generates low ranked children,
which are eliminated in reproduction process.  Sometimes however, 
the mutation may introduce a better individual with a new property 
into.  This prevents process of reproduction from degeneration. In 
genetic algorithms mutation plays usually secondary role. Mutation 
rate is usually assumed on the level much below 1%.  In our 
example mutation is equivalent to the random bit change of a given 
pattern.  In this simple example with short strings and small 
population with a typical mutation rate of 0.1%, our patterns remain 
practically unchanged by the mutation process.  The second 
generation for our example is shown in Table

Genetic Algorithms 7

Population of Second Generation
string

number
string decimal

value
variable

value
function

value
fraction
of total

1 010111 47 1.175 0.0696 0.1587

2 100100 37 0.925 0.0307 0.0701

3 110101 53 1.325 0.0774 0.1766

4 010001 41 1.025 0.0475 0.1084

5 100001 33 0.825 0.0161 0.0368

6 110101 53 1.325 0.0774 0.1766

7 110000 48 1.200 0.0722 0.1646

8 101001 41 1.025 0.0475 0.1084

Total 0.4387 1.0000

Population of Second Generation
string

number
string decimal

value
variable

value
function

value
fraction
of total

1 010111 47 1.175 0.0696 0.1587

2 100100 37 0.925 0.0307 0.0701

3 110101 53 1.325 0.0774 0.1766

4 010001 41 1.025 0.0475 0.1084

5 100001 33 0.825 0.0161 0.0368

6 110101 53 1.325 0.0774 0.1766

7 110000 48 1.200 0.0722 0.1646

8 101001 41 1.025 0.0475 0.1084

Total 0.4387 1.0000

Population of Second GenerationPopulation of Second Generation
string

number
string

number
stringstring decimal

value
decimal
value

variable
value

variable
value

function
value

function
value

fraction
of total
fraction
of total

11 010111010111 4747 1.1751.175 0.06960.0696 0.15870.1587

22 100100100100 3737 0.9250.925 0.03070.0307 0.07010.0701

33 110101110101 5353 1.3251.325 0.07740.0774 0.17660.1766

44 010001010001 4141 1.0251.025 0.04750.0475 0.10840.1084

55 100001100001 3333 0.8250.825 0.01610.0161 0.03680.0368

66 110101110101 5353 1.3251.325 0.07740.0774 0.17660.1766

77 110000110000 4848 1.2001.200 0.07220.0722 0.16460.1646

88 101001101001 4141 1.0251.025 0.04750.0475 0.10840.1084

TotalTotal 0.43870.4387 1.00001.0000

Genetic Algorithms 8
Note, that two identical highest ranking members of the 

second generation are very close to the solution x=1.309.  The 
randomly chosen parents for third generation are

010111 -> 47 110101 -> 53 110000 -> 48 101001 -> 41 
110101 -> 53 110000 -> 48 101001 -> 41 110101 -> 53

which produces following children:
010101 -> 21 110000 -> 48 110001 -> 49 101101 -> 45 
110111 -> 55 110101 -> 53 101000 -> 40 110001 -> 49
The best result in the third population is the same as in the 

second one.  By careful inspection of all strings from second or third 
generation one may conclude that using crossover, where strings are 
always split into half, the best solution 110100 -> 52 will never be 
reached no matter how many generations are created. 

The genetic algorithm is very rapid and it leads to a good 
solution within a few generations.  This solution is usually close to 
global maximum, but not the best.  

Genetic Algorithms 9 Genetic Algorithms 10
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