B. M. 'Dan' Wilamowski University of Idaho	nn.uidaho.edu wialm@ieoe.org
Soft Computing and its Application	
	Introduction
	Neural networks
	Learning Algorithms
	Advanced Neural Network Architectures
	Fuzzy Systems
	Genetic Algorithms
	Hardware implementation of neuro-fuzzy systems
	Conclusion

Several logical operations using networks with McCulloch-Pitts neurons.

Threshold implementation

$$
\begin{aligned}
& \text { net }=\sum_{i=1}^{n} w_{i} x_{i} \\
& n e t=\sum_{i=1}^{n} w_{i} x_{i}+w_{n+1} \\
& \text { (a) }
\end{aligned}
$$

Activation functions

bipolar

$$
o=f(n e t)=\frac{2}{1+\exp (-2 k n e t)}-1=\tanh (k n e t) \quad f^{\prime}(o)=k\left(1-o^{2}\right)
$$

unipolar

$$
o=f(n e t)=\frac{1}{1+\exp (-4 k n e t)}
$$

$$
f^{\prime}(o)=4 k o(1-o)
$$

LMS AND REGRESSION ALGORITHMS

If a single layer of neurons is considered, error back propagation type of algorithms minimize global error as shown in equation 1 :

$$
\text { TotalError }=\sum_{p=1}^{P} \sum_{j=1}^{J}\left(d_{p j}-o_{p j}\right)^{2}
$$

where P is the number of patterns and J is the number of outputs. A similar approach is taken in the Widrow-Hoff (LMS) algorithm:

$$
\text { TotalError }=\sum_{p=1}^{P} \sum_{j=1}^{J}\left(d_{p j}-n e t_{p j}\right)^{2}
$$

Where $\operatorname{net}_{p j}=\sum_{i=1}^{I} w_{j i} x_{j i p}$
and I is the size of the augmented input vector i.e. $\boldsymbol{x}_{\mathrm{jlp}}=+1$.

Learning rules for single neuron $\quad \Delta \mathbf{W}_{i}=\alpha \delta \mathbf{X}$
$\begin{array}{ll}\text { Hebb rule (unsupervised): } & \delta=o \\ \text { correlation rule (supervised): } & \delta=d \\ \text { perceptron fixed rule: } & \delta=d-o\end{array}$
perceptron adjustable rule - as above but the learning constant is modified to:

$$
\alpha^{*}=\alpha \lambda \frac{\mathbf{x} \mathbf{w}^{T}}{\mathbf{x} \mathbf{x}^{T}}=\alpha \lambda \frac{\text { net }}{\|\mathbf{x}\|^{2}}
$$

LMS (Widrow-Hoff) rule: $\quad \delta=d-$ net
delta rule: $\quad \delta=(d-o) f^{\prime}$
pseudoinverse rule (for linear system): $\quad \mathbf{w}=\left(\mathbf{x}^{T} \mathbf{x}\right)^{-1} \mathbf{x}^{T} d$
iterative pseudoinverse rule (for nonlinear system): $\quad \mathbf{w}=\left(\mathbf{x}^{T} \mathbf{x}\right)^{-1} \mathbf{x}^{T} \frac{d-o}{f^{\prime}}$

For any given neuron the training data is given in two arrays:

$$
\left[\begin{array}{ccccc}
x_{11} & x_{12} & x_{13} & \ldots & x_{i I} \\
x_{21} & x_{22} & \ldots & \ldots & x_{2 i} \\
x_{31} & x_{32} & \ldots & \ldots & x_{3 i} \\
\vdots & \vdots & & \ddots & \vdots \\
x_{P 1} & x_{P 2} & \ldots & \ldots & x_{P I}
\end{array}\right] \times\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{I}
\end{array}\right]=\left[\begin{array}{c}
d_{1} \\
d_{2} \\
d_{3} \\
\vdots \\
d_{P}
\end{array}\right]
$$

where I is the number of augmented inputs. The over-determinated set of equations can be solved in a least mean square sense:

$$
\mathbf{w}_{\mathbf{j}}=\left(\mathbf{x}^{T} \mathbf{x}\right)^{-1} \mathbf{x}^{T} d_{j}
$$

where $\mathbf{w}_{\mathrm{j}}=$ unknown vector of the weights of the $\mathrm{j}^{\text {th }}$ neuron. The matrix \mathbf{x} must be converted only once, and the weights for all the neurons ($j=1$ to N) can be found. Regardless of whether the regression algorithm or the LMS algorithm is used, the outcome will be the same.

LMS algorithm

Two examples of non-optimum solutions, where line A is the result of the regression (LMS) algorithm, and line B is the separation generated by the minimum distance classifier.

AW ALGORITHM

The total error for one neuron j and pattern p is now defined by a simple difference:

$$
E_{j p o}=D_{j p}-O_{j p}(n e t)
$$

where net $=w_{1} x_{1}+w_{2} x_{2}+\ldots \ldots w_{\mathrm{n}} x_{\mathrm{n}}$. The derivative of this error with respect to the $i^{\text {ih }}$ weight of the $j^{j / h}$ neuron can be written as

$$
\frac{d E_{j p}}{d w_{i}}=\frac{d O_{j p}}{d n e t} \frac{d n e t}{d w i}=-f_{j p}^{\prime} x_{i j p}
$$

The error function can then be approximated by the first two terms of the linear approximation around a given point:

$$
E_{j p}=E_{j p o}+\frac{d E_{j p}}{d w_{1}} \Delta w_{1}+\frac{d E_{j p}}{d w_{2}} \Delta w_{2}+\ldots \ldots \cdot \frac{d E_{j p}}{d w_{n}} \Delta w_{n}
$$

Therefore:

$$
\begin{aligned}
& \text { AW ALGORITHM } 2 \\
& \qquad\left[\begin{array}{ccccc}
x_{11} & x_{12} & x_{13} & \cdots & x_{12} \\
x_{21} & x_{23} & x_{23} & \cdots & x_{21} \\
\vdots & \vdots & \vdots & & \vdots \\
x_{p 1} & x_{p 2} & x_{p 3} & \cdots & x_{p l} \\
\vdots & \vdots & \vdots & & \vdots \\
x_{P 1} & x_{p 1} & x_{p 1} & \cdots & x_{p 1}
\end{array}\right]\left[\begin{array}{c}
w_{1} \\
\nabla w_{2} \\
\vdots \\
\nabla w_{1}
\end{array}\right]=\left[\begin{array}{c}
\frac{p_{1}-o_{1}}{f^{\prime} 1} \\
\frac{p_{2}-o_{2}}{f_{2}} \\
\vdots \\
\frac{D_{p}-o_{p}}{f^{\prime} p} \\
\vdots \\
\frac{p_{p}-o_{p}}{f^{\prime} p}
\end{array}\right]
\end{aligned}
$$

$$
\Delta \mathbf{w}=\left(\begin{array}{ll}
\mathbf{X}^{T} & \mathbf{X}
\end{array}\right)^{-1} \mathbf{X}^{T} \mathbf{d e l}=\mathbf{Y} \text { del }
$$

The Y matrix is composed of input patterns, and must be computed only once !

AW ALGORITHM 3

Comparison of Algorithms where the algorithms can be identified by the labels Aregression, B-minimum distances C-modified minimum distance, and D-modified regression and delta (back propagation) algorithm.

An example with a comparison of results obtained using LMS and Delta training algorithms. Note that LMS is not able to find the proper solution.

- Although the error backpropagation algorithm (EBP) was a significant breakthrough in neural network research, it is known as an algorithm with a very poor convergence rate.
- Many attempts have been made to speed up the EBP algorithm:
- heuristics approaches such as momentum,
- variable learning rate
- stochastic learning
- artificial enlarging of errors for neurons operating in saturation region
- More significant improvement was possible by using various second order approaches:
- Newton,
- conjugate gradient,
- Levenberg-Marquardt (LM) method. The LM algorithm is now considered as the most efficient one It combines the speed of the Newton algorithm with the stability of the steepest decent method.

Levenberg - Marquardt

$$
\begin{aligned}
& \text { Steepest decent method: } \\
& \mathbf{w}_{k+1}=\mathbf{w}_{k}-\alpha \mathbf{g} \\
& \text { Newton method: } \\
& \mathbf{w}_{k+1}=\mathbf{w}_{k}-\mathbf{A}_{k}^{-1} \mathbf{g} \\
& \text { where } \mathbf{A}_{\mathrm{k}} \text { is Hessian and } \mathbf{g} \text { is gradient vector } \\
& \text { Assuming: } \quad \mathbf{A} \approx 2 \mathbf{J}^{T} \mathbf{J} \quad \text { and } \quad \mathbf{g} \approx 2 \mathbf{J}^{T} \mathbf{v} \\
& \text { where } \mathbf{J} \text { is Jacobian and } \mathbf{v} \text { is error vector } \\
& \mathbf{w}_{k+1}=\mathbf{w}_{k}-\left(2 \mathbf{J}_{k}^{T} \mathbf{J}_{k}\right)^{-1} 2 \mathbf{J}_{k}^{T} \mathbf{v} \text { or } \mathbf{w}_{k+1}=\mathbf{w}_{k}-\left(\mathbf{J}_{k}^{T} \mathbf{J}_{k}\right)^{-1} \mathbf{J}_{k}^{T} \mathbf{v} \\
& \text { Levenberg - Marquardt method: } \quad \mathbf{w}_{k+1}=\mathbf{w}_{k}-\left(\mathbf{J}_{k}^{T} \mathbf{J}_{k}+\mu \mathbf{I}\right)^{-1} \mathbf{J}_{k}^{T} \mathbf{v} \\
& \begin{array}{rlllll}
\frac{\partial^{2} v}{\partial x_{1}^{2}} & \frac{\partial^{2} v}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} v}{\partial x_{1} \partial x_{3}} . & \frac{\partial v_{1}}{\partial x_{1}} & \frac{\partial v_{1}}{\partial x_{2}} & \frac{\partial v_{1}}{\partial x_{3}} \\
\text { Hessian } \Leftrightarrow & \frac{\partial^{2} v}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} v}{\partial x_{2}^{2}} & \frac{\partial^{2} v}{\partial x_{2} \partial x_{3}} . & \text { Jacobian } \Leftrightarrow \frac{\partial v_{2}}{\partial x_{1}} & \frac{\partial v_{2}}{\partial x_{2}} \\
\frac{\partial v_{2}}{\partial x_{3}}
\end{array} .
\end{aligned}
$$

Error Back Propagation Algorithm

Sum of squared errors as a function of number of iterations for the "XOR" problem using EBP algorithm with Nguyen-Widrow weight initialization

Sum of squared errors as a function of number of iterations for the"XOR" problem using EBP algorithm with unfavorable weight initialization

Levenberg-Marquardt Algorithm

Sum of squared errors as a function of number of iterations for the "XOR" problem using LM algorithm with Nguyen-Widrow weight initialization. Algorithm failed in 15% to 25% cases

When initial weight were chosen purposely very far from the solution the LM algorithm failed in 100% cases

A poor convergence of EBP algorithm is not because of local mimima but it is due to plateaus on the error surface. This problem is also known as "flat spot" problem. The prime reason for the plateau formations is a characteristic shape of the sigmoidal activation functions.

Illustration of the modified derivative calculation for faster convergence of the error backpropagation algorithm

Results of flat spot elimination

Sum of squared errors as a function of number of iterations for the "XOR" problem using modified EBP algorithm with Nguyen-Widrow weight initialization

Sum of squared errors as a function of number of iterations for the "XOR" problem using modified EBP algorithm with unfavorable weight initialization

Find number and location of clusters in 4-dim. space

Sarajedini and Hecht-Nielsen network

Let us consider stored vector w and input pattern x . Both input and stored patterns have the same dimension n. The square Euclidean distance between x and w is:

$$
\|\mathbf{x}-\mathbf{w}\|^{2}=\left(x_{1}-w_{1}\right)^{2}+\left(x_{2}-w_{2}\right)^{2}+\cdots+\left(x_{n}-w_{n}\right)^{2}
$$

After defactorization

$$
\|\mathbf{x}-\mathbf{w}\|^{2}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}+w_{1}^{2}+w_{2}^{2}+\cdots+w_{n}^{2}-2\left(x_{1} w_{1}+x_{2} w_{2}+\cdots+x_{n} w_{n}\right)
$$

finally

$$
\|\mathbf{x}-\mathbf{w}\|^{2}=\mathbf{x}^{T} \mathbf{x}+\mathbf{w}^{T} \mathbf{w}-2 \mathbf{x}^{T} \mathbf{w}=\|\mathbf{x}\|^{2}+\|\mathbf{w}\|^{2}-2 n e t
$$

Input pattern transformation on a sphere

Input pattern transformation on a sphere 3

Spiral problem solved with sigmoidal type neurons (a) network diagram, (b) inputoutput mapping.

Pulse Coded Neural Networks

Transient Graph
v

Fuzzification

- There are three major types of membership functions
- Gausian, Triangular and Trapezoidal
- Three basic membership function rules

1. Each point of an input should belong to one membership function
2. The sum of two overlapping functions should never be greater than 1 .
3. For higher accuracy, more membership functions can be used, but this can lead to system instability and will require a larger fuzzy table.

Defuzzification

- The equation to describe the defuzzification process.
- n - Number of membership functions
- zk - Fuzzy output variables
- zck - analog values from table
- Outputs:
- Zadeh

$$
\text { Output }=\frac{\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{z}_{\mathrm{k}} \mathrm{zc}_{\mathrm{k}}}{\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{z}_{\mathrm{k}}}
$$

Output $=\frac{0.2 * \mathrm{~A}+0.7 * \mathrm{~B}+0.3 * \mathrm{C}}{0.2+0.7+0.3}$

- Tagagi-Sugeno

Output $=\frac{0.2 * \mathrm{O} 3+0.7 * \mathrm{O} 4+0.2 * \mathrm{O} 8+0.3 * \mathrm{O} 9}{0.2+0.7+0.3+0.2}$

Fuzzy systems VLSI implementation 2

Fuzzifier (a) circuit diagram of fuzzifier, (b) example of the SPICE simulation

Rule Evaluation

Zadeh fuzzy tables
Tagagi-Sugeno fuzzy tables

Fuzzy systems VLSI implementation 3

Defuzzifier using normalization and weighted
sum

Fuzzy systems VLSI implementation 4

MAX operators (a) concept diagram and (b) simulation results for MAX1 and for the proposed MAX2.

Fuzzy systems VLSI implementation 6

Normalization circuit (a) circuit diagram and (b) characteristics

| Fuzzy systems - microprocessor implementation 2 |
| :--- | :--- | :---: | :---: |
| Approach used Error SSE Error MSE
 2 Zadeh fuzzy controller with trapezoidal
 membership function 908.4 0.945
 3 Zadeh fuzzy controller with triangular
 membership function 644.4 0.671
 4 Zadeh fuzzy controller with Gaussian
 membership function 562.0 0.585
 5 Tagagi-Sugeno fuzzy controller with
 trapezoidal membership function
 triangular membership function 296.5 0.309
 6 Tagagi-Sugeno fuzzy controller with
 Gaussian membership function 294.2 0.306 |

Fuzzy systems VLSI implementation 5

The cluster cell with rule selection (transistors
M1-M4) and defuzzification (source I_{0} and transistors M4-M6)

Fuzzy systems - microprocessor implementation

Required control surface

Zadeh with Gaussian membership functions

Tagagi-Sugeno with trapezoidal membership functions

Neural systems - microprocessor implementation 2

	Approach used	Error SSE	Error MSE
1	Neural network with 3 neurons in cascade	0.5559	0.000578
2	Neural network with 5 neurons in cascade	0.0895	0.000093
3	Neural network with 6 neurons in one hidden layer	0.2902	0.000302

Genetic Algorithms

The genetic algorithms follow the evolution process in the nature to find the better solutions of some complicated problems.
Foundations of genetic algorithms are given in Holland (1975) and Goldberg (1989) books.

Genetic algorithms consist the following steps:
$>$ Initialization
$>$ Selection
$>$ Reproduction with crossover and mutation
Selection and reproduction are repeated for each generation until a solution is reached

During this procedure a certain strings of symbols, known as chromosomes, evaluate toward better solution.

Genetic Algorithms 3

Initial Population						
	string	decimal value	variable value	function value	fraction of total	
1	101101	45	1.125	0.0633	0.2465	
2	101000	40	1.000	0.0433	0.1686	
3	010100	20	0.500	0.0004	0.0016	
4	100101	37	0.925	0.0307	0.1197	
5	001010	10	0.250	0.0041	0.0158	
6	110001	49	1.225	0.0743	0.2895	
7	100111	39	0.975	0.0390	0.1521	
8	000100	4	0.100	0.0016	0.0062	
Total				0.2568	1.0000	

Comparison of various fuzzy and neural controllers

Type of controller	length of code	processing time (ms)	Error MSE
Zadeh with trapezoidal	2324	1.95	0.945
Zadeh with triangular	2324	1.95	0.671
Zadeh with Gaussian	3245	39.8	0.585
Tagagi-Sugeno with trapezoidal	1502	28.5	0.309
Tagagi-Sugeno with triangulal	1502	28.5	0.219
Tagagi-Sugeno with Gaussian	2845	52.3	0.306
Neural network with 3 neurons in	680	1.72	0.00057
cascade	1070	3.3	0.00009
Neural network with 5 neurons in cascade	660	3.8	0.00030
Neural network with 6 neurons in one hidden layer			

Genetic Algorithms 2

All significant steps of the genetic algorithm will be explained using a simple example of finding a maximum of the function $\left(\sin ^{2}(x)-0.5^{*} x\right)^{2}$ with the range of x from 0 to 1.6. Note, that in this range the function has global maximum at $x=1.309$, and local maximum at $x=0.262$.

Coding and initialization

At first, the variable x has to be represented as a string of symbols. With longer strings process converges usually faster, so less symbols for one string field are used it is the better. While this string may be the sequence of any symbols, the binary symbols " 0 " and " 1 " are usually used. In our example, let us use for coding six bit binary numbers having a decimal value of $40 x$. Process starts with a random generation of the initial population given in Table

Genetic Algorithms 4

Selection and reproduction

Selection of the best members of the population is an important step in the genetic algorithm. Many different approaches can be used to rank individuals. In our example the ranking function is given. Highest rank has member number 6 and lowest rank has member number 3 .
Members with higher rank should have higher chances to reproduce.
The probability of reproduction for each member can be obtained as fraction of the sum of all objective function values. This fraction is shown in the last column of the Table.

Using a random reproduction process the following population arranged in pairs could be generated:

$$
\begin{array}{lllllll}
101101-> & 110001 & -> & 49 & 100101 & -> & 37 \\
100111 & 110001 & -> & 49 \\
10 & 101101 & -> & 45 & 110001 & -> & 49 \\
101000 & -\gg 40
\end{array}
$$

Genetic Algorithms 5

Reproduction

101101 -> $45 \quad 110001$-> 49100101 -> 37110001 -> 49
100111 -> 39101101 -> 45110001 -> 49101000 -> 40

If size of the population from one generation to another is the same, therefore two parents should generate two children. By combining two strings two another strings should be generated. The simples way to do it is to split in half each of the parent string and exchange substrings between parents. For example from parent strings 010100 and 100111 the following child strings will be generated 010111 and 100100. This process is known as the crossover and resultant children are shown below

$$
\begin{array}{llllll}
101111->47 & 110101->53 & 100001->33 & 110000->48 \\
100101->37 & 101001->41 & 110101->53 & 101001->41
\end{array}
$$

Genetic Algorithms 7

Population of Second Generation						
string number	string	decimal value	variable value	function value	fraction of total	
1	010111	47	1.175	0.0696	0.1587	
2	100100	37	0.925	0.0307	0.0701	
3	110101	53	1.325	0.0774	0.1766	
4	010001	41	1.025	0.0475	0.1084	
5	100001	33	0.825	0.0161	0.0368	
6	110101	53	1.325	0.0774	0.1766	
7	110000	48	1.200	0.0722	0.1646	
8	101001	41	1.025	0.0475	0.1084	
Total				0.4387	1.0000	

Genetic Algorithms 9

$$
\begin{gathered}
\mathrm{E}=\mathrm{w}_{\mathrm{x}} \mathrm{x}^{2}+\mathrm{w}_{\mathrm{y}} \mathrm{y}^{2}+\mathrm{w}_{\phi} \phi^{2} \\
\mathrm{E}=\mathrm{w}_{\mathrm{x}} \mathrm{x}^{2}+\mathrm{w}_{\phi} \phi^{2}
\end{gathered}
$$

Genetic Algorithms 6

Mutation

On the top of properties inherited from parents they are acquiring some new random properties. This process is known as mutation. In most cases mutation generates low ranked children, which are eliminated in reproduction process. Sometimes however, the mutation may introduce a better individual with a new property into. This prevents process of reproduction from degeneration. In genetic algorithms mutation plays usually secondary role. Mutation rate is usually assumed on the level much below 1%. In our example mutation is equivalent to the random bit change of a given pattern. In this simple example with short strings and small population with a typical mutation rate of 0.1%, our patterns remain practically unchanged by the mutation process. The second generation for our example is shown in Table

Genetic Algorithms 8

Note, that two identical highest ranking members of the second generation are very close to the solution $x=1.309$. The randomly chosen parents for third generation are

$$
\begin{array}{cccccc}
010111->47 & 110101->53 & 110000->48 & 101001->41 \\
110101->53 & 110000->48 & 101001->41 & 110101->53
\end{array}
$$

which produces following children:

$$
010101->21 \quad 110000 \text {-> } 48 \quad 110001 \text {-> } 49 \quad 101101 \text {-> } 45
$$

$$
110111 \text {-> } 55 \quad 110101 \text {-> } 53 \quad 101000 \text {-> } 40 \quad 110001 \text {-> } 49
$$

The best result in the third population is the same as in the second one. By careful inspection of all strings from second or third generation one may conclude that using crossover, where strings are always split into half, the best solution $110100->52$ will never be reached no matter how many generations are created.

The genetic algorithm is very rapid and it leads to a good solution within a few generations. This solution is usually close to global maximum, but not the best.

Genetic Algorithms 10

Genetic Algorithms 12

B. M. 'Dan' Wilamowski

University of Idaho

Soft Computing and its Application

